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Automatic Specialization of Protocol Stacks
in Operating System Kernels

Sapan Bhatia[1] Charles Consel[1] Anne-Françoise Le Meur[2] Calton Pu[3]

Abstract— Fast and optimized protocol stacks play a major role
in the performance of network services. This role is especially
important in embedded class systems, where performance metrics
such as data throughput tend to be limited by the CPU. It
is common on such systems, to have protocol stacks that are
optimized by hand for better performance and smaller code
footprint. In this paper, we propose a strategy to automate this
process.

Our approach uses program specialization, and enables appli-
cations using the network to request specialized code based on
the current usage scenario. The specialized code is generated dy-
namically and loaded in the kernel to be used by the application.

We have successfully applied our approach to the TCP/IP
implementation in the Linux kernel and used the optimized
protocol stack in existing applications. These applications were
minimally modified to request the specialization of code based
on the current usage context, and to use the specialized code
generated instead of its generic version. Specialization can be
performed locally, or deferred to a remote specialization server
using a novel mechanism [1].

Experiments conducted on three platforms show that the
specialized code runs about 25% faster and its size reduces by
up to 20 times. The throughput of the protocol stack improves
by up to 21%.

I. INTRODUCTION

The goal of efficient data processing in protocol stacks is
well-established in the networking community [2], [3], [4], [5].
This is becoming increasingly important as embedded devices
are becoming more and more networked, as throughput on
such systems is invariably limited by the processing capabili-
ties of the CPU.

Protocol stacks for embedded devices are thus highly cus-
tomized with a view of their target applications. The cus-
tomization process aims to eliminate unnecessary functionali-
ties and instantiate the remaining ones with respect to parame-
ters of the device usage context. This process typically consists
of propagating configuration values, optimizing away condi-
tionals depending on configuration values, etc. These hand-
optimized protocol stacks not only save on processing steps,
but also have smaller footprints, better suited to embedded
systems [6]. Such strategy, however, raises a conflict between
thorough customization, to obtain significant improvements,
and conservative customization, to preserve the usage scope
of the system. Indeed, many usage parameters become known
at run-time, as the system is in use. As such, this situation
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raises the need for a tool that can be used to exploit them
systematically.

Program specialization [7] has been acknowledged to be a
powerful technique for optimizing systems code [8], [9]. Con-
ceptually, a specializer takes a generic program as input along
with a specialization context consisting of values of known
data items. It then evaluates the parts of the program that
depend only on these known values, and produces a simplified
program that is thus specialized for the supplied specialization
context. For example, a specialization context in the process of
sending TCP packets can define the Maximum Segment Size
(MSS) associated with the connection as known and invariant
for a connection. In this context, the TCP send routine and
dependent functions can be specialized, such that conditional
tests and expressions depending on the MSS can be fully or
partially evaluated. Thus, the process of specialization exploits
specialization opportunities that arise from program invariants.
The knowledge of invariants enables specializers to optimize
programs in many ways. Constant values can be inlined as
instruction immediates instead of being referred to, arithmetic
expressions can be reduced in complexity, and conditional tests
that solely depend on known variables can be evaluated early,
eliminating entire branches of code. Furthermore, specialized
code has better cache properties, and hence lower operational
load (in cycles per instruction) because it is smaller and
operates on working sets that are inevitably smaller than those
of its generic version.

In this paper, we describe an approach to speeding up
TCP/IP on CPU limited systems using run-time code gen-
eration with program specialization. In our approach, special-
ization is a continuous process, sensitive to the everchanging
needs of applications. The usage contexts and associated spe-
cialization opportunities associated are defined in two phases
1) certain aspects of the system are defined as specializable
by the OS developer and 2) applications are modified by pro-
grammers to specialize their functionalities before using them.
The former is done via annotations written in a declarative
language, aside from the target program [10], and the latter
through documented system calls. Applications can trigger
specialization as soon as the specialization context becomes
known. For instance, a specialization context can consist of
the TCP MSS, the destination IP address, and the route
associated with the address, all of which become defined upon
the execution of a TCP handshake.

Perhaps the most significant barrier to using such an op-
timization approach is he fact that specialization is a heavy-



weight process, and can be expected to undermine the gains
of using specialized code. Break-even points for the simplest
specializations running on an embedded system would require
applications to use specialized code for unreasonably long
periods of time. We address this problem by allowing the
activity of specialization to be deferred to a more powerful spe-
cialization server. Concretely, the specialization client conveys
the specialization context with some key run-time state to the
specialization server, and the specialization server specializes
the code and returns it to the client. Our experiments show that
issuing a specialization request and uploading the specialized
module do not require much bandwidth in practice, in order for
specialization to be effective. Furthermore, deferring special-
ization to a remote server obviates the need to store generic
versions of code on the embedded device, as the pertinent
specialized versions can be downloaded on demand. Indeed,
the most ostensible improvement observed in our experiments
are in code size.

The TCP/IP stack we have used in our proof-of-concept im-
plementation and experiments is that of the Linux kernel. We
have validated our effort with experiments on three platforms:
a Pentium III (600MHz), an ARM SA1100 (200MHz) on a
COMPAQ iPAQ, and a 486 (40MHz). Experiments conducted
using this setup have shown that there is a notable code
speedup, and a drastic reduction in code size. In the case of the
UDP protocol, the size of the specialized code once compiled
is only about 5% of the generic compiled code. For TCP, this
ratio is less than 3%. The execution time of the code in the case
of UDP decreases by about 26% on a Pentium III (700MHz)
and the local throughput of 1Kb packets increases by about
13%. For a favorable packet size of 64b, this improvement
is about 16%. On a 486, the increase in throughput for 1Kb
packets is about 27%. For TCP, the throughput increases by
about 10% on the Pentium III and about 23% on the 486.
On an iPAQ running an SA1100 processor at 200MHz, we
observe an improvement of about 18% in the throughput of
1Kb packets for UDP.

The rest of the paper is organized as follows. Section II first
identifies the different specialization opportunities that exist
in the implementation of a typical UNIX protocol stack and
then describes under which assumptions these optimizations
can be safely performed. Section III explains how the spe-
cialization process is concretely integrated and automatically
enabled. Section IV describes and analyzes the performance
measurements obtained while performing various experiments.
Section V presents some related work, and finally Section VI
concludes.

II. SPECIALIZATION OF PROTOCOL STACKS: CONCEPT AND
MECHANISM

The key observation that makes a protocol stack amenable to
program specialization is of its mode of usage. An application
that needs to exchange data over the network must create a
channel (a socket) and configure it at various stages of the
communication for certain properties, such as protocol ver-
sions to use, the time-to-live of packets, connection timeouts

etc. Setting such properties causes the socket to be bound
with specific functionalities, which are invoked in the process
of sending and receiving data. The values of properties are
usually application dependent. For example, conventionally,
an HTTP server that needs to maximize its throughput is
likely to use non-blocking asynchronous communication. In
constrast, a server that needs to minimize request latency
might use blocking synchronous communication. Similarly,
applications that transfer data in bulk would favor the use of
large local buffers, while an application transferring data in
small transactions would try to minimise connection lifetimes.

Such sensibilities, although well defined in the process of
application development, become known to the OS kernel (i.e.,
the protocol stack) only once the application is deployed.

Using program specialization, we use these properties as
program invariants, and use the process of configuration of
properties to dynamically generate specialized code. The scope
of the invariance is determined systematically at the time the
OS kernel is built. The kernel is extended with routines to
invalidate code or take a different course of action, if the value
of a supposed invariant changes.

Central to this process of specialization, are the invariants
and the specialization opportunities they entail.

A. Specialization opportunities

To ensure that none of these opportunities are based on
specific aspects of the Linux implementation, and can be thus
generalized, we have also cross-compared the Linux code to
the FreeBSD code, and considered only opportunities that exist
in both code bases.

1) Sockets, UDP and IP: We now describe the chief
categories of specialization opportunities, illustrated with rep-
resentative examples.

Eliminating lookups. To be abstracted as files, sockets
are implemented as entries in a special file system, and
accessed through accessor functions that perform lookups and
translations from one level to the other. Other than an added
layer of indirection, using these cross-module functions also
tends to impair caches.

The code fragment below shows the implementation
of the sendto system call, which begins by using the
sockfd lookup function to fetch the pertinent socket
structure from the inode corresponding to the file descriptor.

asmlinkage long sys sendto(int fd, void * buff,
size t len, unsigned flags,
struct sockaddr *addr, int addr len) {

...
sock = sockfd lookup(fd, &err);

}

Since the binding between a socket descriptor and the socket
structure does not change once the socket has been created,
the code can be specialized so that the socket structure and its
fields are inlined. Besides, since these field values are now
explicit, further optimizations can be performed. Thus, the
reference to the target socket structure is defined as invariant,
and is retrieved once and for all at specialization time.



Eliminating interpretation of options. Execution paths for
sending and receiving packets are highly branched with the in-
terpretation of several levels of options. Some such attributes,
as illustrated by the following excerpt, inform whether the
session is blocking (O NONBLOCK), whether the message is
being sent to probe the MTU (msg controllen), whether
the address is unicast or multicast (MULTICAST), etc.

if (MULTICAST(daddr))
...
if (sock->file->f flags & O NONBLOCK)
...
if (msg->msg controllen)
...

When socket attributes are invariant, the computations that
depend on them can be performed once and for all at spe-
cialization time, instead of being repeatedly performed at run
time, and straight-lined specialized code be generated.

Eliminating routing decisions. The route associated with
the destination address of a packet is validated when the packet
headers are constructed. This is to cope with situations in
which the route changes during a transmission session. The
occurrence of such an event is, however, extremely unlikely
and can be neglected for most applications. These occurences
are guarded against, as discussed in Section II-B. Thus, we
can freeze the route, or more precisely, use the destination
cache, without validating it for every packet. The destination
cache is used to speed up the dispatch of fully formed IP
datagrams. This circumvents the code that checks whether the
route is obsolete, and allows us to inline in the code attributes
associated with the destination, such as the destination IP
address, the output interface, the destination port, etc.

Optimizing buffer allocation. Depending on the chosen
buffer management strategy (linear socket buffers versus small
fixed sized buffers, scatter-gather I/O versus versus block
copies), memory is allocated at various points during the pro-
cessing of a packet. Although the allocation and initialization
of socket buffers tend to be cached in kernel caches (e.g.,
the slab cache [11]), large bursts of data, and low memory
situations can cause buffer allocation to go through the full
length of the Virtual Memory subsystem (in Linux, through
the slab allocator, the buddy allocator, the zone allocator and
page allocation routines). We profiled the Linux kernel with an
in-kernel web server subject to heavy load with 100 concurrent
connections at a time, and found that some of the most called
and most loaded functions deal with memory management, as
shown in Figure 1.

Memory management routines are also amenable to special-
ization. Calls to generic allocation routines (to allocate a socket
buffer, for instance) can be specialized to produce routines that
simply allocate a physical page and return.

Furthermore, we also found it useful to add a socket option
for an application to be able to commit that it will be sending
data in fixed Application Data Units (ADUs). In this way, for
many workloads, several conditions and predicates based on
the size of the allocated buffer can be reduced. For example, in
the second half of the excerpt below, the variable dlen, which
is a sum of the buffer size and some constant header sizes,

No. of calls Function name Average load
61367 total 0.0219

630 tcp v4 rcv 0.3485
338 alloc skb 1.4083
268 schedule 0.2018
242 ip rcv 0.2224
234 kmem cache alloc 2.0893
226 tcp rcv state process 0.0948
211 sock wfree 2.6375
201 parse http message 0.0257
181 tcp send fin 0.2514
156 ip route input 0.4239
156 might sleep 0.8864
155 tcp write xmit 0.2018
150 tcp parse options 0.2679
142 kmem cache free 1.7750
142 kfree 1.2679
141 number 0.1798
140 skb release data 0.5469
137 kfree skb 0.5352

Fig. 1. Profile of an in-kernel web server subject to a continuous
load of 100 concurrent requests.

becomes invariant. The specializer can calculate npages and
subsequently cause the following for-loop to unroll.

/* Check if function can block*/
if (in interrupt() && (gfp mask & GFP WAIT)) {

static int count = 0;
if (++count < 5) { ... }
gfp mask &= ˜GFP WAIT;
...

npages = (dlen + (PAGE SIZE- 1))
>> PAGE SHIFT;

skb->truesize += dlen;
((struct skb sharedinfo *)

skb->end)->nr frags = npages;
for (i = 0; i < npages; i++) { ... }

2) TCP: As one can imagine, considering the richness and
variations possible in the TCP protocol, there can be several
situations in which its complexity can be reduced. It often
happens that the characteristics of the data transfer process are
predictable, and can be exploited to specialize the TCP layer.
We have listed opportunities for such specialization below.
All the opportunities previously discussed in the context of
sockets, UDP and IP apply to TCP as well.

The tcp send routine, which is the entry point into the
TCP layer for sending a packet, begins by determining whether
the buffer being transmitted can be accommodated into the
last unsent TCP segment. This process, called TCP coalescing
reduces the number of small packets transmitted, and thus the
header overhead as well.

if (tp->send head == NULL ||
(copy = MSS now - last skb len) <= 0) {

if (!tcp memory free(sk))
goto wait for sndbuf;

skb = tcp alloc pskb(sk,
select size(sk, tp), 0, sk->allocation);

We specialize this code by assuming that the Maximum Seg-
ment Size (MSS) associated with the connection is invariant
over a TCP connection (as is usually the case), causing all
associated conditionals to be elided, and constants inlined.

Interestingly, if an application commits the size of the
ADU to be a multiple of the MSS (using a socket option,
as mentioned in the UDP case), TCP coalescing is ruled
out, as every segment sent out is MSS-sized; in the code



above, MSS now - last skb len becomes zero. This in-
formation is used to unroll the main loop (illustrated by the
sugared block of code below) which fragments the ADU into
multiple segments, if it is larger than the MSS, after filling the
previous buffer’s allocated space completely. The MSS for a
connection is determined when a connection is established,
and does not change unless the Path MTU (PMTU) for the
current route changes. This situation is the condition used
to guard the invariant, as discussed in detail in Section III.
Assuming a constant MSS also enables us to specialize out
Nagle’s algorithm [12], since there are never small packets in
flight.

As a side benefit, having an ADU size smaller than the
MSS is beneficial to the receiver, since it saves it from having
to gather ADUs fragmented into multiple TCP segments, as
shown by the following code:

/* While some data remains to be sent*/
while (seglen > 0)
{
/* Calculate bytes to push into previous skb*/

copy = MSS now - last skb len;
/* Is there enough space in the previous skb?*/

if (copy > 0) {
if (copy < seglen)

copy = seglen;
push into previous(copy);

}
else {

copy = min(seglen, MSS now);
push into current(copy);

}
seglen -= copy;

}

There are also several variables in the congestion control
algorithms that can be used for specialization. For example,
the Selective Acknowledgments (SACK) option [13] is useful
in situations where multiple segments are lost in one window.
An application functioning in a high-speed, uncongested local
area network may wish to specialize this away.

Most congestion control features that are not mandatory
correspond to system-wide variables (sys ctls) that can be
used to disable these features for the entire system. With spe-
cialization, we make these variables a part of the specialization
context and set them on a per-process basis. Furthermore, since
these are known at specialization time, we can use their values
to specialize code that depends on them. In our experiments,
we have not used specialization to disable congestion control
altogether. We specialize out only those congestion control
mechanisms that become unnecessary as a result of assumed
invariants.

Although the specialization opportunities in TCP outnumber
those in the rest of the network stack code, there are many
features that are seemingly unspecializable, and have been
left out. Some of these opportunities are unexploited because
the associated invariants are too complex to be handled by
specialization. These invariants include algorithms with fixed
behaviour, that are invoked on comparing complex variables
such as the congestion window, the number of unacknowl-
edged segments, etc.

3) Cross-comparing with FreeBSD: As mentioned earlier,
the specialization opportunities exploited in this project occur
across UNIX systems. This is confirmed by an analysis of the
FreeBSD-5.1 sources. We find that the opportunities listed in
the Linux Sockets/UDP/IP layers exist in FreeBSD as well.
Every time the send routine is invoked, a lookup is done to
retrieve the socket structure:

mtx lock(&Giant);
if ((error = fgetsock(td, s, &so, NULL)) != 0)

goto bad2;

The code is highly branched with options being interpreted,
dontroute = (flags & MSG DONTROUTE)

&& (so->so options & SO DONTROUTE) == 0
&& (so->so proto->pr flags & PR ATOMIC);

if (control)
clen = control->m len;

Unlike Linux, which uses linear socket buffers, BSD uses
chains of small fixed-size mbuf structures for its network
buffers. Apart from the small fixed-sized region (typically
112 bytes) available in the mbuf, data can be stored in a
separate memory area, managed using a private page map and
maintained by the mbuf utilities. Due to its complexity, there
are far more opportunities for specialization in the allocation
system used by BSD than there is in the linear sk buffs
in Linux. Supposedly, a key reason to use mbuf structures
in BSD is the fact that memory was far more expensive at
the time it was designed. BSD copes with this design by
using clusters to get as close to linear-buffer behavior as
possible. This behavior is invariant at run time, and thus can
be specialized.

Figure 2 contains a fragment of the fast-path of the UDP
send operation. All the conditionals that depend on invariants
are printed in boldface. As can be observed, this code will be
drastically pruned by specialization.

The routing decisions in the IP layer (the ip output
function) closely resemble the ones in Linux and offer the
same specialization opportunities. The assumptions made in
TCP are all protocol centric and we do not depend on any
Linux specificity, such as its formulation of segments in flight
or RTO calculation algorithm. Specifying the ADU size explic-
itly, freezing the MSS (it is calculated based on the PMTU, like
in Linux), avoiding the Silly-Window-Syndrome algorithm and
the explicit specialization-time removal of optional features
such as ECN and SACK are available in FreeBSD as well.

B. Code guards

Should at any time, an invariant used for specialization
cease to be valid, the corresponding optimized code would
be invalid as well. Although most events that cause this to
happen are highly improbable, they are nevertheless possible,
and one needs to ensure that on their occurrence, the system is
returned to a consistent state. To do so we use code guards [8].
The dynamics of establishing guards and the process of code
replugging were first described by Pu et al. [8]. Although
we have not used a tool that lists out all the possible sites
where invariant variables can be modified in a fool-proof way,
as they did, instead we have used the LXR source cross-
referencing system. Linux arbitrates access to shared variables



do {
if (uio == NULL) {

resid = 0;
if (flags & MSG EOR)

top->m flags |= M EOR;
} else do {

if (top == 0) {
MGETHDR(m, M WAIT, MT DATA);
if (m == NULL) {

error = ENOBUFS;
goto release;

}
mlen = MHLEN;
m->m pkthdr.len = 0;
m->m pkthdr.rcvif = (struct ifnet *)0;

} else {
MGET(m, M WAIT, MT DATA);
if (m == NULL) {

error = ENOBUFS;
goto release;

}
mlen = MLEN;

}
if (resid >= MINCLSIZE) {

MCLGET(m, M WAIT);
if ((m-> m flags & M EXT) == 0)

goto nopages;
mlen = MCLBYTES;
len = min(min(mlen, resid), space);

} else {
len = min(min(mlen, resid), space);

/*For datagrap protocols, leave room*/
if (atomic && top == 0 && len) ¡ mlen)

/*for protocol headers in first mbuf*/
MH ALIGN(m, len);

}
. . .

}
while (!buffer sent);

Fig. 2. Fast-path of the UDP send operation in BSD

in a systematic way, using accessor functions, macros, etc.,
uniformly throughout the kernel.

Events that can violate invariants can be classified into
two categories: application-triggered events and environment-
triggered events. An application triggered event is caused when
an application invokes a routine that explicitly violates an
invariant. It is relatively easy to guard against such events,
since the guards can be established at the source, i.e., at the
entry points of such routines. Environment-triggered events on
the other hand, are caused by side-effects on the state of the
system. These events are more difficult to guard against. We
have used the LXR tool to enumerate such events. We handle
them as follows.

Application-triggered violations.

• When an attempt is made to modify certain socket options
during a session, a guard is made to reject the operation.
This is achieved by routing the setsockopt system call
to an entry in the local system call table of the process
(see Section III), which identically fails.

• Recall that the size of the buffer used in the send system
call can be asserted invariant. This assumption is guarded
similarly in the local process’ version of the send system
call, where it is checked against the expected length of the
buffer. This expected length is specified by the application
as a new socket option (SO ADU).

Environment-triggered violations.

• When a socket is closed during the transmission of a

packet, the specialized code is immediately invalidated, as
it is based on a frozen socket structure which has ceased
to exist. Closing a socket results in the closing of the
associated file descriptor in the filp close routine.
The strategy used to recover from such a situation is as
follows. The filp close routine is made to acquire a
semaphore associated with the instance of the specialized
code that is being affected. When the specialized code
is deployed at the time of specialization, it is protected
by this semaphore at the boundaries. This strategy may
admittedly increase the latency of the close operation in
case it is invoked during the execution of the specialized
code, but since the increase is limited by the time taken
for one execution of the code path, and the situation is
highly improbable, it is neglected. The use of synchro-
nization primitives in code guards was first proposed by
Pu et al. [8].

• When the route associated with a destination address
changes during a session, we once again prevent the
execution of the code using the route by acquiring a
semaphore. In such a situation, there can be two possible
courses of action. The first consists of stopping the exe-
cution of the old code, re-specializing the code according
to the new route and then resuming the execution. This
approach, however, is infeasible because it would stall
the operation in progress for an extended length of time.
We instead choose the second strategy, and reinforce the
assumption by offsetting the behavior of the code. That
is, instead of changing the code to make it correct, we
offset the system to achieve the same result. Concretely,
a Network Address Translation (NAT) rule is installed as
a reinforcement to ensure delivery to the correct physical
destination. Using one or the other option, and how the
rule is put into effect could be a policy left to the system
administrator

• Every time an acknowledgment is received by the TCP
sender, the MSS is recalculated. If the result differs from
the value we have assumed, we use a reinforcement based
on a packet mangling rule.

III. ENABLING THE SPECIALIZATION

Before discussing the implementation of the specialization
infrastructure, i.e., the machinery that actually generates spe-
cialized code and loads it in the kernel of the target machine,
we will describe a typical scenario to acquaint the reader with
how our approach works in practice.

1) A scenario: Our specialization architecture allows spe-
cialized versions of code to be requested for a fixed set of
system calls, defined at the time the OS is compiled. To
simplify discussion, we will focus on the send system call,
which is the most common function used to submit data to
the protocol stack.

Specialization of the send system call is requested through
the corresponding entry in the global specialization interface.
This entry, do customize send, corresponds to a macro
function that expands into a unique system call, common



Original C code:
struct sk buff *sock alloc send pskb( struct sock *sk,

unsigned long header len,
unsigned long data len,
int noblock,
int *errcode) {

...
}
Tempo specialization declarations:
Sock alloc send pskb:: intern sock alloc send pskb(

Spec sock( struct sock) S(*) sk,
S( unsigned long ) header len,
S( unsigned long ) data len,
S( int ) noblock,
D( int * ) errcode) {

...
};

Fig. 3. Specialization declarations

to the entire interface. This is invoked as early as the spe-
cialization context becomes known, with the values forming
the specialization context, such as the socket descriptor, the
destination address, the protocol to use, etc. This invocation
returns a token, which is used by the application to refer to the
version of the system call, specialized for the specific context.
Defining a new token to multiplex operation instead of the
socket descriptor allows for multiple versions of the send
system call to be used with the same socket descriptor.

Invoking the specialized version of the system call is done
via customized send, which takes three arguments less
than the former, as they have been inlined into the specialized
code. However, it takes one additional argument, namely the
token.

A. Describing the specialization opportunities to the special-
izer

The program specializer we used in this project is the Tempo
C Specializer [14]. Tempo provides a declaration language that
allows one to describe the desired specialization by specifying
both the code fragments to specialize and the invariants to
consider [10]. Concretely, this amounts to copying the C
declarations in a separate file and decorating the types of each
parameter with S if the parameter is an invariant and D other-
wise. An example of the declarations we have written for the
Linux protocol stack is shown in Figure 3. These declarations
specify that the function sock alloc send pskb has to be
specialized for a context where the parameters header len,
data len, noblock are invariant. Furthermore, the pointer
sk is also an invariant and points to a socket data structure that
exhibits invariant fields, as specified by Spec sock which is
not shown. These declarations enable Tempo to appropriately
analyze the code. Once the analysis is done, the specialization
may be performed as soon as the specialization context (i.e.,
the values of the invariants) is made available.

B. Specialization process: Local or Remote?

The most important issue to address when specializing code
for CPU limited systems is where to execute the process
of specialization, as it can be expected to consume a lot of
resources.

We have implemented two versions of our specialization
infrastructure, one of which loads and executes the program
specializer, and the compiler to compile the generated code,
locally. The other version, described in detail in another
publication [1] requests specialized code to be generated by
sending the specialization context used and downloading the
specialized code generated. This is the approach of choice for
embedded network systems. In the following subsections, we
give a short description of both approaches.

C. Specializing locally
Specializing locally may be desirable in cases when a

reasonably powerful server needs to maximize its efficiency
transferring over a high speed link, such as 1 or 10 Gigabit.

The most important implementation issue here is making
the specialization context, consisting of invariant properties,
available to the specializer. This is significant as these values
are available in the address space of the kernel, and cannot
be accessed by the program specializer, which runs in user
address space.

In the local case, we solve this problem by running the
specializer as a privileged process and giving it direct access
to kernel memory. The technique used to accomplish this is
described in detail by Toshiuki [15].

D. Specializing remotely
Being able to specialize remotely is crucial for low-end

systems such as PDAs, as running specialization on them
would consume scarce memory and storage resources as well
as take a long time to complete. In remote customization, the
OS kernel on the target device for which the specialized code
is needed packages the specialization context and key run-
time information and sends them to a remote specialization
server. The context and run-time information are used to
emulate the device run-time environment on the server, and the
specializer is run to use this environment in part to generate
the specialized code. The specialized code is finally sent to
the device.

IV. EXPERIMENTAL PERFORMANCE EVALUATION AND
ANALYSIS

In this section, we present the results of a series of exper-
iments conducted to evaluate the impact of specialization on
protocol stacks in OS kernels. Our setup consisted of three
target devices: a Pentium III (PIII, 700MHz, 128MB RAM),
a 486 (40MHz, 32MB RAM) and an iPAQ with an ARM
SA1100 (200MHz, 32MB RAM). We evaluated the perfor-
mance of specialized code produced using our architecture for
each of these individually.

Specialization was performed remotely [1] for all three
architectures, on a fast server and over a 10Mbps1 wireless
LAN. We used version 2.4.20 of the Linux kernel for our
implementation and all our experiments.

We first describe the experiments conducted, then present
the results and finally characterize them and conclude.

1Note: this was used by the specialization extensions to procure specialized
code, and not by the application to transfer data.



A. Experiments

The experiments conducted compare the performance of
the original TCP/IP stack to that of the specialized code
produced for performing basic data transfer over the network.
The measurements were carried out in two stages:
• Measuring code speedup. We sent a burst of UDP packets

and record the number of CPU cycles taken by the perti-
nent code (i.e., the socket, UDP and IP layers) in the un-
specialized and specialized versions. These measurements
were performed in-kernel.

• Measuring throughput improvement. The Netperf bench-
mark suite [16] was used to find the impact of specializa-
tion on the actual data throughput of the TCP/IP stack.
The results shown compare the throughput measured
by the original implementation of Netperf using the
un-specialized stack, to a modified version using the
specialized code produced by the specialization engine.
The latter was modified to use the specialization interface.
This measure also gives an indication of how much
CPU resource is freed up, as the additional CPU cycles
now available may be used for activities other than data
transmission.

Along with the results of these experiments, we also present
the associated overheads in performing specialization.

B. Size and performance of specialized code

Figure 4(a) compares the number of CPU cycles consumed
by the Socket, UDP and IP layers before and after specializa-
tion. We find that there is an improvement of about 25% in
the speed of the code. It should be noted that this value is not
affected by other kernel threads running on the system, as the
kernel we have used is non-preemptable.

Figure 4(b) compares the size of the specialized code
produced, to the size of the original code. The original code
corresponds to both the main and auxiliary functionalities
required to implement the protocol stack. The specialized code
is a pruned and optimized version of the original code for a
given specialization context. As can be noticed, the specialized
code can be up to 20 times smaller than the original code.

Figures 5(a) and 5(b) show a comparison between the
throughput of the Socket, UDP and IP layers before and after
specialization, measured by the UDP stream test of Netperf
on the PIII. Figure 5(c) shows the same comparison for the
486 and the iPAQ respectively.

On the PIII, for a favorable packet size of 64b, the im-
provement in throughput is found to be about 16%, and for a
more realistic size of 1Kb, it is about 13%. On the 486, the
improvement for 1Kb packets is about 27%. For the iPAQ,
again with 1Kb packets, the improvement is about 18%.

Figures 5(d) and 5(e) show a comparison between the
throughput of the Socket, TCP and IP layers before and after
specialization, measured by the TCP stream test of Netperf on
the PIII, 486 and iPAQ. Corresponding to a TCP Maximum
Segment Size of 1448 bytes, there is an improvement of about
10% on the PIII, 23% on the 486 and 13% on the iPAQ.

Finally, Figure 4(c) shows the overhead of performing
specialization with the current version of our specialization
engine, in the setup described earlier. It should be noted that
the current version of our specialization engine is assembled
from components that are implemented as separate programs,
running as independent processes. Also, they are reloaded into
memory every time specialization is performed. We are work-
ing on merging these components, in particular the specializer
and compiler and on making the specialization engine a
constantly running process. We expect these changes and other
optimizations, such as using pre-compiled headers, to improve
the performance of the specialization engine dramatically.
Indeed, the overhead is presently dominated by these factors.

V. RELATED WORK

Optimizing protocol stacks has been a consistent area of
research in network systems. Protocol stacks have been op-
timized using various approaches over the past two decades.
And even today, work continues on flexible OS architectures
that facilitate fast networking. We see our work as fitting in
the broad scope of these efforts, with a specific motivation to
automate optimization for embedded network systems.

Mosberger et. al [17] list some useful techniques for op-
timizing protocol stacks. Our approach captures most of the
optimizations described in this work. Path-inlining comes for
free, as the specialization context directly identifies the fast
path associated with operations, bringing all code that goes
into it together. Function outlining works in the same way, as
unneeded functions are specialized away from the code used.
Function cloning can happen when a function is fully static
and determined at specialization time.

X-kernel [18] is an object-based framework for implement-
ing network protocols. With the help of well-documented inter-
faces, it enables developers to implement protocols and create
packet processing chains rapidly. Run-time code generation
has been known to yield impressive performance gains in
prior works such as DPF [2] and Synthesis [19]. Synthesis
also used aggressive inlining to flatten and optimize protocol
stacks. Plexus [20] allows the creation of application specific
protocols in a type-safe language, which can be dynamically
inserted into kernels. Prolac [21] is a statically-typed, object-
oriented language to implement network protocols that de-
viated from theoretical models for protocol definition and
focused on readability and ease of implementation. These
efforts, however, are orthogonal to our work as our aim is to
reuse existing protocol stack implementations in an efficient
way, as opposed to encoding new ones. It uses the leverage
of evolved OS code and optimizes it in a way that entails
negligible modifications in itself and minimal modifications
in applications that utilize it.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have described an approach to combining
the leverage of a generic protocol stack, with the footprint
and performance advantages of a customized one. To achieve
this combination, we use automatic program specialization.
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We have implemented a facility for applications to invoke
such specialization and use specialized code with minimal
modifications. This implementation is optimized for local
specialization, but has been extended to specialization in a
distributed environment as well [1].

Specialization of the Linux TCP/IP stack reduced the code
size by a factor of 20, improved the execution speed by up
to 25%, and improved the throughput by up to 21%. The
portability of the approach has been demonstrated by our
experiments on three architectures: PIII, Intel 486, and ARM
and our perusal of FreeBSD 5.1 to establish a correlation.

Among our future projects, we intend to explore the spe-
cialization of protocol stacks in non-UNIX OSes, such as
Windows. We are also working on extending the specialization
interface to empower applications to express more powerful
specialization predicates, to further optimize operation.
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