L. Alvarez, P. L. Lions, and J. M. , Image Selective Smoothing and Edge Detection by Nonlinear Diffusion. II, SIAM Journal on Numerical Analysis, vol.29, issue.3, pp.845-866, 1992.
DOI : 10.1137/0729052

F. Argenti and G. Torricelli, Speckle Suppression in Ultrasonic Images Based on Undecimated Wavelets, EURASIP Journal on Advances in Signal Processing, vol.2003, issue.5, pp.470-478, 2003.
DOI : 10.1155/S1110865703211136

A. Buades, B. Coll, and J. Morel, A Review of Image Denoising Algorithms, with a New One, Multiscale Modeling & Simulation, vol.4, issue.2, pp.490-530, 2005.
DOI : 10.1137/040616024

URL : https://hal.archives-ouvertes.fr/hal-00271141

J. E. Cates, A. E. Lefohn, and R. T. Whitaker, GIST: an interactive, GPU-based level set segmentation tool for 3D medical images, Medical Image Analysis, vol.8, issue.3, pp.217-231, 2004.
DOI : 10.1016/j.media.2004.06.022

T. F. Chan, S. Osher, and J. Shen, The digital TV filter and nonlinear denoising, IEEE Transactions on Image Processing, vol.10, issue.2, pp.231-241, 2001.
DOI : 10.1109/83.902288

Y. Chen, B. C. Vemuri, and L. Wang, Image denoising and segmentation via nonlinear diffusion, Computers & Mathematics with Applications, vol.39, issue.5-6, pp.5-6131, 2000.
DOI : 10.1016/S0898-1221(00)00050-X

URL : http://doi.org/10.1016/s0898-1221(00)00050-x

P. Coupé, P. Hellier, C. Kervrann, and C. Barillot, Nonlocal Means-Based Speckle Filtering for Ultrasound Images, IEEE Transactions on Image Processing, vol.18, issue.10, pp.2221-2229, 2009.
DOI : 10.1109/TIP.2009.2024064

P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann et al., An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images, IEEE Transactions on Medical Imaging, vol.27, issue.4, pp.425-441, 2008.
DOI : 10.1109/TMI.2007.906087

M. Elad and M. Aharon, Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries, IEEE Transactions on Image Processing, vol.15, issue.12, pp.3736-3745, 2006.
DOI : 10.1109/TIP.2006.881969

V. S. Frost, J. Stiles, K. Shanmugan, and J. C. Holtzman, A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.4, issue.2, pp.157-65, 1982.
DOI : 10.1109/TPAMI.1982.4767223

X. Hao, S. Gao, and X. Gao, A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing, IEEE Transactions on Medical Imaging, vol.18, issue.9, pp.787-794, 1999.

B. Huhle, T. Schairer, P. Jenke, and W. Straßer, Robust non-local denoising of colored depth data, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp.1-7, 2008.
DOI : 10.1109/CVPRW.2008.4563158

J. A. Jensen, Field: A program for simulating ultrasound systems, Medical & Biological Engineering & Computing, vol.34, pp.351-353, 1996.

K. Krissian, K. Vosburgh, R. Kikinis, and C. Westin, Speckle-constrained anisotropic diffusion for ultrasound images, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.

D. Kuan, A. A. Sawchuck, T. Strand, and P. Chavel, Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.7, issue.2, pp.165-177, 1985.
DOI : 10.1109/TPAMI.1985.4767641

A. Kubias, F. Deinzer, T. Feldmann, D. Paulus, B. Schreiber et al., 2D/3D image registration on the GPU, Pattern Recognition and Image Analysis, vol.18, issue.3, pp.381-389, 2008.
DOI : 10.1134/S1054661808030048

J. S. Lee, Digital Image Enhancement and Noise Filtering by Use of Local Statistics, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.2, issue.2, pp.165-168, 1980.
DOI : 10.1109/TPAMI.1980.4766994

T. Loupas, W. N. Mcdicken, and P. L. Allan, An adaptive weighted median filter for speckle suppression in medical ultrasonic images, IEEE Transactions on Circuits and Systems, vol.36, issue.1, pp.129-135, 1989.
DOI : 10.1109/31.16577

M. C. Motwani, M. C. Gadiya, R. C. Motwani, and F. C. Harris-jr, Survey of image denoising techniques, Proceedings of GSPx, pp.27-30, 2004.

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An Iterative Regularization Method for Total Variation-Based Image Restoration, Multiscale Modeling & Simulation, vol.4, issue.2, pp.460-489, 2005.
DOI : 10.1137/040605412

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.7, pp.629-639, 1990.
DOI : 10.1109/34.56205

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

E. Tadmor, S. Nezzar, and L. Vese, ) Decompositions, Multiscale Modeling & Simulation, vol.2, issue.4, pp.554-579, 2004.
DOI : 10.1137/030600448

Z. Tao, H. D. Tagare, and J. D. Beaty, Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images, IEEE Transactions on Medical Imaging, issue.11, pp.251483-1491, 2006.

P. C. Tay, S. T. Acton, and J. A. Hossack, A Stochastic Approach to Ultrasound Despeckling, 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006., pp.221-224, 2006.
DOI : 10.1109/ISBI.2006.1624892

P. C. Tay, S. T. Acton, and J. A. Hossack, Ultrasound Despeckling Using an Adaptive Window Stochastic Approach, 2006 International Conference on Image Processing, pp.2549-2552, 2006.
DOI : 10.1109/ICIP.2006.312979

M. P. Wachowiak, A. S. Elmaghraby, R. Smolíkova, and J. M. Zurada, Classification and estimation of ultrasound speckle noise with neural networks, Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering, pp.245-252, 2000.
DOI : 10.1109/BIBE.2000.889614