
HAL Id: inria-00475279
https://inria.hal.science/inria-00475279

Submitted on 21 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Computation of Correctly-Rounded Sums
Peter Kornerup, Vincent Lefèvre, Nicolas Louvet, Jean-Michel Muller

To cite this version:
Peter Kornerup, Vincent Lefèvre, Nicolas Louvet, Jean-Michel Muller. On the Computation of
Correctly-Rounded Sums. [Research Report] RR-7262, INRIA. 2010, pp.24. �inria-00475279�

https://inria.hal.science/inria-00475279
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
2

6
2

--
F

R
+

E
N

G

Algorithms, Certification, and Cryptography

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On the Computation of Correctly-Rounded Sums

Peter Kornerup — Vincent Lefèvre — Nicolas Louvet — Jean-Michel Muller

N° 7262

April 2010

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

On the Computation of Correctly-Rounded Sums

Peter Kornerup∗, Vincent Lefèvre†, Nicolas Louvet†, Jean-Michel Muller†

Theme : Algorithms, Certification, and Cryptography
Équipe-Projet Arénaire

Rapport de recherche n° 7262 — April 2010 — 24 pages

Abstract: This paper presents a study of some basic blocks needed in the design of floating-
point summation algorithms. In particular, in radix-2 floating-point arithmetic, we show that
among the set of the algorithms with no comparisons performing only floating-point addi-
tions/subtractions, the 2Sum algorithm introduced by Knuth is minimal, both in terms of number
of operations and depth of the dependency graph. We investigate the possible use of another al-
gorithm, Dekker’s Fast2Sum algorithm, in radix-10 arithmetic. We give methods for computing,
in radix 10, the floating-point number nearest the average value of two floating-point numbers.
Under reasonable conditions, we also prove that no algorithms performing only round-to-nearest
additions/subtractions exist to compute the round-to-nearest sum of at least three floating-point
numbers. Starting from an algorithm due to Boldo and Melquiond, we also present new results
about the computation of the correctly-rounded sum of three floating-point numbers.

Key-words: floating-point arithmetic, summation algorithms, correct rounding, 2Sum and
Fast2Sum algorithms

∗ SDU, Odense, Denmark
† LIP, CNRS/ENS Lyon/INRIA/UCBL/Université de Lyon, Lyon, France

Sur le calcul de sommes correctement arrondies

Résumé : Ce papier présente une étude de blocs de base nécessaires à la conception d’algo-
rithmes de sommation à virgule flottante. En particulier, en arithmétique flottante en base 2,
nous montrons que parmi l’ensemble des algorithmes sans comparaison effectuant seulement des
additions/soustractions flottantes, l’algorithme 2Sum introduit par Knuth est minimal, que ce
soit en terme de nombre d’opérations ou de profondeur du graphe de dépendances. Nous étudions
la possibilité d’utiliser un autre algorithme, l’algorithme Fast2Sum de Dekker, en base 10. Nous
donnons des méthodes pour calculer, en base 10, le nombre flottant le plus proche de la valeur
moyenne de deux flottants. Sous des conditions raisonnables, nous prouvons aussi qu’il n’existe
aucun algorithme effectuant uniquement des additions/soustractions en arrondi au plus près pour
calculer la somme arrondie au plus près d’au moins trois nombres flottants. En partant d’un al-
gorithme dû à Boldo et Melquiond, nous présentons aussi de nouveaux résultats concernant le
calcul de la somme correctement arrondie de trois nombres flottants.

Mots-clés : arithmétique à virgule flottante, algorithmes de sommation, arrondi correct, algo-
rithmes 2Sum et Fast2Sum

On the Computation of Correctly-Rounded Sums 3

1 Introduction

The computation of sums appears in many domains of numerical analysis. Examples are numer-
ical integration, evaluation of dot products, matrix products, means, variances and many other
functions. When computing the sum of n floating-point numbers a1, a2, . . . , an, the best one
can hope is to get ◦(a1 + a2 + · · · an), where ◦ is the desired rounding function (specified by a
rounding mode, or by a rounding direction attribute, in the terminology of the IEEE 754 Stan-
dard for floating-point arithmetic [2, 10]). On current architectures this can always be done in
software using multiple-precision arithmetic. This could also be done using a long accumulator,
as advocated by Kulisch [4], but such accumulators are not yet available on current processors.

It is well known that the rounding error generated by a round-to-nearest addition is itself
a floating-point number. Many accurate and efficient summation algorithms published in the
literature (see for instance [1, 17, 18, 16, 5]) are based on this property and implicitly or explicitly
use basic blocks such as Dekker’s Fast2Sum and Knuth’s 2Sum algorithms (Algorithms 1 and 2
below) to compute the rounding error generated by a floating-point addition. Since efficiency
is one of the main concerns in the design of floating-point programs, we focus on algorithms
using only floating-point additions and subtractions in the target format and without conditional
branches, because on current pipelined architectures, a wrong branch prediction may cause the
instruction pipeline to drain, with a resulting drastic performance loss. The computation of
the correctly-rounded sum of three floating-point numbers is also a basic task needed in many
different contexts: in [5], Boldo and Melquiond have presented a new algorithm for this task,
with an application in the context of the computation of elementary functions. Hence, it is of
great interest to study the properties of these basic blocks.

In this paper, we assume an IEEE 754 [2, 10] arithmetic. We show that among the set
of the algorithms with no comparisons performing only floating-point operations, the 2Sum
algorithm introduced by Knuth is minimal, both in terms of number of operations and depth of
the dependency graph.

The recent revision of the IEEE Standard for floating-point arithmetic considers arithmetics
of radices 2 and 10. Some straightforward properties of radix-2 arithmetic have been known for
a long time and are taken for granted. And yet, some properties do not hold in radix 10. A
simple example is that, in radix 10, computing the average value of two floating-point numbers a
and b first by computing a + b rounded to the nearest, and then by computing half the obtained
result rounded to the nearest again will not necessarily give the average value rounded to the
nearest. We will investigate that problem and suggest some strategies for accurately computing
the average value of two numbers in decimal arithmetic.

Under reasonable assumptions, we also show that it is impossible to always obtain the cor-
rectly round-to-nearest sum of n ≥ 3 floating-point numbers with an algorithm performing only
round-to-nearest additions/subtractions. The algorithm proposed by Boldo and Melquiond for
computing the round-to-nearest sum of three floating-point numbers relies on a non-standard
rounding mode, rounding to odd. We show that if the radix is even, rounding to odd can be
emulated in software using only floating-point additions/subtractions in the standard rounding
modes and a multiplication by the constant 0.5, thus allowing the round-to-nearest sum of three
floating-point numbers to be determined without tests. We also propose algorithms to compute
the correctly-rounded sum of three floating-point values for directed roundings.

In a preliminary version of this paper [11], we gave results valid in radix-2 floating-point
arithmetic. We now extend these results to other radices (the most interesting one being radix
10), consider the problem of computing an average value in radix 10, give new summation
algorithms, and extend the proofs of Theorems 2 and 3 to any precision.

RR n° 7262

On the Computation of Correctly-Rounded Sums 4

1.1 Assumptions and notations

We assume a radix-β and precision-p floating-point arithmetic as defined (for radices 2 and 10)
in the IEEE 754-2008 standard for floating-point arithmetic [10]. Typical examples are the basic
formats defined by that standard: precisions 24, 53 or 113 in radix 2, and 7, 16 and 34 in
radix 10. The user can choose an active rounding mode, also called rounding direction attribute:
round toward −∞, round toward +∞, round toward 0, round to nearest even, which is the
default rounding mode, and round to nearest “TiesToAway”. Given a real number x, we denote
respectively by RD(x), RU (x), RZ (x) and RN (x) the rounding functions associated to these
rounding direction attributes (assuming round to nearest even for RN (x)).

Let ↑x denote nextUp(x), i.e., the least floating-point number that compares greater than x.
Let us also recall that correct rounding is required for the four elementary arithmetic opera-

tions and the square root by the above cited IEEE standards: an arithmetic operation is said to
be correctly rounded if for any inputs its result is the infinitely precise result rounded according
to the active rounding mode. Correct rounding makes arithmetic deterministic, provided all com-
putations are done in the same format, which might be sometimes difficult to ensure [14]. Correct
rounding allows one to design portable floating-point algorithms and to prove their correctness,
as the results summarized in the next subsection.

1.2 Previous results

The Fast2Sum algorithm (Algorithm 1) was introduced by Dekker [8] in 1971, but the three
operations of this algorithm already appeared in 1965 as a part of a summation algorithm, called
“Compensated sum method,” due to Kahan [1]. The following result is due to Dekker [8, 15].

Theorem 1 (Fast2Sum algorithm) Assume a radix-β floating-point arithmetic, with β ≤ 3,
with subnormal numbers available, that provides correct rounding with rounding to nearest. Let
a and b be finite floating-point numbers, both nonzero, such that the exponent of a is larger than
or equal to that of b. The following algorithm computes floating-point numbers s and t such that
s = RN (a + b) and s + t = a + b exactly.

Algorithm 1 (Fast2Sum(a,b))

s = RN (a + b);
z = RN (s− a);
t = RN (b− z);

Note that instead of having information on the exponents, one may know that |a| ≥ |b|, but in
such a case, the condition of the theorem is fulfilled. Also, the condition β ≤ 3 restricts the
use of this algorithm, in practice, to binary arithmetic. That condition is necessary: consider,
in radix 10, with precision p = 4, the case a = b = 9999. By applying Fast2Sum, we would get
s = RN (a + b) = 20000, z = RN (s− a) = 10000, t = RN (b− z) = −1. This gives s + t = 19999,
whereas a + b = 19998.

However, one can show that that if a wider internal format is available (one more digit of
precision is enough), and if the computation of z is carried on using that wider format, then the
condition β ≤ 3 is no longer necessary. This might be useful in decimal arithmetic, when the
target format is not the largest one that is available in hardware. We discuss the possible use of
Fast2Sum in radix 10 in Section 3.

If no information on the relative orders of magnitude of a and b is available, or if the radix is
larger than 3, there is an alternative algorithm due to Knuth [12] and Møller [13], called 2Sum.

RR n° 7262

On the Computation of Correctly-Rounded Sums 5

Algorithm 2 (2Sum(a,b))

s = RN (a + b);
b′ = RN (s− a);
a′ = RN (s− b′);
δb = RN (b− b′);
δa = RN (a− a′);
t = RN (δa + δb);

2Sum requires 6 operations instead of 3 for the Fast2Sum algorithm, but on current pipelined
architectures, a wrong branch prediction may cause the instruction pipeline to drain. As a
consequence, using 2Sum instead of a comparison followed by Fast2Sum will usually result in
much faster programs [16]. The names “2Sum” and “Fast2Sum” seem to have been coined by
Shewchuk [19]. They are a particular case of what Rump calls “error-free transforms”. We call
these algorithms error-free additions in the sequel.

The IEEE 754-2008 standard [10] describes new operations with two floating-point numbers
as operands:

• minNum and maxNum, which deliver respectively the minimum and the maximum;

• minNumMag, which delivers the one with the smaller magnitude (the minimum in case of
equal magnitudes);

• maxNumMag, which delivers the one with the larger magnitude (the maximum in case of
equal magnitudes).

The operations minNumMag and maxNumMag can be used to sort two floating-point num-
bers by order of magnitude. In radices less than or equal to three (or when a wider precision is
available for computing z), this leads to the following alternative to the 2Sum algorithm.

Algorithm 3 (Mag2Sum(a,b))

s = RN (a + b);
a′ = maxNumMag(a, b);
b′ = minNumMag(a, b);
z = RN (s− a′);
t = RN (b′ − z);

Algorithm Mag2Sum consists in sorting the inputs by magnitude before applying Fast2Sum.
It requires 5 floating-point operations, but notice that the first three operations can be executed
in parallel. Mag2Sum can already be implemented efficiently on the Itanium processor, thanks
to the instructions famin and famax available on this architecture [7, p. 291]. Notice that, since
it is based on the Fast2Sum algorithm, Algorithm Mag2Sum does not work in radices higher
than 3. It therefore cannot be used in decimal arithmetic.

2 Algorithms 2Sum and Mag2Sum are minimal

In the following, we call an RN-addition algorithm an algorithm only based on additions and
subtractions in the round-to-nearest mode: at step i the algorithm computes xi = RN (xj ± xk),
where xj and xk are either one of the input values or a previously computed value. An RN-
addition algorithm must not perform any comparison or conditional branch, but may be enhanced
with minNum, maxNum, minNumMag or maxNumMag as in Theorem 3.

RR n° 7262

On the Computation of Correctly-Rounded Sums 6

For instance, 2Sum is an RN-addition algorithm that requires 6 floating-point operations. To
estimate the performance of an algorithm, only counting the operations is a rough estimate. On
modern architectures, pipelined arithmetic operators and the availability of several FPUs make
it possible to perform some operations in parallel, provided they are independent. Hence the
depth of the dependency graph of the instructions of the algorithm is an important criterion. In
the case of Algorithm 2Sum, two operations only can be performed in parallel, δb = RN (b− b′)
and δa = RN (a − a′). Hence the depth of Algorithm 2Sum is 5. In Algorithm Mag2Sum the
first three operations can be executed in parallel, hence this algorithm has depth 3.

In this section, we address the following question: are there other RN-addition algorithms
producing the same results as 2Sum, i.e., computing both RN (a + b) and the rounding error
a + b−RN (a + b) for any floating-point inputs a and b, and that do not require more operations,
or a dependence graph of larger depth?

We show the following result, proving that among the RN-addition algorithms, 2Sum is
minimal in terms of number of operations as well as in terms of depth of the dependency graph.

Theorem 2 Consider a binary arithmetic in precision p ≥ 2. Among the RN-addition algo-
rithms computing the same results as 2Sum on any inputs,

• each one requires at least 6 operations;

• each one with 6 operations reduces to 2Sum through straightforward transformations (sym-
metries, etc.);

• each one has depth at least 5.

As previously mentioned an RN-addition algorithm can also be enhanced with minNum,
maxNum, minNumMag and maxNumMag operations [10], which is the case for Algorithm
Mag2Sum. The following result proves the minimality of this algorithm.

Theorem 3 Consider a binary arithmetic in precision p ≥ 2 and the set of all the RN-addition
algorithms enhanced with minNum, maxNum, minNumMag and maxNumMag. Among all such
algorithms computing the same results as 2Sum on any inputs,

• each one requires at least 5 operations;

• each one with 5 operations reduces to Mag2Sum;

• each one has depth at least 3.

Proof: To prove Theorems 2 and 3, we proceeded as follows in precisions p from 2 to 12; we
will also show that with our method, the results for precisions p > 12 can be deduced from those
for precision p = 12.

• For the first two items of Theorem 2, we enumerated all the possible RN-addition algorithms
with 6 additions/subtractions or less, and each algorithm was tried on 3 ordered pairs
of well chosen inputs a and b. In fact, since some algorithms can reduce to other ones
through obvious transformations and we are interested in only one among such algorithms,
we required some constraints. For instance, we regarded different operation orderings
(associated with the same computation DAG) as equivalent. Moreover, since the value
s = RN (a + b) must be computed (and this operation does not depend on intermediate
values), we assumed that this was the first operation. Indeed, if an RN-addition algorithm
computed s in some other way, the corresponding operation could be safely replaced by

RR n° 7262

On the Computation of Correctly-Rounded Sums 7

s = RN (a + b), then moved to the beginning; this transformation may not be regarded as
really obvious, but at least, it does not increase the depth. Similarly we took into account
the fact that RN (x + y) = RN (y + x). We also discarded useless operations, such as
RN (x− x). The only algorithm that delivered the correct results was 2Sum.

• For the first two items of Theorem 3, we proceeded in a similar way on algorithms with 5
operations or fewer amongst the 6 allowed operations, but with 4 pairs instead of 3.

• For the third item of Theorem 2 (depth), we enumerated all possible results at depth 4 or
less on 3 or 4 pairs of well chosen inputs a and b, showing that the expected results could
not be obtained on these 3 or 4 pairs at the same time.

• For the third item of Theorem 3 (depth), we could have used the same method as above.
However we would like to give a human-checkable proof (valid for any precision p ≥ 2).
Let us assume that there exists an acceptable algorithm whose depth is less than or equal
to 2. In the following, we consider the following constraints on the inputs: a = 2e for
some integer e (not too large to avoid overflows), and 0 ≤ b − a ≤ a ≤ b ≤ a + b, so that
a minNum, maxNum, minNumMag, or maxNumMag operation at depth at most 2 can
statically be simplified to one of its arguments. Moreover, from the cases b = a (which
yields t = 0) and b = ↑a (which yields t = ulp(a))—we remind that ↑(x) = NextUp(x) is
the floating-point successor of x—, we deduce that the expression giving t still depends on
both a and b. The expressions RN (a + b), RN (a− b), and RN (b−a) are not possible for t,
since they are invalid on b = 2a = 2e+1. If b = a, then the depth-1 operations are exact and
since one must have t = 0, the depth-2 operation must be exact too. So, without taking
the rounding into account, the expression for t has the form m.a−m.b for some integer m.
Therefore, since the computation tree must have at least two addition/subtraction nodes,
for parity reasons, it must have exactly three of them. This means that the algorithm does
not use the minNum, maxNum, minNumMag, and maxNumMag operations at all. Then
from either Theorem 2 or with a manual check of the (up to) 27 remaining cases, we can
deduce that there are no such acceptable algorithms whose depth is less than or equal to 2.

The pairs were chosen as follows:

a1 = ↑8 b1 = ↑↑↑1
a2 = ↑↑↑↑↑1 b2 = ↑8
a3 = 3 b3 = ↑3

and when needed, the fourth pair was:

• for Theorem 3, a4 = −a1 and b4 = −b1;

• for Theorem 2 (depth) and p = 2, a4 = 1 and b4 = 6;

• for Theorem 2 (depth) and p = 3, a4 = 10 and b4 = 1.

In precision p ≥ 4, the pairs can be written as:

a1 = 8 + 8εp b1 = 1 + 3εp

a2 = 1 + 5εp b2 = 8 + 8εp

a3 = 3 b3 = 3 + 2εp

a4 = −8 + (−8)εp b1 = −1 + (−3)εp

where εp = ulp(1) = 21−p. The particular form of these pairs is not important to obtain the
results in the tested precisions, but the way of deducing results for larger precisions from the
results for precision 12 is based on it. Indeed we will prove that for p ≥ 12:

RR n° 7262

On the Computation of Correctly-Rounded Sums 8

• each value computed by any algorithm run in precision p has the form u + vεp, where u
and v are “small” integers that do not depend on the precision p;

• since the integers u and v are small enough (see below), two values u1 + v1εp and u2 + v2εp

are equal if and only if u1 = u2 and v1 = v2.

Let us consider a computation tree of maximum depth n. Assume that p ≥ n + 6. Under the
conditions of the theorems, n ≤ 6, so that the results will be proved for all p ≥ 6 + 6 = 12.

First let us introduce some notation associated with a node. Each node has a value of the
form u + vεp. Pairs (u, v) are ordered by: (u1, v1) < (u2, v2) if and only if u1 < u2 ∨ (u1 =
u2 ∧ v1 < v2). If the node inputs are ui + viεp and uj + vjεp, we define the pair (uk, ṽk) as
follows:

• add: uk = ui + uj and ṽk = vi + vj ;

• sub: uk = ui − uj and ṽk = vi − vj ;

• minNum: (uk, ṽk) = min((ui, vi), (uj , vj));

• maxNum: (uk, ṽk) = max((ui, vi), (uj , vj));

• minNumMag: (uk, ṽk) is (ui, vi) if

|ui| < |uj | ∨
(ui = uj = 0 ∧ |vi| < |vj |) ∨
(|ui| = |uj | ∧ vi × sign(ui) < vj × sign(uj)) ∨
(|ui| = |uj | ∧ |vi| = |vj | ∧ uivi = ujvj ∧ (ui, vi) < (uj , vj)),

else (uj , vj);

• maxNumMag: similar to minNumMag but changing the inequalities;

and we define vk by: RN (uk + ṽkεp) = uk + vkεp, giving the rounded output pair (uk, vk)
associated with the node.

Let us prove the following properties by induction on the depth d of a node:

• The pair (uk, ṽk) represents the exact value uk + ṽkεp (i.e., the value of the operation before
rounding).

• Unicity of the representation: |vk| εp < 1/2.

• |uk| ≤ 2d+3 and |vk| ≤ 2d+3.

• The values uk and vk are integers that do not depend on p.

Any initial value (depth 0) has the form u + vεp, where u and v are integers that do not
depend on p, such that |u| ≤ 8 = 23 and |v| ≤ 8 = 23. Also, |v| εp ≤ 23+1−p ≤ 2−n−2 < 1/2.

Now let us prove the properties for some node, assuming that they are satisfied for both
inputs (ui, vi) and (uj , vj) of this node.

• The first property is proved as follows. For the addition, (ui + viεp) + (uj + vjεp) =
(ui + uj) + (vi + vj)εp = uk + ṽkεp. The case of the subtraction is similar. Since |vi| εp <
1/2 and |vj | εp < 1/2 and both ui and uj are integers, the ordering of the real values
ui + viεp and uj + vjεp is the same as the ordering of the pairs (ui, vi) and (uj , vj) with
the above definition; this proves the property for minNum and maxNum. The property
for minNumMag and maxNumMag follows from the corresponding definition of (uk, ṽk),
where the various cases are checked separately; details are left to the reader.

RR n° 7262

On the Computation of Correctly-Rounded Sums 9

• From the definition of uk for each operation, uk is an integer and one has: |uk| ≤
2 max(|ui| , |uj |). Since the depth of each input is less or equal to d− 1, it follows that

|uk| ≤ 2 · 2d−1+3 = 2d+3.

Moreover the definition of uk does not depend on p. This proves the properties on uk.

• For the same reasons, |ṽk| ≤ 2d+3 and ṽk is an integer that does not depend on p. We need
to prove that these properties are still satisfied after rounding, i.e., for vk. If uk = 0 (which
does not depend on p), then vk = ṽk (since |ṽk| ≤ 2p), which proves the properties. Now let
us assume that uk 6= 0. Let E be the exponent of uk + ṽkεp, i.e. 2E ≤ |uk + ṽkεp| < 2E+1.
Since |ṽkεp| ≤ 2d+3+1−p ≤ 2n+4−p ≤ 1/2 and uk is an integer, E depends only on uk and
the sign of ṽk (it is the exponent of uk, minus 1 if |uk| is a power of 2 and ukṽk < 0);
thus is does not depend on p. The significand of uk + ṽkεp as a number in

[

2p−1, 2p
[

is (uk + ṽkεp)2p−1−E = uk2p−1−E + ṽk2−E . The rounding of uk + ṽkεp to uk + vkεp

can be defined as the rounding of its significand to an integer (which will be equal to
uk2p−1−E + vk2−E). Since 2E ≤ |uk| ≤ 2d+3, one has 2p−1−E ≥ 2p−1−d−3 ≥ 2, so that
uk2p−1−E is an even integer, thus will not have any influence on the relative rounding
error, defined as δ = (ṽk − vk)2−E . If {x} denotes the nonnegative fractional part of x,
then δ =

{

ṽk2−E
}

−∆, where ∆ = 0 if the rounding is done downward and ∆ = 1 if the
rounding is done upward; by definition of the rounding-to-nearest with the even rounding
rule, ∆ = 1 if and only if one of the following two conditions holds:

1.
{

ṽk2−E
}

> 1/2;

2.
{

ṽk2−E
}

= 1/2 and
⌊

ṽk2−E
⌋

is an odd integer.

As ṽk and E do not depend on p, the value of δ does not depend on p, and the value of vk

does not depend on p either. Moreover vk2−E is equal to
⌊

ṽk2−E
⌋

or to
⌈

ṽk2−E
⌉

, so that
vk is an integer. And since |ṽk| ≤ 2d+3 and E ≤ d + 3, it follows that

∣

∣ṽk2−E
∣

∣ ≤ 2d+3−E ,
which is an integer. Hence

∣

∣vk2−E
∣

∣ ≤ 2d+3−E , and |vk| ≤ 2d+3. Then |vk| εp ≤ 2d+3+1−p ≤
2−2 < 1/2.

Now let us show that if an algorithm A (or computation tree) is excluded for some precision
p ≥ 12 because at least on one of the input pairs (ap, bp) at this precision, A does not yield the
expected result, then A must also be excluded for all the other precisions q ≥ 12. In precision p,
let tp = ap + bp−RN (ap + bp) = u + vεp be the expected result together with its associated pair
(u, v) as defined above, and let t′

p = u′ + v′εp the result obtained by running A, together with its
associated pair (u′, v′). By hypothesis, t′

p 6= tp, so that (u′, v′) 6= (u, v). And since in precision
q, any real can have at most one (u, v) representation satisfying |v| εq < 1/2, (u′, v′) 6= (u, v)
implies t′

q = u′ + v′εq 6= u + vεq = tq.
The C programs used to prove all these results are based on the MPFR library [9] (in or-

der to control the precision and the roundings) and can be found on http://hal.inria.fr/

inria-00475279.

3 On the use of Fast2Sum in radix-10 arithmetic

As explained in Section 1.2, the Fast2Sum algorithm (Algorithm 1) is proven only when the
radix is less than or equal to 3. Indeed, there are counterexamples in radix 10 for this algorithm
(we gave one in the introduction). And yet, we are going to show that using Fast2Sum may be
of interest, since the very few cases for which it does not return the right answer can easily be
circumscribed.

RR n° 7262

http://hal.inria.fr/inria-00475279
http://hal.inria.fr/inria-00475279

On the Computation of Correctly-Rounded Sums 10

3.1 An analysis of Fast2Sum in radix 10

In this section, we consider a radix-10 floating-point system of precision p. We also consider
two floating-point numbers a and b, and we will assume |a| ≥ |b|. Without loss of generality,
we assume a > 0 (just for the sake of simplifying the proofs). Our way of analyzing Fast2Sum
will mainly consist in considering Dekker’s proof (for radix 2) and locating where it does not
generalize to decimal arithmetic.

Notice that when the result of a floating-point addition or subtraction is a subnormal, that
operation is performed exactly. Due to this, in the following, we assume no underflow in the
operations of the algorithm (in case of an overflow, our previous observation implies that the
algorithm is correct).

3.1.1 First operation: s← RN (a + b)

Assume that a = Ma · 10ea−p+1, b = Mb · 10eb−p+1, and s = Ms · 10es−p+1, where Ma, Mb, Ms,
ea, eb, and es are integers, with

10p−1 ≤Ma, |Mb|, |Ms| ≤ 10p − 1.

Notice that the IEEE 754-2008 standard for floating-point arithmetic does not define the signif-
icand and exponent of a decimal number in a unique way (some numbers have several represen-
tations, whose set is called a cohort). However, in this paper, we will use, without any loss of
generality, the values Ma, Mb, Ms, ea, eb, and es that satisfy the above given boundings: what
is important is the set of values, not the representations. In the paper, Ma and ea are more a
notation that a representation (i.e., their values do not need to match what is stored internally
in the processor). Define δ = ea − eb.

Since we obviously have 0 ≤ a + b ≤ 2a < 10a, es is necessarily less than or equal to ea + 1.
We now consider two cases.

• First case: es = ea + 1, in that case,

Ms =
⌈

Ma

10
+

Mb

10δ+1

⌋

,

where ⌈u⌋ is the integer nearest u (with any of the two possible choices in case of a tie,
so that our result applies for the default roundTiesToEven rounding attribute, as well as
for the roundTiesToAway attribute defined by IEEE 754-2008). Define µ = 10Ms −Ma

(notice that µ is an integer), from

Ma

10
+

Mb

10δ+1
−

1
2
≤Ms ≤

Ma

10
+

Mb

10δ+1
+

1
2

,

we easily deduce
Mb

10δ
− 5 ≤ µ ≤

Mb

10δ
+ 5,

which implies

|µ| ≤

∣

∣

∣

∣

Mb

10δ

∣

∣

∣

∣

+ 5.

From this we conclude that either s − a is exactly representable (with exponent ea and
significand µ), or we are in the case

|Mb| ∈ {10p − 4, 10p − 3, 10p − 2, 10p − 1} and δ = 0.

Notice that if s−a is exactly representable, then it will be computed exactly by the second
operation.

RR n° 7262

On the Computation of Correctly-Rounded Sums 11

• Second case: es ≤ ea. We have

a + b =
(

10δMa + Mb

)

· 10eb−p+1.

If es ≤ eb then s = a+b exactly, since s is obtained by rounding a+b to the nearest multiple
of 10es−p+1, which divides 10eb−p+1. Hence, s− a = b, and s− a is exactly representable.

If es > eb, define δ2 = es − eb. We have

s =
⌈

10δ−δ2Ma + 10−δ2Mb

⌋

· 10es−p+1,

so that
(

10−δ2Mb −
1
2

)

· 10es−p+1 ≤ s− a ≤

(

10−δ2Mb +
1
2

)

· 10es−p+1,

which implies

|s− a| ≤

(

10−δ2 |Mb|+
1
2

)

· 10es−p+1.

Moreover, es ≤ ea ⇒ s− a is a multiple of 10es−p+1, say s− a = K · 10es−p+1. We get

|K| ≤ 10−δ2 |Mb|+
1
2
≤

10p − 1
10

+
1
2
≤ 10p − 1,

therefore s− a is exactly representable.

We therefore deduce the following property on the value s computed after the first step.

Property 1 The value s computed by the first operation of Algorithm 1 satisfies:

• either s− a is exactly representable,

• or we simultaneously have






|Mb| ∈ {10p − 4, 10p − 3, 10p − 2, 10p − 1},
eb = ea,
es = ea + 1.

3.1.2 Second and third operations: z ← RN (s− a) and t← RN (b− z)

That second operation is more easily handled. It suffices to notice that when s − a is exactly
representable, then z = s− a exactly, so that

b− z = b− (s− a) = (a + b)− s.

This means that when s − a is exactly representable, b − z is the error of the floating-point
operation s ← RN (a + b). Since that error is exactly representable (see for instance [6]), it is
computed exactly, so that t = (a + b)− s.

Therefore, we deduce the following result.

Theorem 4 If a and b are radix-10 floating-point numbers of precision p, with |a| ≥ |b|, then
the value s computed by the first operation of Algorithm 1 satisfies:

• either t is the error of the floating-point addition a + b, which means that s + t = a + b
exactly,

• or we simultaneously have






|Mb| ∈ {10p − 4, 10p − 3, 10p − 2, 10p − 1},
eb = ea,
es = ea + 1.

RR n° 7262

On the Computation of Correctly-Rounded Sums 12

3.2 Some consequences

Let us analyze the few cases for which Algorithm 1 may not work. Notice that since a and b
have the same exponent, |a| ≥ |b| implies |Ma| ≥ |Mb|. Also, |Ma| ≤ 10p − 1. Hence, when
|Mb| ∈ {10p − 4, 10p − 3, 10p − 2, 10p − 1}, the possible values of |Ma| are limited to

• 4 cases for |Mb| = 10p − 4;

• 3 cases for |Mb| = 10p − 3;

• 2 cases for |Mb| = 10p − 2;

• 1 case for |Mb| = 10p − 1.

Also, in these cases, when a and b do not have the same sign, Algorithm 1 obviously works (by
Sterbenz Lemma, s = a + b exactly, so that z = b and t = 0). Therefore, we can assume that a
and b have the same sign. Without loss of generality we assume they are positive. It now suffices
to check Algorithm 1 with the 10 possible cases. The results are listed in Table 1.

Ma Mb = 10p − 4 Mb = 10p − 3 Mb = 10p − 2 Mb = 10p − 1

10p − 4 OK N/A N/A N/A
10p − 3 OK OK N/A N/A

10p − 2 OK
Wrong:
t = −3,

(a + b)− s = −5

Wrong:
t = −2,

(a + b)− s = −4
N/A

10p − 1
Wrong:
t = −4,

(a + b)− s = −5

Wrong:
t = −3,

(a + b)− s = −4

Wrong:
t = −2,

(a + b)− s = −3

Wrong:
t = −1,

(a + b)− s = −2

Table 1: Algorithm 1 is checked in the cases Mb ∈ {10p − 4, 10p − 3, 10p − 2, 10p − 1} and
Mb ≤Ma ≤ 10p − 1.

From these results, we notice that there are only 6 cases where Algorithm 1 does not work.
This leads us to the following result.

Theorem 5 If a and b are radix-10 floating-point numbers of precision p, with |a| ≥ |b|, then
Algorithm 1 always works (i.e., we always have s + t = a + b, with s = RN (a + b)), unless a and
b have the same sign, the same exponent, and their significands Ma and Mb satisfy:

• |Ma| = 10p − 1 and |Mb| ≥ 10p − 4;

• or |Ma| = 10p − 2 and |Mb| ≥ 10p − 3.

Notice that even in the few (6) cases where Algorithm 1 provides a wrong result, the value of
t it returns remains an interesting “correcting term” that can be useful in summation algorithms,
since s + t is always closer to a + b than s.

Theorem 5 shows that Algorithm Fast2Sum can safely be used in several cases. An example
is addition of a constant: for instance, computations of the form “a ± 1”, quite frequent, can
safely be performed whenever |a| ≥ 1.

Another very frequent case is when one of the operands is known to be significantly larger
than the other one (e.g., we add a small correcting term to some estimate). Concerning that
case, an immediate consequence of Theorem 5 is the following result.

RR n° 7262

On the Computation of Correctly-Rounded Sums 13

Theorem 6 If a and b are radix-10, precision-p floating-point numbers, and |b| < ωp|a|, with

ωp =
10p − 4
10p − 1

,

then Algorithm 1 returns a correct result.

For instance, in the decimal32 format of the IEEE 754-2008 standard (p = 7), ωp =
0.9999996999999699 · · ·

4 Halving and computing the average of two numbers in
radix 10

In radix 2 floating-point arithmetic, if s is a floating-point number, then s/2 is computed exactly,
provided that no underflow occurs. This is not always the case in radix 10.

Consider a radix-10 number s:
s = ±S · 10e−p+1,

where S is an integer, 10p−1 ≤ S ≤ 10p − 1, and consider the following two cases:

• if S < 2 · 10p−1, then 5S is less than 10p, hence s/2 is exactly representable as 5S · 10e−p:
it will be computed exactly, with any rounding mode;

• if S ≥ 2 · 10p−1, then if S is even, s/2 is obviously exactly representable as S/2 · 10e−p+1.
If S is odd, let k be the integer such that S = 2k + 1. From

s

2
=

(

k +
1
2

)

· 10e−p+1,

we deduce that s/2 is a rounding breakpoint for the round-to-nearest mode. Therefore
(assuming round to nearest even), the computed value RN (s/2) will be k · 10e−p+1 if k
is even, and (k + 1) · 10e−p+1 otherwise. Let t be that computed result. Notice that 2t
is either 2k · 10e−p+1 or (2k + 2) · 10e−p+1: in any case it is exactly representable, hence
it is computed exactly. The same holds for s − 2t, which will be ±10e−p+1. This last
result is straightforwardly exactly divisible by 2. We therefore deduce that the sequence of
computations

t = RN (0.5× s);
twot = RN (2× t);
delta = RN (s− twot);
r = RN (0.5× delta);

will return a value r equal to the error of the floating-point division of s by two (notice
that 0.5 is exactly representable in decimal arithmetic).

Now, one may easily notice that in all the other cases (that is, when t is exactly s/2), the
same sequence of operations will return a zero.

This gives us a new error-free transform:

Algorithm 4 (Half-and-error, for radix-10 arithmetic)

t = RN (0.5× s);
twot = RN (2× t);
delta = RN (s− twot);
r = RN (0.5× delta);

RR n° 7262

On the Computation of Correctly-Rounded Sums 14

The following theorem summarizes what we have discussed:

Theorem 7 In radix-10 arithmetic, provided that no underflow occurs, Algorithm 4 returns two
values t and r such that t = RN (s/2), and t + r = s/2 exactly. Also, r is always either 0 or
± 1

2 ulp(s/2).

Let us give an example. Assume a precision-4 radix-10 floating-point system, and let us
execute Algorithm 4 with s = 9367. Since s/2 = 4683.5, we find t = 4684. Hence, twot = 9368,
δ = −1 and r = −0.5. We immediately see that we have t + r = s/2.

Now, let us focus on the computation of the average value of two floating-point numbers a
and b, namely,

µ =
a + b

2
.

Again, in radix-2 arithmetic, the “naive” method that consists in computing s = RN (a + b) and
m = RN (s/2) (or rather, equivalently, m = RN (0.5× s)) will obviously give m = RN (µ), unless
the addition overflows or the division by 2 underflows. This is not the case in radix 10. Consider
a toy decimal system of precision p = 3, and the two input numbers a = 1.09 and b = 0.195.
We get s = RN (a + b) = 1.28, so that m = RN (s/2) = 0.640, whereas the exact average value
µ is 0.6425: we have an error of 2.5 units in the last place (one can easily show that this is the
largest possible error, in the absence of over/underflow).

If a larger precision is available for performing the internal calculations, then we get a better
result: if now s is a + b rounded to the nearest in precision p + d, then the average value is
computed with an error bounded by

(

1
2

+
5
2
· 10−d

)

units in the last place.
If no larger precision is available, we may need to use algorithms such as 2Sum and Half-and-

error. Consider for instance,

Algorithm 5 (Average-Radix-10)

(s, r) = 2Sum(a, b);
(mh, mℓ) = Half-and-error(s);
ρ = RN (mℓ + RN (0.5× r));
m = RN (mh + ρ);

This algorithm requires 13 arithmetic operations (12 if 2Sum is replaced by Mag2Sum). Using
the following properties:

• s + r = a + b, with |r| < 1
2 · s · 10−p+1,

• mh + mℓ = s/2 and |mℓ| <
1
2 · (s/2) · 10−p+1,

• t = RN (0.5× r) = r
2 + ǫ1, with |ǫ1| < (1/2) · (r/2) · 10−p+1,

• RN (mℓ + t) = mℓ + t + ǫ2, with |ǫ2| < (1/2) · (mℓ + t) · 10−p+1,

one can show, after some calculations, that

m = RN

(

a + b

2
+ ǫ

)

,

RR n° 7262

On the Computation of Correctly-Rounded Sums 15

where
|ǫ| ≤ |ǫ1|+ |ǫ2| <

3s

8
10−2p+2 +

s

16
10−3p+3.

Still in the “toy example” (p = 3, a = 1.09, b = 0.195) considered above, for which the naive
method gave an error of 2.5ulp, we now get s = 1.28, r = 0.005, mh = 0.64, mℓ = 0, ρ = 0.0025,
and m = 0.642, which is equal to RN ((a + b)/2).

This algorithm requires many operations—probably too many for practical purposes. If a
and b are sufficiently close, there is a much better solution:

Algorithm 6 (Average value, when a and b are close)

d = RN (a− b);
h = RN (0.5× d);
m = RN (a− h);

Theorem 8 If a and b are two decimal floating-point numbers of the same sign such that 0 ≤ b ≤
a ≤ 2b or 2b ≤ a ≤ b ≤ 0, then the value m returned by Algorithm 6 satisfies m = RN((a+b)/2).

Proof: Without loss of generality we assume that 0 ≤ b ≤ a ≤ 2b. Also assume that a and
b have been scaled to integers without common factors of 10, where b has at most p digits. By
Sterbenz Lemma we have RN(a− b) = a− b. The proof is now split in two cases:

a − b is even: (a − b)/2 is exactly representable. Hence m = RN(a − RN((a − b)/2)) =
RN((a + b)/2).

a−b is odd: RN((a−b)/2) = (a−b)/2+δ (δ = ±1/2) is exactly computable and representable
as a p-digit even integer (since mid-points round to even). Now assume that a is a p + k digit
integer, with k minimal. Then it follows that k ≤ 1. Consider:

RN((a− b)/2) = (a− b)/2 + δ,

from which it follows that

a−RN((a− b)/2) = (a + b)/2− δ (= (a + b± 1)/2),

which is an integer representable on at most p + k digits (since a and RN((a − b)/2) have the
same sign and both are integers representable on p + k digits).

If k = 0, then obviously m = RN(a−RN((a− b)/2)) = RN((a + b)/2).
If k = 1, then a is even, hence a − RN((a − b)/2) is even, thus not a mid point. Hence

rounding to p digits yields m = RN(a−RN((a− b)/2)) = RN((a + b)/2).
Note that the proof holds for any even radix.

5 On the impossibility of computing a round-to-nearest
sum

In this section, we are interested in the computation of the sum of n floating-point numbers,
correctly rounded to nearest. We prove the following result.

Theorem 9 Let a1, a2, . . . , an be n ≥ 3 floating-point numbers of the same format. Assuming
an unbounded exponent range, and assuming that the radix of the floating-point system is even,
an RN-addition algorithm cannot always return RN (a1 + a2 + · · · + an).

RR n° 7262

On the Computation of Correctly-Rounded Sums 16

If there exists an RN-addition algorithm to compute the round-to-nearest sum of n floating-
point numbers, with n ≥ 3, then this algorithm must also compute the round-to-nearest sum of
3 floating-point values. As a consequence we only consider the case n = 3 in the proof of this
theorem. We show how to construct for any RN-algorithm a set of input data such that the
result computed by the algorithm differs from the round-to-nearest result.

Proof of Theorem 9: Assume a radix-β arithmetic, where β is even.. An RN-addition
algorithm can be represented by a directed acyclic graph1 (DAG) whose nodes are the arithmetic
operations. Given such an algorithm, let r be the depth of its associated graph. First we consider
the input values a1, a2, a3 defined as follows.

• a1 = βk+p and a2 =
(

β
2

)

βk: For any2 integer k, a1 and a2 are two nonzero multiples of

βk whose sum is the exact middle of two consecutive floating-point numbers;

• a3 = ε, with 0 ≤ βr−1|ε| ≤ βk−p−1 for r ≥ 1.

Note that when ε 6= 0,

RN (a1 + a2 + a3) =

{

RD(a1 + a2 + a3) if ε < 0

RU (a1 + a2 + a3) if ε > 0,

where we may also conclude that RN (a1+a2+a3) 6= 0.
The various computations that can be performed “at depth 1”, i.e., immediately from the

entries of the algorithm are illustrated below. The value of ε is so small that after rounding to
nearest, every operation with ε in one of its entries will return the same value as if ε were zero,
unless the other entry is 0 or ε.

±ai

+/− +/− +/−

ai aj ai ǫ ǫ ǫ

0 or nonzero

multiple of βk

∈ {−2ǫ, −ǫ, 0, ǫ, 2ǫ}

An immediate consequence is that after these computations “at depth 1”, the possible avail-
able variables are nonzero multiples of βk that are the same as if ε were 0, and values taken
from S1 = {−2ε,−ε, 0, ε, 2ε}. By induction one easily shows that the available variables after a
computation of depth m are either nonzero multiples of βk that are the same as if ε were 0 or
values taken from Sm = {−2mε, · · · , 0, · · · , +2mε}.

Now, consider the very last addition/subtraction, at depth r in the DAG of the RN-addition
algorithm. If at least one of the inputs of this last operation is a nonzero multiple of βk that is
the same as if ε were 0, then the other input is either also a nonzero multiple of βk or a value
belonging to Sr−1 = {−2r−1ε, · · · , 0, · · · , +2r−1ε}. In both cases the result does not depend on
the sign of ε, hence it is always possible to choose the sign of ε so that the round-to-nearest
result differs from the computed one. If both entries of the last operation belong to Sr−1, then

1Such an algorithm cannot have “while” loops, since tests are prohibited. It may have “for” loops that can be
unrolled.

2Here k is arbitrary. When considering a limited exponent range, we have to assume that k + p is less than
the maximum exponent.

RR n° 7262

On the Computation of Correctly-Rounded Sums 17

the result belongs to Sr = {−2rε, · · · , 0, · · · , +2rε}. If one sets ε = 0 then the computed result
is 0, contradicting the fact that the round-to-nearest sum must be nonzero.

In the proof of Theorem 9, it was necessary to assume an unbounded exponent range to make
sure that with a computational graph of depth r, we can always build an ε so small that 2r−1ε
vanishes when added to any multiple of βk. This constraint can be transformed into a constraint
on r related to the extremal exponents emin and emax of the floating-point system. For instance,
in radix 2, assuming ε = ±2emin and a1 = 2k+p = 2emax , the inequality 2r−1|ε| ≤ 2k−p−1 gives
the following theorem.

Theorem 10 Let a1, a2, . . . , an be n ≥ 3 floating-point numbers of the same binary format.
Assuming the extremal exponents of the floating-point format are emin and emax, an RN-addition
algorithm of depth r cannot always return RN (a1 + a2 + · · · + an) as soon as

r ≤ emax − emin − 2p.

For instance, with the IEEE 754-1985 double precision format (emin = −1022, emax = 1023,
p = 53), Theorem 10 shows that an RN-addition algorithm able to always evaluate the round-to-
nearest sum of at least 3 floating-point numbers (if such an algorithm exists!) must have depth
at least 1939.

6 Correctly-rounded sums of three floating-point numbers

We have proved in the previous section that there exist no RN-addition algorithms of acceptable
size to compute the round-to-nearest sum of n ≥ 3 floating-point values. In [5], Boldo and
Melquiond presented an algorithm to compute RN (a + b + c) using a round-to-odd addition.
Rounding to odd is defined as follows:

• if x is a floating-point number, then RO(x) = x;

• otherwise, RO(x) is the value among RD(x) and RU (x) whose least significant digit is odd.

The algorithm of Boldo and Melquiond for computing of RN (a + b + c) is depicted on Fig. 1.
Boldo and Melquiond proved their algorithm in radix 2, yet one can check that it also works in
radix 10.

Rounding to odd is not a rounding mode available on current architectures, hence a software
emulation is proposed in [5] for radix 2: this software emulation requires accesses to the binary
representation of the floating-point numbers and conditional branches, both of which are costly
on pipelined architectures.

In the next section, we propose a new algorithm for simulating the round-to-odd addition of
two floating-point values. This algorithm uses only available IEEE-754 rounding modes and a
multiplication by the constant 0.5 (we will use that multiplication in a case where it is exact),
and can be used to avoid access to the binary representation of the floating-point numbers and
conditional branches in the computation of RN (a + b + c) with the Boldo-Melquiond algorithm.
We also study a modified version of the Boldo-Melquiond algorithm to compute DR(a + b + c),
where DR denotes any of the IEEE-754 directed rounding modes.

6.1 A new method for rounding to odd

If we allow the multiplication by the constant 0.5 and choosing the rounding mode for each
operation, the following algorithm can be used to implement the round-to-odd addition, assuming
that the radix β of the floating-point system is even.

RR n° 7262

On the Computation of Correctly-Rounded Sums 18

tℓ

Error-free addition

Error-free addition

Odd-rounded addition

v = RO(tℓ + uℓ)

Round-to-nearest addition

z = RN(a + b + c)

a b c

uh uℓ

th

Figure 1: The Boldo-Melquiond algorithm.

For some of the arithmetic operations performed in this algorithm, the result is exactly rep-
resentable, so it will be exactly computed with any rounding mode: hence, for these operations,
we do not have indicated a particular rounding mode.

Algorithm 7 (OddRoundSum(a,b), arbitrary even radix)

d = RD(a + b);
u = RU (a + b);
ulp = u− d; {exact}
hulp = 0.5× ulp; {exact}
e = RN (d + hulp);
o′ = u− e; {exact}
o = o′ + d; {exact}

For instance, with β = 10, p = 4, a = 2.355, and b = 0.8935, we successively get

d = 3.248
u = 3.249
ulp = 0.001
hulp = 0.0005
e = 3.248
o′ = 0.001
o = 3.249

Theorem 11 Let a and b be two floating-point numbers, and assume that a+b does not overflow
and that “RN” means round to nearest even. Then Algorithm 7 computes o = RO(a + b).

Proof: Notice that since the radix is even, 0.5 = 1/2 is exactly representable. If a + b is
exactly representable, then all the operations are exact and d = u = a+ b, hulp = ulp = 0, e = d,
o′ = 0, and o = d = a + b.

Otherwise d and u are consecutive machine numbers and ulp is a power of the (even) radix,
which cannot be the minimum nonzero machine number in magnitude (because the significand

RR n° 7262

On the Computation of Correctly-Rounded Sums 19

of a + b must take at least p + 1 digits). Thus ulp/2 is exactly representable, so that d + hulp is
the exact middle of d and u. Therefore, by the round-to-nearest-even rule, e is the value, among
d and u, whose last significand digit is even. Then o is the other one, which is the desired result.

When the radix is 2, it is possible to save an operation, using the following algorithm. Note
that if e′ × 0.5 is in the subnormal range, this means that a + b is also in the subnormal range,
implying that d = u, and e′ × 0.5 is performed exactly.

Algorithm 8 (OddRoundSum(a,b), radix 2)

d = RD(a + b);
u = RU (a + b);
e′ = RN (d + u);
e = e′ × 0.5; {exact}
o′ = u− e; {exact}
o = o′ + d; {exact}

Algorithms 7 or 8 can be used in the algorithm depicted on Fig. 1 to implement the round-
to-odd addition. Then we obtain an algorithm using only basic floating-point operations and the
IEEE-754 rounding modes to compute RN (a + b + c) for all floating-point numbers a, b and c.

In Algorithms 7 and 8, note that d and u may be calculated in parallel and that the calculation
of hulp and e (in the general case, i.e., Algorithm 7) or e and o′ (in the binary case, i.e.,
Algorithm 8) may be combined if a fused multiply-add (FMA) instruction is available. On
most floating-point units, the rounding mode is dynamic and changing it requires to flush the
pipeline, which is expensive. However, on some processors such as Intel’s Itanium, the rounding
mode of each floating-point operation can be chosen individually [7, Chap. 3]. In this case,
choosing the rounding mode has no impact on the running time of a sequence of floating-point
operations. Moreover the Itanium provides an FMA instruction, hence the proposed algorithm
can be expected to be a very efficient alternative to compute round-to-odd additions on this
processor.

tℓ

Error-free addition

Error-free addition

DR-rounded addition

v = DR(tℓ + uℓ)

DR-rounded addition

z = DR(a + b + c)

a b c

uh uℓ

th

Figure 2: Algorithm to compute DR(a + b + c) with DR = RD or RU , derived from the Boldo-
Melquiond Algorithm.

RR n° 7262

On the Computation of Correctly-Rounded Sums 20

6.2 Computation of DR(a + b + c)

We now focus on the problem of computing DR(a + b + c), where DR denotes one of the directed
rounding modes (RZ , RD or RU). The algorithm we consider for DR = RD or RU is depicted
on Fig. 2 (the case DR = RZ will be dealt with later): it is a variant of the Boldo-Melquiond
algorithm. The only difference is that the last two operations use a directed rounding mode.
The algorithm can be summarized as follows.

Algorithm 9 (DR3(a,b,c))

(uh, uℓ) = 2Sum(b, c);
(th, tℓ) = 2Sum(a, uh);

v = DR(tℓ + uℓ);
z = DR(th + v);

We will show that Algorithm 9 computes DR(a + b + c) for rounding downward or upward.
However, we will see that it may give an incorrect answer for rounding toward zero.

To prove Algorithm 9, we need to distinguish between different precisions. To that purpose,
we introduce some notation. Let Fβ,p denote the set of all radix-β, precision-p floating-point
numbers, with an unbounded exponent range (where, obviously, β ≥ 2 and p ≥ 1). Given a real
number x 6= 0, ulpp(x) denotes the unit in the last place of x, i.e., if βe ≤ |x| < βe+1 with e ∈ Z,
then ulpp(x) = βe+1−p. Given x ∈ R, we shall denote x rounded downward, rounded upward,
rounded toward zero and rounded to nearest in Fβ,p by RDp(x), RU p(x), RZp(x) and RN p(x)
respectively. Note that even though these functions depend on the parameter β, we omit β from
their indices to make the notation simpler, since β is regarded as fixed; we will even omit the
index p when only precision p is considered, just like in the other sections of the paper.

Theorem 12 Let us assume that the radix β and the precision p satisfy

• either 5 · β1−p ≤ 1,

• or β = 2k, where k ≥ 1 is an integer, and 3 · β1−p ≤ 1.

Then, given a, b, c ∈ Fβ,p, and s = a+b+c the exact sum, algorithm DR3 (Algorithm 9) computes
z = DR(s).

Notice that for the most common cases, the hypotheses 3β1−p ≤ 1 for radix 2 and 5β1−p ≤ 1
for radix 10 can be summarized as follows:

β = 2 β = 10
p ≥ 3 p ≥ 2

For proving Theorem 12, we use the next two lemmata.

Lemma 13 Let β ≥ 2 and two precisions p and q such that q ≥ p. Let DR be one of the directed
rounding modes (RZ, RD or RU), so that DRp and DRq denote the corresponding rounding
functions in Fβ,p and Fβ,q respectively. Then for all x ∈ R, one has DRp(x) = DRp(DRq(x)).

The proof of Lemma 13 mainly relies on Fβ,p ⊂ Fβ,q and on the fact that both roundings are
done in the same direction.

Lemma 14 Let β ≥ 2, p ≥ 1, and x, y ∈ Fβ,p such that x+y /∈ Fβ,p. We denote z = RN (x+y).

• If β = 2k, where k ≥ 1 is an integer, then |y| ≤ 2|z|.

RR n° 7262

On the Computation of Correctly-Rounded Sums 21

• For any radix β, one has |y| ≤ 2(1 + β1−p)|z|.

Proof: First, since x + y /∈ Fβ,p, neither x nor y can be 0. If x and y have the same sign,
then |y| ≤ |z| ≤ 2|z|. In the following, let us assume that x and y have different signs. Under this
condition, Sterbenz’s lemma yields: If 1

2 |y| ≤ |x| ≤ 2|y|, then x + y ∈ Fβ,p. Since by assumption
x + y /∈ Fβ,p,

• either 1
2 |y| > |x|, hence |x + y| = |y| − |x| > 1

2 |y|,

• or |x| > 2|y|, hence |x + y| = |x| − |y| > |y|.

In both cases, |x + y| ≥ 1
2 |y|, hence |z| = RN (|x + y|) ≥ RN (1

2 |y|). If β is a power of two, then
RN (1

2 |y|) = 1
2 |y|, hence |z| ≥ 1

2 |y|. If no assumption is made on the radix β, then we write
RN (1

2 |y|) = (1 + ε) 1
2 |y|, with |ε| ≤ 1

2 β1−p, which implies RN (1
2 |y|) ≥

1
2 (1− 1

2 β1−p)|y|. A quick
calculation shows that

1
1− 1

2 β1−p
− (1 + β1−p) = −

1
2

β1−p 1− β1−p

1− 1
2 β1−p

≤ 0,

with equality when p = 1. As a consequence,

1
1− 1

2 β1−p
≤ (1 + β1−p),

and |y| ≤ 2(1 + β1−p)|z|.
Proof of Theorem 12: In this proof, let us denote tℓ + uℓ by γ, and th + v by s′.

Let us first prove the result on the following two special cases:

• If a + uh ∈ Fβ,p, then tℓ = 0, which means that s = th + uℓ; moreover, z = DR(th + v) =
DR(th + uℓ), hence z = DR(s).

• If γ = 0, then s = th, v = 0, and z = DR(s).

In the following of the proof, let us now assume that a + uh /∈ Fβ,p and γ 6= 0. Since
(th, tℓ) = 2Sum(a, uh), one has |tℓ| ≤

1
2 β1−p|th|, and from |γ| ≤ |uℓ| + |tℓ| we deduce that

|γ| ≤ |uℓ|+ 1
2 β1−p|th|. On the other hand, since (uh, uℓ) = 2Sum(b, c), one has |uℓ| ≤

1
2 β1−p|uh|.

As a consequence,

|γ| ≤
1
2

β1−p|uh|+
1
2

β1−p|th|.

As (th, tℓ) = 2Sum(a, uh) and th = RN (a + uh), and since a + uh does not belong to Fβ,p by
hypothesis, Lemma 14 can be used to bound |uh| with respect to |th|. We distinguish two cases.

• If β is a power of two, then |uh| ≤ 2|th|. As a consequence |γ| ≤ 3
2 β1−p|th|, and since

3β1−p ≤ 1, |γ| ≤ |th|. From |s| = |th + tℓ + uℓ| ≥ |th| − |γ|, we also deduce |s| ≥
(2

3 βp−1 − 1)|γ|. Since 3β1−p ≤ 1 implies 2
3 βp−1 − 1 ≥ 1, one also has |γ| ≤ |s|.

• If no assumption is made on β, one has |uh| ≤ 2(1 + β1−p)|th|, which gives |γ| ≤ (3
2 +

β1−p)β1−p|th| ≤
5
2 β1−p|th|, and since 5β1−p ≤ 1, |γ| ≤ |th| follows. As |s| ≥ |th| − |γ|,

one also has |s| ≥
(

2
5 βp−1 − 1

)

|γ|. Since 5β1−p ≤ 1 implies 2
5 βp−1 − 1 ≥ 1, it follows that

|γ| ≤ |s|.

RR n° 7262

On the Computation of Correctly-Rounded Sums 22

Therefore, in both cases one has

|γ| ≤ |th| and |γ| ≤ |s|. (1)

We now focus on the last two operations in Algorithm 9. Defining ρDR(x) by ρRD(x) = ⌊x⌋
and ρRU (x) = ⌈x⌉, one has

s′ = th + DRp(tℓ + uℓ) = th + ρDR

(

γ

ulpp(γ)

)

ulpp(γ).

From the first inequality in (1) it follows that ulpp(γ) ≤ ulpp(th), which implies that th is an
integral multiple of ulpp(γ). Since s = th + γ, we write

s′ =
(

th

ulpp(γ)
+ ρDR

(

γ

ulpp(γ)

))

ulpp(γ)

= ρDR

(

s

ulpp(γ)

)

ulpp(γ).

Since γ 6= 0 and s 6= 0, there exists an integer q such that ulpp(γ) = ulpq(s).3 Furthermore, it
follows from the second inequality in (1) that ulpp(γ) ≤ ulpp(s), hence ulpq(s) ≤ ulpp(s), which
implies q ≥ p. Hence

s′ = ρDR

(

s

ulpq(s)

)

ulpq(s) = DRq(s).

Since z = DRp(s′), one has z = DRp(DRq(s)). Then from Lemma 13, we obtain z = DRp(s).
Note that the proof cannot be extended to RZ , due to the fact that the two roundings can

be done in opposite directions. For instance, if s > 0 (not exactly representable) and tℓ + uℓ < 0,
then one has RD(s) ≤ RD(s′) as wanted, but tℓ + uℓ rounds upward and s′ can be RU (s), so
that z = RU (s) instead of RZ (s) = RD(s), as shown on the following counter-example. In radix
2 and precision 7, with a = −3616, b = 19200 and c = −97, we have s = 15487, RZ (s) = 15360
and RU (s) = 15488. Running the algorithm depicted on Fig. 2 on this instance gives

(uh, uℓ) = (19200,−97)
(th, tℓ) = (15616,−32)
v = RZ (−129) = −128
z = RZ (15488) = 15488

and RU (s) has been computed instead of RZ (s).
Nevertheless RZ (s) can be obtained by computing both RD(s) and RU (s), then selecting

the one closer to zero thanks to the minNumMag instruction [10], as shown in the following
algorithm.

Algorithm 10 (RZ3(a,b,c))

(uh, uℓ) = 2Sum(b, c);
(th, tℓ) = 2Sum(a, uh);

vd = RD(uℓ + tℓ);
zd = RD(th + vd);
vu = RU (uℓ + tℓ);
zu = RU (th + vu);
z = minNumMag(zd, zu);

3Notice that q may be negative. We use the same definition of ulp
q

as previously: if βe ≤ |x| < βe+1 with

e ∈ Z, then ulp
q
(x) = βe+1−q .

RR n° 7262

On the Computation of Correctly-Rounded Sums 23

This algorithm for computing RZ (a + b + c) without branches can already be implemented on
the Itanium architecture thanks to the famin instruction [7].

7 Conclusions

We have proved that in binary arithmetic Knuth’s 2Sum algorithm is minimal, both in terms
of the number of operations and the depth of the dependency graph. We have investigated
the possibility of using the Fast2Sum algorithm in radix-10 floating-point arithmetic. We have
also shown that, just by performing round-to-nearest floating-point additions and subtractions
without any testing, it is impossible to compute the round-to-nearest sum of n ≥ 3 floating-
point numbers in even-radix arithmetic. If changing the rounding mode is allowed, in even-radix
arithmetic, we can implement, without testing, the nonstandard rounding to odd defined by
Boldo and Melquiond, which makes it indeed possible to compute the sum of three floating-
point numbers rounded to nearest. We finally proposed an adaptation of the Boldo-Melquiond
algorithm for calculating a + b + c rounded according to the standard directed rounding modes.

8 Acknowledgement

We thank Damien Stehlé, who actively participated in our first discussions on these topics.

References

[1] W. Kahan. Pracniques: further remarks on reducing truncation errors. Commun. ACM,
8(1):40, 1965.

[2] American National Standards Institute and Institute of Electrical and Electronic Engineers.
IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985. New
York, 1985.

[3] American National Standards Institute and Institute of Electrical and Electronic Engineers.
IEEE Standard for Radix Independent Floating-Point Arithmetic, ANSI/IEEE Standard
854-1987. New York, 1987.

[4] E. Adams and U. Kulisch, editors. Scientific Computing with Automatic Result Verification.
Academic Press, San Diego, 1993.

[5] S. Boldo and G. Melquiond. Emulation of a FMA and correctly-rounded sums: proved
algorithms using rounding to odd. IEEE Transactions on Computers, 57(4), Apr. 2008.

[6] S. Boldo and M. Daumas. Representable correcting terms for possibly underflowing floating
point operations. In J.-C. Bajard and M. Schulte, editors, Proceedings of the 16th Symposium
on Computer Arithmetic, pages 79–86. IEEE Computer Society Press, Los Alamitos, CA,
2003.

[7] M. Cornea, J. Harrison, and P. T. P. Tang. Scientific computing on Itanium based systems.
Intel Press, 2002.

[8] T. J. Dekker. A floating-point technique for extending the available precision. Numerische
Mathematik, 18(3):224–242, 1971.

RR n° 7262

On the Computation of Correctly-Rounded Sums 24

[9] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-
precision binary floating-point library with correct rounding. ACM Transactions on Math-
ematical Software, 33(2), 2007. Available at http://www.mpfr.org/.

[10] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754-
2008, Aug. 2008. Available at http://ieeexplore.ieee.org/servlet/opac?punumber=

4610933.

[11] P. Kornerup, V. Lefèvre, N. Louvet, and J.-M. Muller. On the Computation of Correctly-
Rounded Sums Proceedings of the 19th IEEE Symposium on Computer Arithmetic Portland,
OR, June 2009.

[12] D. Knuth. The Art of Computer Programming, 3rd edition, volume 2. Addison-Wesley,
Reading, MA, 1998.

[13] O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50, 1965.

[14] D. Monniaux. The pitfalls of verifying floating-point computations. ACM TOPLAS, 30(3):1–
41, 2008. Available at http://hal.archives-ouvertes.fr/hal-00128124.

[15] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond,
N. Revol, D. Stehlé, and S. Torres. Handbook of Floating-Point Arithmetic. Birkhäuser,
2009.

[16] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM Journal on
Scientific Computing, 26(6):1955–1988, 2005.

[17] M. Pichat. Correction d’une somme en arithmétique à virgule flottante (in French). Nu-
merische Mathematik, 19:400–406, 1972.

[18] D. Priest. On Properties of Floating-Point Arithmetics: Numerical Stability and the Cost
of Accurate Computations. PhD thesis, University of California at Berkeley, 1992.

[19] J. R. Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric
Predicates. Discrete & Computational Geometry, 18:305–363, 1997.

RR n° 7262

http://www.mpfr.org/
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://hal.archives-ouvertes.fr/hal-00128124

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Assumptions and notations
	Previous results

	Algorithms 2Sum and Mag2Sum are minimal
	On the use of Fast2Sum in radix-10 arithmetic
	An analysis of Fast2Sum in radix 10
	First operation: s = RN(a + b)
	Second and third operations: z = RN(s - a) and t = RN(b - z)

	Some consequences

	Halving and computing the average of two numbers in radix 10
	On the impossibility of computing a round-to-nearest sum
	Correctly-rounded sums of three floating-point numbers
	A new method for rounding to odd
	Computation of DR(a+b+c)

	Conclusions
	Acknowledgement

