N

N

A Self-Adaptable Approach for Easing the Development
of Grid-Oriented Services

André Lage Freitas, Jean-Louis Pazat

» To cite this version:

André Lage Freitas, Jean-Louis Pazat. A Self-Adaptable Approach for Easing the Development of
Grid-Oriented Services. International Conference on Computer and Information Technology (CIT
2010), Jun 2010, Bradford, United Kingdom. 10.1109/CIT.2010.56 . inria-00474992

HAL 1d: inria-00474992
https://inria.hal.science/inria-00474992
Submitted on 1 Jul 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00474992
https://hal.archives-ouvertes.fr

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

A Self-Adaptable Approach for Easing the
Development of Grid-Oriented Services

André Lage Freitas and Jean-Louis Pazat
INRIA / IRISA — MYRIADS Team
Campus de Beaulieu
35 042 Rennes, France
Emails: {Andre.Lage,Jean-Louis.Pazat} @irisa.fr

Abstract—The Service-Oriented Architecture (SOA) leverages
the service abstraction to enable the development of modular,
loose-coupled and distributed applications. In order to use
such an architecture, service-based applications directly rely on
services or compose them for conceiving new functionalities.
In spite of these capabilities, they do not support the devel-
opment of services which need high-performance computing.
Grid computing offers an infrastructure for high-performance
computing which is based on the sharing of distributed, low-
cost and heterogeneous resources in large-scale. Thus, grids can
be used to satisfy these high-performance service requirements.
This work aims at easing the development of grid-oriented
services. The iPOJO service-component model is used to propose
an architecture that automatically manages job submission for
services. This architecture is based on Dynaco (Adaptation for
Components) and the XtreemOS grid operating system.

I. INTRODUCTION

The Service-Oriented Computing (SOC) [17] uses the ser-
vice abstraction to address the development of modular and
loose-coupling distributed applications. These service-based
applications directly use atomic services or compose them in
order to obtain other functionalities. The relationship among
services are defined and established through agreements which
are formalized as contracts. In order to enable the development
of such applications, the Service-Oriented Architecture (SOA)
proposes a support which addresses service composition as
well as basic and high-level service management features.
However, the SOA was not conceived to take into account
non-trivial computational capabilities for services that require
high-performance computing.

Grid computing [7] leverages low-cost and heterogeneous
resources in order to provide a distributed infrastructure for
high-performance computing in large-scale. Grids precisely
define resource access through the management of Virtual
Organizations (VO) in a dynamic fashion. Thereby, grids offer
an infrastructure suitable for supporting services that have
high-performance computing needs. In order to use the grid,
such services rely on the grid job abstraction by submitting and
managing them through the grid interface. However, in spite
of interesting efforts as the Simple Grid API (SAGA) [8] that
addresses to ease the use of grids, grid usage still remains
complex. This drawback becomes an inconvenience for the
development of grid-oriented services.

This work proposes a self-adaptable support for easing
the conception of grid-oriented services. The self-adaptive

978-0-7695-4108-2/10 $26.00 © 2010 IEEE
DOI 10.1109/CIT.2010.56

76

aspect is addressed by Dynaco (Dynamic Adaptation for
Components) [3] in a design based on components. We rely
on iPOJO [6] due to its dynamic and flexible capabilities for
developing and maintaining services on OSGi [14] platforms.
Finally, a self-adaptable iPOJO handler is proposed which
addresses the management of jobs on the XtreemOS grid
operating system.

This work is organized as follows. Section II presents the
Service-Oriented Computing and iPOJO. Grid Computing is
discussed in Section III. In Section IV, we introduce dynamic
adaptation and the Dynaco adaptation model. Our design is
proposed in Section IV and it is followed in Section V by an
architecture that describes the enabling technologies for such
a proposal. We discuss about related works in Section VII.
Ultimately, we conclude our discussion in Section VIII and
we present our future plans concerning our investigation in
this field.

II. SERVICE-ORIENTED COMPUTING
A. Overview

The Service-Oriented Computing (SOC) [17] paradigm
proposes a modular and loose-couple design for developing
distributed applications. Such a design is based on the service
abstraction which uses contracts to define how these service
will interact with each other. The SOC is represented by the
Service-Oriented Architecture (SOA). The SOA describes a
three-layer architecture widely known as the SOA pyramid
which enables the conception of service-based applications. In
a brief, the lowest SOA layer addresses basic functionalities
as service discovery and binding. The middle-layer deals with
service composition in which services are combined in order
to conceive composite services. Last, the upper layer handles
high-level service management features that are mainly related
to service life cycle.

There exists different understandings of the SOA which are
usually defined by open technical specifications. Firstly, we
can evidence Web Services (WS) [19] due to its wide adoption.
Web Services main address the integration of distinct systems
by using Web standards as UDDI, XML, HTTP and SOAP.
Secondly, the Service-Component Architecture (SCA) [13]
specification addresses a uniform and structured way of devel-
oping services by means of defining a component model. Such
a model enables component instances to implement services

IEEE
computer
® psouety

through specific bindings. Finally, different from the formers,
OSGi [14] addresses the management of service dynamism
by proposing a flexible SOA platform framework. It is further
explained as follows.

B. OSGi

The OSGi Alliance was created by a group of industries in
1999 targeting to define open specifications for services that
operate on local network devices. Currently, it still aims at
providing open service specifications but addressing Internet
services that include desktops, homes, cars and ubiquitous
devices. The OSGi framework relies on the Java technology
and targets to ease the development of services that operate
on “small-memory devices that can be deployed on large
scale” [14]. However, there are current efforts exposed in [16]
address this issue by decentralizing the platform and providing
interoperability with other service technologies.

The OSGi specification is based on a modular design that
takes advantage of deployment units called bundles which
implement OSGi services. OSGi bundles communicate to each
other in a dynamic fashion by exporting and importing Java
packages. A bundle can contain one or more services that
either provide or require other services. In OSGi, service
descriptors are defined by Java interfaces. The OSGi frame-
work offers then a simple and efficient way of managing
bundles and their services which facilitates the application
management and maintenance. However, though the OSGi
framework provides such advantages, it is still the service
developer charge to deal with this dynamism.

C. iPOJO

There has been proposed by [4], [20] the use of the
component-based design [18] to develop services due to their
complementary characteristics. On one hand, services are
loose-coupling, dynamic and business-oriented. On the other
hand, components offer an efficient development model that
separates concerns and promotes re-usability. These properties
simplify the service development. Moreover, with regard to
OSGi platform, component-oriented service models such as
Declarative Services [15] and iPOJO [6] do not only facilitate
the service development, but they also support the management
of the OSGi dynamism which is often addressed by service
developers.

Among approaches that offer a component model for OSGi,
iPOJO stands out due to two main aspects. First, it provides
structured component composition through composites whose
instances can be visualized as an architectural view of the
service. Second, iPOJO’s dynamism management separates
the functional and non-functional service codes which are
respectively represented by POJOs' (content) and handlers
(controllers). Thus, service developers may focus on the
service main development while iPOJO handlers deal with
service non-functional requirements. Such non-functional re-
quirements may concern details about servicing and requiring

!Plain Old Java Object.

77

services or triggering actions according to life cycle callbacks,
for instance. Moreover, iPOJO provides extended handlers that
offer non-trivial features as support for design patterns, event-
based communication and time-based service requiring. Fi-
nally, further handlers can be implemented thanks to extensible
features in iPOJO’s design and implementation.

III. GRID COMPUTING
A. Overview

Grid computing [7] addresses the use of distributed and low-
cost resources for performing high-performance computing.
Even though such resources may be heterogeneous and geo-
graphically dispersed, grids target to share them in a transpar-
ent fashion. In order to ensure such a transparency, grids rely
on open standards that unify the way of how grid resources
are used. Furthermore, concerning the resource access policies,
grids leverage the concept of Virtual Organization (VO) to
define and ensure user privileges in each resource. Thereby,
distinct organizations or different sectors of a organization can
configure the grid usage to suit their needs.

Grid applications take advantage of the job abstraction and
may consist of one or more grid jobs. Jobs are commonly
formed by a parallel program whose tasks may be related to
each other or not. Moreover, job descriptions contain both
the program binary and the resource requirements to execute
it. These requirements may describe the number and type of
resources and detailed information about them which may
include operating system, libraries, input data, for instance.
With respect to the job execution, grids propose distinct
interfaces such as APIs, terminals and web portals through
which jobs can be submitted and managed. Job management
commands are dealt with by the grid broker which is in charge
of allocating the resources according to the job requirements.
Then the broker sends the job-resources mismatch to the grid
scheduler in order to execute the job. Once the job finishes,
the results are stored in the user’s space in the grid file system.

In spite of the grid benefits earlier exposed, grid usage
still remains complex. Moreover, each grid platform provides
its own interface with customized commands. In order to
ease the grid application development and to promote the
interoperability among different grids, the Grid Simple API
(SAGA) [8] proposes a standardized grid API. SAGA allows
grid applications to be developed taking into account a unique
and simple interface while it enables the execution of such an
application in distinct grids. Moreover, SAGA achieves this
goal by leveraging grid adaptors which can be developed un-
der grid interfaces written in Java or C++ languages currently.

B. XtreemOS

The XtreemOS project proposes the idea of a grid operating
system in contrast to conventional grid approaches based
on grid middlewares. XtreemOS uses the Linux kernel to
build specific modules which transparently enables Mandriva
GNU/Linux PCs and mobile devices to become grid resources.
Moreover, it also supports single-system image clusters which
grid users can use as it would be a single and powerful

machine. With respect to resource management, XtreemOS
takes advantage of such kernel implementation to decrease
the system overhead when performing tasks that require de-
tailed information of the system. Finally, XtreemOS interface
(XOSAGA) is based on SAGA by providing higher-level ab-
stractions for developing grid applications; besides XtreemOS
also provides a POSIX-compliant terminal interface.

The design of the XtreemOS grid operating system is
divided in foundation and grid layers. The former addresses
the low-level kernel implementations that allow to use different
hardwares as grid resources. Thus, the communication infras-
tructure is built under those kernel modules and allows both
foundation and grid layers to interact with each other. The
latter layer is responsible for providing grid functionalities.
It consist of three entities that provide Application Execu-
tion Management (AEM), Virtual Organization Management
(VOM) and the XtreemOS File System (XFS). Those function-
alities are transparently offered as in conventional operating
systems thanks to the foundation layer which offers such a
transparency.

IV. DYNAMIC ADAPTATION

Systems that rely on dynamic environments should be able
to adapt themselves in order to deal with unpredicted changes.
Dynamic environments commonly present changes which are
not able to predict at design time. These changes may lead
systems to face undesirable situations which degrade and
compromise the application working. Moreover, it is harder
to both predict and deal with such changes in distributed
scenarios. Therefore, the adaptation of applications at runtime
becomes then a fundamental feature in order to ensure their
proper behavior.

In [3], [10], [1], [12] there are further discussions about
adaptation techniques. While [1], [12] address general issues
and enabling technologies for software adaptation, [3], [10]
propose an adaptation design that divides distinct adaptation
concerns: Monitor, Analyze, Plan and Execute*. On one hand,
in [10], the authors propose a general architecture for Au-
tonomic Computing. On the other hand, Dynaco (Dynamic
Adaptation for Components) [3] proposes an adaptation model
validated by a framework for developing self-adaptable appli-
cation on grids. Furthermore, Dynaco promotes the re-usability
of adaptation generic mechanisms which can be customized
according to the adaptation domain.

The Dynaco adaptation model proposes to separate the
adaptation implementation from the application functional
code. It leverages the component-based design by addressing
the adaptation implementation as component controllers. Thus
such a controller is based on an adaptation functionality
decomposition which separates the four aforementioned adap-
tation aspects. These adaptation aspects are represented by the
following entities whose relationships and further details are
described as follows.

2Also known as MAPE cycle.

78

1) Monitoring: The monitor is in charge of gathering
information that are related to adaptation interests. It relies
on pull and push flows in order to either keep other entities
aware about a change (i.e., event-based communication) or to
let them ask about specif metric measures.

2) Decision: When a change occurs, the decider decides
whether it is enough relevant for performing an adaptation
or not. If so, it concerns about what should be be done by
means of a strategy which contains the goal that should be
achieved in order to change the application behavior to achieve
a proper state. For instance, it could be “load balancing among
resources RI, R2 and R3” because R1 presents performance
degradation due to three concurrent processes pl, p2 and p3.

3) Planning: Once the decider defines which strategy
would be employed, it is sent to the planner that translates
such a high-level goal to a set of instructions as a plan.
According to the earlier example, the plan would be an
instruction as “migrate process p2 to R2 and p3 to R3”.

4) Execution: Thereby, the plan is sent to the executor
which performs the plan that will finally make the component
adapt to a more suitable configuration. For achieving this, it
must intercept the application flow execution and then execute
the received instructions.

V. TOWARDS A SELF-ADAPTABLE SUPPORT FOR
GRID-ORIENTED SERVICES

In order to use the grid, service developers must interact
with the grid interface which is commonly employed through
the grid API. Thus grid jobs can be submitted and managed by
invoking respective methods. However, the task of managing
jobs is complex, time consuming and error prone. We under-
stand that service developers should be free from this task
and finally focus on main aspects of the service development.
Consequently, it claims a support which is able to transparently
manage job submissions for services aiming at easing the
development of grid-oriented services. Furthermore, such a
support should consider QoS related to the job execution in
order to proper satisfy service specific needs.

We can outline two technologies that enable the conception
of automatic job management for grid-oriented services. The
first one the component-based design which have been used
to facilitate the development of services [6], [15], [20]. They
allow to separate functional from non-functional services
requirements which facilitates both service development and
maintenance. Moreover, components do not only ease the
development of services, but they also are a suitable tech-
nology to enable the job management for services. By using
components, it is possible to separate the job management task
from other interests related to the service development.

The second technology that enables to automatically man-
age jobs is self-adaptation. Even though grids offer a ro-
bust platform for executing complex applications, grids are
dynamic distributed systems which face unforeseen changes.
Some of these changes may affect the job execution in such
a way that would require restarting or even resubmit the
job. In order to deal with such a scenario, self-adaptive

techniques ought to be exploited when providing a support
for job management. Finally, we combine components and
self-adaptation as the foundation of a job self-management
support for services. This support uses the Dynaco (Dynamic
Adaptation for Components) adaptation model and it is further
explained as follows.

A. Proposal Overview

Our goal is to ease the development of services that use
grids by providing an integrated approach which automatically
manages job submissions. Figure 1 summarizes and positions
our proposal. Firstly, we tackle the composition layer of the
SOA pyramid, more precisely services that need to execute
grid jobs. Secondly, we rely on services which are based
on components due to great advantages that such a design
offers as earlier explained. Then we separately deal with the
job management and the component functional concerns by
addressing the former as a component controller and the latter
in the component content. As follows, we use the Dynaco
adaptation model to tackle the self-adaptive behavior of the job
management support. Finally, the grid is used as the underlying
infrastructure for executing the job. Furthermore, we assume
that services have agreed on QoS values which is then used
to guide the adaptation strategy. However, though agreement
negotiation is taken into account, it is not in the scope of our
proposal. In [9], it is further discussed how such a negotiation
can be performed as well as the translation of SLA QoS to
resource-level QoS related to the job execution.

VI. A SELF-ADAPTABLE IPOJO HANDLER FOR
XTREEMOS

A. Architecture

In this section it is presented an architecture that describes
how the previous design proposed in V can be employed.
First, as our goal is to ease the development of grid-oriented
services, we propose to use technologies that facilitate such a
development. They are explained as follows:

1) SOA Platform: We leverage the OSGi platform which
proposes a dynamic and modular framework for developing
and maintaining services.

2) Component-Oriented Service Model: iPOJO rightly sup-
ports the management of OSGi services. It provides a compo-
nent model that dynamically manages service bindings while
allowing to define details about both servicing and requiring
services.

3) Adaptation Model: Dynaco proposes an adaptation
model which separately addresses distinct adaptation aspects.
It offers a clear design for developing self-adaptive techniques.

4) Grid Infrastructure: In order to have a deeper control
of grid resources in a transparent way, we use the XtreemOS
as grid infrastructure. It offers the XOSAGA higher-level
interface and transparently deal with resource management.

Based on those technologies, we propose the design of an
iPOJO handler that relies on the Dynaco adaptation model
and performs job self-management on the XtreemOS grid

Legend:

(2 Grid-Oriented Service
(2 Other Services

Composition

Fondation

Self-Adptable
Job Management
Controller

Monitoring

Job + QoS

Executor,

Fig. 1. A Self-Adaptable Support for Grid-Oriented Services.

79

operating system as depicted in Figure 2. The monitoring
system uses the iPOJO Event Admin and has information about
the jobs, their requirements and QoS through the component
metadata file. Besides the monitoring system keeps the decider,
planner and executor informed about these facts as well as
about the grid environment. Finally, jobs are submitted and
managed on XtreemOS through XOSAGA commands sent by

the executor.

metadata.xml

iPOJO Event Admin

XtreemOS

Decider { XOSAGA l

[CAE - s
! 1

l Linux Kernel Modules]

strategy

Planner

XOSAGA commands

Executor

[pc | [cuser | [Mobile |

Fig. 2. The Self-Adaptable iPOJO Handle for Managing XtreemOS Jobs.

B. An iPOJO Handler for XtreemOS

We take advantage of the extensible iPOJO com-
ponent model that allows to implement further iPOJO
handlers. iPOJO handlers are implemented by extend-
ing the PrimitiveHandler abstract class as illustrated
by Figure 3. The PrimitiveHandler class inherits
the FiledInterceptor and the MethodInterceptor
classes that allow iPOJO handlers to employ introspective
techniques. iPOJO exploits meta-information of OSGi bundles
in order to trigger actions according to method invocations and
filed accesses. This is a powerful mechanism to implement
dynamic adaptation techniques due to its capacity of perform-
ing actions based on information which is only available at
runtime. Last, once an iPOJO handler is implemented, it is
only necessary to define its XML scheme to make it available
for iPOJO components.

In Figure 3, the XtreemOSSelfAdaptableHandler
class represents how the XtreemOS iPOJO handler can be
implemented. The Dynaco adaptation model is addressed
by the PrimitiveSelfAdaptableHandler which sepa-
rately deals with monitoring, decision, planning and execution
concerns. This class should be used to implement generic
adaptation mechanisms as decision-making engines. Thereby,
each iPOJO self-adaptable handler ought to inherit this class
by customizing it with domain-specific adaptation knowledge.
With respect to the XtreemOS handler, this customization is
represented by the XtreemOSSelfAdaptableHandler
class. Finally, iPOJO flexible design allows iPOJO handlers
to be used by each other, thus taking further advantages of re-

Handler FieldInterceptor MethodInterceptor

PrimitiveHandler

[\

iPOJOHandler#l

iPOJOHandler#n

Planner Executor

/

PrimitiveSelfAdaptableHandler

[

XtreemOSSelfAdaptableHandler

Monitor Decider

Fig. 3. Diagram class of the XtreemOS Self-Adaptable iPOJO Handler.

usability as we propose to use the iPOJO Event Admin handler
when implementing the monitoring system.

C. Usage

The use of the XtreemOS iPOJO Handler is based on
the Job Submission Description Language (JSDL) [2] and
requires proper XtreemOS certificates. The JSDL relies on
the XML standard to define the job and describe its resource
requirements. Listing 1 exposes an example of a JSDL job.
The Executable attribute at line 10 points to the program that
comprises the job. It is followed by its arguments at line 11,
the output and error files at lines 12 and 13. At line 18, we
can realize that it was chosen 1 as the number of resources
to run the job. Furthermore, with regard to security issues on
XtreemOS, it uses X.509 certificates whose public keys must
be informed to let the grid identify the user and grant right
permission access on grid resources.

1<?xml version="1.0" encoding="UTF-8" 7>
2<JobDefinition xmlns:jsdl="http://schemas.ggf.org/jsdl

3

80

/2005/11/ jsd1™>
<JobDescription>

4 <Jobldentification>

5 <Description>A simple grid job that lists
current processes.</Description>

6 <JobProject>A Project Name.</JobProject>

7 </Jobldentification>

8 <Application>

9 <POSIXApplication xmlns:nsl="http://schemas.

ggf.org/jsd1/2005/11/jsdl —posix™>
10 <Executable>/bin/ps</Executable>
11 <Argument>—aef</Argument>

12 <Output>psx.out/Output>
13 <Error>psx.err</Error>

14 </POSIXApplication>

15 </ Application>

16 <Resources>

17 <TotalResourceCount>

18 <Exact>I</Exact>
19 </TotalResourceCount>

20 </Resources>

21 </JobDescription>

2</JobDefinition>
Listing 1. A simple example of a grid job which is based on the JSDL
standard.

As iPOJO component descriptions are addressed in the
component metada.xml file, we propose to add there the
job (i.e., a path to the JSDL file) as well as the XtreemOS user
certificate and the job execution QoS. In Listing 2, there is an
example of such a metadata file. In order to use the XtreemOS
iPOJO Handler, the component requires it at line 2. At line
6, it is defined which class implements the component. Line
8 and 9 define the use of the XtreemOS iPOJO Handler and
the job to be submitted respectively. As follows, some QoS
are required such as a fault-tolerant execution that relies on
three job execution replicas (line 11) whose data should also
be twice replicated and stored in a persistent way (lines 12
and 13).

1<ipojo

2 xmlns:grid="org.apache. felix .ipojo.handlers.xtreemos”™>

3

4<component

5 name="MyComponentService ”

6 classname="org.apache. felix .ipojo.sample.MyComponentImpl”>

7

8 <grid:xtreemos

9 file="/home/alage/my_jobs/job.jsdl”

10 credentials="/home/alage/.xos/truststore/certs/user.crt”

11 FTExecution="3"

12 dataReplication="2"

13 dataPersistence="yes” />

14

15</component>

16

17<instance

18 name="AnInstanceOfMyComponentService ”

19 component="MyComponentService ” />

20

21</ipojo>
Listing 2. Example of an iPOJO component metadata.xml which
configures the XtreemOS iPOJO Handler usage.

VII. RELATED WORK

Some approaches have targeted the development of grid-
oriented services [11], [9]. In [11], the authors propose an
approach for automatically managing grid applications. They
rely on SOA standards as Web Services to define the commu-
nication among grid functionalities. In [9], the authors propose
an architecture that translates high-level service requirements

81

to resource-level requirements. They provide an automatic
way of negotiating both requirements by establishing contracts
which define specific QoS. However, both approaches do not
target to ease the development of grid-oriented services as
we do. In other words, [11] focus on providing automatic
mechanisms for managing grid applications and [9] aim at a
autonomous architecture for translating and negotiating QoS.
They have such specific goals rather than providing a solution
that brings together both service development easing and job
self-management.

Ultimately, the Web Service Resource Framework [5] ad-
dresses a grid interface driven to Web Services. It adds the idea
of stateful Web Services that describes grid resource states
in order to manage their life cycle. Despite the fact that it
enables grids to conceive service-based applications, the job
management is still the service developer charge. In contrast,
we propose to automatically manage the job submission by
using the component-based design and an adaptation model
that eases the conception and maintenance of dynamic and
flexible services.

VIII. CONCLUSION AND FUTURE WORK

This work presents an approach that aims at easing the
development of grid-oriented services. We propose a self-
adaptable architecture that enables the automatic management
of job submissions and considers QoS related to the job exe-
cution. Such an architecture leverages the iPOJO component
model to enable the conception of OSGi services that use the
grid. An iPOJO handler is proposed by leveraging Dynaco
(Dynamic Adaptation for Components) to automatically ad-
dress the self-adaptable job management on the XtreemOS
grid infrastructure.

Furthermore, the scope of our approach is confined to
services which must be aware of grids. By that very fact
and intending to ease the development of such services, we
put together dynamic and flexible service development and
job self-management. On one hand, it presents an interesting
approach for grid-oriented services. On the other hand, our
proposal enforces service developers to deal with grid jobs
by exposing the grid infrastructure to other service developers
that do not need to execute grid jobs but do need a distributed,
large-scale and heterogeneous infrastructure for executing ser-
vices. In future works, we will investigate how generic services
can be executed using grids. That leads us to still exploit job
self-management but in such a way that services could be
executed with no knowledge of grids.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme [FP7/2007-2013] under grant agreement 215483 (S-
CUBE).

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(1]

[12]

[13]

(14]
[15]
[16]
[17]

(18]

[19]

(20]

REFERENCES

M. Aksit and Z. Choukair. Dynamic, Adaptive and Reconfigurable Sys-
tems Overview and Prospective Vision. In ICDCSW ’03: Proceedings of
the 23rd International Conference on Distributed Computing Systems,
pages 84-89, Washington, DC, USA, May 2003.

A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. Mc-
Gough, D. Pulsipher, and A. Savva. GFD-R.056 - Job Submission
Description Language (JSDL) Specification. Technical report, Global
Grid Forum, 2005.

J. Buisson, F. André, and J.-L. Pazat. Dynamic adaptation for Grid
computing. In EGC ’05: Proceedings of The European Grid Conference,
pages 538-547, Amsterdam, June 2005.

H. Cervantes and R. S. Hall. Autonomous Adaptation to Dynamic
Availability Using a Service-Oriented Component Model. In ICSE '04:
Proceedings of the 26th International Conference on Software Engi-
neering, pages 614-623, Washington, DC, USA, 2004. IEEE Computer
Society.

K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire,
D. Snelling, and S. Tuecke. From Open Grid Services Infrastructure to
WS-Resource Framework: Refactoring & Evolution. Technical report,
Fujitsu Limited and International Business Machines Corporation and
The University of Chicago, May 2004.

C. Escoffier, R. S. Hall, and P. Lalanda. iPOJO: an Extensible Service-
Oriented Component Framework. SCC ’07: Proceedings of The IEEE
International Conference on Services Computing, pages 474481, July
2007.

I. Foster. What is the Grid? - A Three Point Checklist. GRIDtoday,
1:22-25, 2002.

T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky,
J. Shalf, and C. Smith. A Simple API for Grid Applications (SAGA).
Global Grid Forum, January 2008.

P. Hasselmeyer, B. Koller, L. Schubert, and P. Wieder. Towards SLA-
Supported Resource Management. In HPCC ’'06: Proceedings of the
2006 International Conference on High Performance Computing and
Communications, pages 743-752. Springer, 2006.

J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing.
Computer, 36(1):41-50, January 2003.

H. Liu, V. Bhat, M. Parashar, and S. Klasky. An autonomic service
architecture for self-managing grid applications. In GRID ’05: Proceed-
ings of the 6th IEEE/ACM International Workshop on Grid Computing,
pages 132-139, Washington, DC, USA, 2005. IEEE Computer Society.
P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng.
Composing Adaptive Software. Computer, 37(7):56-64, 2004.

Open Service Oriented Architecture. SCA Service Component
Architecture. Assembly Model Specification, March 2007.
http://www.osoa.org/display/Main/Service+Component+Architecture+
Specifications.

OSGi Alliance. OSGi Service Platform Core Specification. Release 4,
Version 4.1, April 2007.

OSGi Alliance. OSGi Service Platform Service Compendium. Release
4, Version 4.1, April 2007. Pages 281-315.

OSGi Alliance. OSGi Service Platform Release 4. Version 4.2 (Early
Draft 3), March 2009.

M. P. Papazoglou and D. Georgakopoulos. Service-Oriented Computing,
Introduction. Commun. ACM, 46(10):24-28, 2003.

C. Szyperski. Component Technology: What, Where, and How? In
ICSE ’03: Proceedings of the 25th International Conference on Soft-
ware Engineering, pages 684—-693, Washington, DC, USA, 2003. IEEE
Computer Society.

W3C Working Group. Web Services Architecture.
http://www.w3.org/TR/ws-arch/, 2010.

J. Yang. Web Service Componentization. Communications of the ACM,
46(10):35-40, 2003.

82

