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Abstract

Microarchitecture simulations are aimed at provid-
ing results representative of the behavior of a processor
running an application. Due to CPU time constaints,
only a few execution slices of a large application can be
simulated. The aim of this paper is to propose a tech-
nique to choose a few program execution slices repre-
sentative of the entire execution. We characterize the
behavior of each consecutive slice executed. Then we
use a statistical classification method to discriminate
the execution slices and select the representative ones.
In this paper, we detail this approach and apply it to
the data stream. Using data cache simulations on the
SPECY95 programs, we show that slices representing
1.52 % (average upon all the SPEC95 but one) of the
overall program activity are as representative as trace
sampling using a 10 % sampling ratio.

Keywords: micro-architecture simulation, trace
sampling, classification, data stream characterization,
data cache simulation.

1 Introduction

As the complexity of processors is always increas-
ing, microarchitecture simulations using realistic ap-
plications consumes always more CPU time. Execu-
tion slowdowns to simulate out-of-order execution mi-
croprocessors are in the 1,000-10,000 range [3]. How-
ever, when exploring new architectural trends, micro-
processor architects need their simulations to complete
in a affordable amount of time. Therefore, either the
target programs are run with reduced input data sets,
or the simulations are executed over smaller portions
of execution [21, 22, 23]1. When using reduced input
data sets, the simulation results may not accurately

I Numerous papers in these conference proceedings show the
use one of these techniques when performing microarchitecture
simulations.

reflect a realistic activity of the processor, so we do
not take it into consideration in the remaining of this
paper.

To reduce simulation time on a realistic application
and input data set, the simulation is often run over
an arbitrary fixed number (e.g. a few billions) con-
secutive executed instructions (a “big slice”). In or-
der to skip the initialization stage, simulation is often
disabled during the execution of the first instructions
(hundreds of millions, or billions) [4, 27].

Another way to reduce simulation time is the trace
sampling technique as suggested by [18, 28] for cache
simulations. Trace sampling consists in running the
simulation over pseudo randomly chosen fixed-size
slices of program execution, commonly referred to as
samples (e.g. samples of 500000 references every 5
million references) or clusters .

In both cases, the amount of simulated data is
determined by the execution time of the simulation,
and/or by previous empirical results (for instance, a
10 % sampling ratio “is known” to give quite good re-
sults). Also, for both methods, the representativity of
the simulated slices is very questionable.

Commonly used benchmarks have life times of sev-
eral years (for instance, 3 years for the SPEC92 bench-
marks, 5 years for the SPEC95 benchmarks). Mi-
croprocessor design projects are also very long efforts
spanning over 5 or more years. Then it appears worth-
while spending time, once and for all, to select repre-
sentative execution slices over which numerous time
consuming simulations will be run.

In this paper we propose to use a classification
method on several measures gathered over each con-
secutively executed program slice, in order to select
the most representative ones for microarchitecture
simulations.

2In the remaining of this paper we only use the term samples.



The target program execution is first cut into fixed-
size slices (e.g. one million instructions). Then met-
rics independent from the simulated microarchitecture
implementation are applied to the program, and mea-
sures are reported for each execution slice.

This provides a characterization of the dynamic
program behavior which can be represented by multi-
variate statistical data (each individual is a slice of the
execution). Then, we apply a classification method to
group execution slices. For each class, we pick out the
slice which is the most representative of the class (i.e.
the closest to the class center). Finally, the selected
slices are weighted by the representativeness of their
class among all classes.

Our technique takes part of precise dynamic infor-
mation gathered on the target programs for select-
ing representative slices. It also allows us to evaluate
a priori the representativeness of the selected slices,
through the computation of an indicator.

In order to validate our approach, we characterized
the data stream of the SPEC95 benchmarks to run
data cache simulations. However, a characterization
of the instruction stream and data dependencies may
be added as input to the classification tool to enable
complete microprocessor simulations.

In the next section, we discuss related work on pro-
gram slice selection for microarchitecture simulations.
Section 3 develops our approach in detail. Section 4
is an application of the proposed method to the data
stream of the SPEC95 benchmarks. Section 5 sum-
marizes this study and presents directions for future
development.

2 Related Work

Using reduced traces (or simulating on-the-fly par-
tial program activity) is needed to perform simulations
in an affordable amount of time. A great amount of
work has been proposed to shorten overall simulation
times.

First, trace sampling has been suggested to improve
cache [18] or microprocessor [5] simulation speeds.
This technique is known in statistics as cluster sam-
pling [16]. Several fixed-size trace slices are picked
out at regular or (pseudo-)randomly sized intervals
and the simulations are run over them. The chosen
slices may be more or less representative of the be-
havior of the target programs, depending on their size
and number. Also, simulations results are biased be-
cause the state of the simulator at the beginning of a
slice is different from the real state produced by full
trace simulation. This effect is known as the cold start
effect.

Similarly, our approach provides a mean to choose
execution slices on which to perform simulations.
These may also suffer cold start effects but the meth-
ods used in trace sampling to reduce it may also apply.
In other respect, our approach takes advantage of dy-
namic program information to derive a representative
slice set. In addition, we provide an indicator which
gives an idea of the representativity of the selected
slice set. This indicator does not need the simulations
to be run.

A recent work proposes to use a small (i.e. 50 M.
instructions) representative execution slice [25] for
micro-architecture simulations. To this end, “inter-
val” branch-misprediction data- and instruction-cache
miss rates have been measured: i.e. the measures
have been computed separately over each million-
instruction interval in the target programs. The com-
puted measures clearly exhibit initialization phases of
programs. Then, for each program, a 50M. instruc-
tion slice is taken after the characterized initialization
phase to further run time-consuming simulations. To
validate the representativeness of the selected slices,
each 50 M-instruction window has been compared to a
250 M-instruction simulation window running a cycle-
accurate simulator of an out-of-order execution pro-
cessor close to an Alpha 21264 [14].

We suspect such a method to be quite risky since
the instruction slices are chosen manually and the slice
size is arbitrary. Also the validation of the selected
slices relies on longer slices which may not be repre-
sentative of the whole behavior of the target programs
(each program considered executed billions of instruc-
tions). At the end of subsection 4.4 we compare results
from our approach and from a technique close to this,
which consists in choosing an instruction slice which
size represents 10 % of all the instructions executed.
This technique, compared to ours and the trace sam-
pling technique, lead to the more erroneous results.

The representativeness of the reduced trace (or the
selected execution slices) when compared to the full
original trace (or the complete program execution) is
difficult to evaluate a priori and necessitates to char-
acterize the behavior of the target program.

Profile-driven sampling [8] was proposed to obtain
a representative reduced size trace. This technique
uses a fine-grained program profile (frequency of exe-
cution of basic blocks) to filter the full trace. In the
reduced trace, only a reduced number of occurrences of
each executed basic block is kept. This way, statistics
such as instruction mix distribution, and basic block
size distribution would match those of the full trace.



Profile-driven sampling takes advantage of dynamic
program information to derive a reduced trace. How-
ever, the trace size reduction is specified as an input
parameter of the method: it does not depend on the
program characteristics but on the time available for
simulation. Instead, the method we propose provides
an indicator (see Section 3) which helps in choosing
an adequate trace size reduction.

To evaluate the representativeness of a reduced
trace against the full trace, Iyengar et al. [13] intro-
duced the R-metric. The representativeness of a re-
duced trace (i.e. the result of the R-metric applied
to a reduced trace) is an overall score. Based on the
contents of the R-metric, a heuristic helps in gener-
ating reduced traces which are expected to have good
R-metric scores.

The R-metric uses precise information on the ba-
sic blocks executed and reduces it to an overall score.
With our metrics, we prefer to keep all the measures
we gather on the target programs in order not to loose
any piece of information for the classification. Also,
the R-metric depends on microarchitecture implemen-
tation details: e.g. branch history table size for branch
prediction. In contrast, our metrics for data memory
accesses do not, so that they can be used to simulate
numerous cache configurations (see 4.1). While the
R-metric only evaluates a reduced trace a posteriori,
our approach uses the metrics to further reduce the
simulated program activity. Ultimately, as indicated
by the title of the paper, the R-metric can only be
used for processor models with infinite cache.

Time varying behavior of the SPEC95 benchmarks
are presented in [24]. [24] reports simulation results for
these programs each 100 million executed instructions
for various modern architectural features: instructions
per cycle (IPC), RUU occupancy, cache miss rate,
branch prediction miss rate, address prediction miss
rate and value prediction miss rate. This study points
out that programs have widely different behaviors over
time. For this reason, the sections of the program ex-
ecution which are simulated must be accurately cho-
sen to be representative of the program behavior as
a whole. Our method is driven by this key idea, but
we feel that program behavior must be characterized
by metrics independent from the architectural imple-
mentation which is to be simulated. Moreover, our
method actually selects program parts to be simulated
and evaluates their representativeness.

3 Representative Execution Slice Se-
lection

We propose to use a characterization of the dy-
namic behavior of the target programs in order to
select representative execution slices for microarchi-
tecture simulations. This section presents in detail
the process of selecting the slices, and an evaluation
of their representativeness.

3.1 Characterization of the Dynamic Pro-
gram Behavior.

In order to characterize the dynamic behavior, we
first divide the program execution into fixed-size slices
(e.g. one million instructions). Then metrics are gath-
ered on the program, and reported for each execution
slice.

Choosing metrics to characterize this behavior is
a difficult issue. For instance, for data cache behav-
ior, one would like to capture the behavior of a large
family of caches with distinct parameters such as as-
sociativity, size, line size, replacement policy, etc. For
the CPU core behavior, one would like to be able to
capture the behavior of different numbers of ALUs...
We believe that metrics highly related to these behav-
iors, but independent from the implementation details
can be found (e.g. see Section 4 for metrics related to
the data stream).

3.2 Actual Slices Selection.

Following commonly used statistics naming, each
slice will be called an observation or individual, and
each metric is considered as a set of variables. For an
observation, each variable is a coordinate in a multi-
dimensional space®. This representation of the char-
acterization of the program behavior is a multivariate
statistical data [10].

We apply to this multivariate statistical data a clas-
sification method to group points which have behav-
iors close to each others, with respect to the collected
metrics. In each group, we retain the most represen-
tative slice: it is the point closest to the group center.

Simulation results on each chosen slice will be
weighted by the representativeness of its class among
all classes:

f poi in the cl
Weight (slice) = Rep(class) = number of points in the class

total number of points

1)

3For this reason, in the remaining of this paper, we shall also
call an observation a (measure) point.



3.3 Representativeness of the Selected
Slices.

For a given classification, in a class, we define the
representativeness of the selected point as the (Eu-
clidean) distance between the selected point and the
center of the class. Accordingly, we introduce for the
whole “population”, an indicator of the representa-
tiveness of all selected points: it is the weighted mean
of the representativeness of the selected points in each
class (the weights are those of Equation 1).

This indicator, called wmdc (weighted mean dis-
tances from centers), globally evaluates the represen-
tativeness of the selected slices among all execution
slices.

4 An Application to the Data Stream

In this section, we present an application of the
method described in the previous section to choose
representative slices from a characterization of the
data stream. We then measure the representativeness
of the selected slices by comparing the results of data
cache simulations run on all the program slices and
run on the selected slices only.

We first detail architecture independent metrics to
evaluate the data memory reference stream. Then, we
present the classification tool we used for this exper-
iment. Finally, experimental results on the SPEC95
benchmarks are reported and our method is compared
to 1) simulations run over an arbitrary big slice, and
2) the systematic statistical trace sampling approach
for data cache simulations.

4.1 Metrics Used

Cache memories [26] were introduced to take ad-
vantage of the spatial and temporal locality of memory
references [12]. The metrics defined below character-
ize the temporal and spatial locality of data memory
accesses for various line sizes in order to simulate a
large range of cache configurations.

We first detail the metrics, then in a detailed ex-
ample we emphasize the intuition behind them.

4.1.1 Measuring Temporal Locality

We evaluate temporal locality by counting the number
of executed instructions between two accesses at the
same address for each address in the program. This
number is the data reuse distance expressed in terms
of instructions executed (RDI) between two accesses
at the same address.

4.1.2 Measuring Spatial Locality

Spatial locality is exploited in caches by the size of the
line. In order to catch spatial locality information,
we measure the temporal locality we defined above
with several line sizes*. Spatial locality information
is then characterized by the difference between the
temporal locality distributions for several line sizes.
Let us illustrate this on the following example.

4.1.3 Example

Let a reference stream be as follows (a is an address,
numbers are in bytes): a (#1), a + 4 (#2), a + 8
(#3), a + 12 (#4), a + 16 (#5), a + 20 (#6), a + 24
(#7), a (#8), a+ 4 (#9), a + 8 (#10), a + 12 (#11),
a+16 (#12), a+20 (#13), a + 24 (#14). We assume
that these references are done inside loops, so that the
number of instruction executed between two references
is fixed and equals 10. Note that this reference stream
exhibits a good spatial locality.

e If the line size is 4 bytes, then each reference
is done at a different line address. All 7 (twice
referenced) addresses (i.e. references #8, #9,
#10, #11, #12, #13, #14) have a RDI; of
10 x 7 = 70 instructions. For instance, the line
address ‘a + 16 > log,(4)’ is referenced for the
second time (#12) 70 instructions after the first
time (#5).

o If the line size is 16 bytes, then we assume refer-
ences to a, a+4, a+8, a+12 to match the same line
address. Consequently, references to a + 16,a +
20, a+ 24 match the same line address. Reference
#8 to a has an RDI;4 of (8 —5) x 10 = 30 instruc-
tions; references #9, #10, #11 to a+4,a+8, and
a + 12 respectively have an RDI;¢ of 10 instruc-
tions because they match the same line address as
a. Reference #12 to a+ 16 (line address different
from the 4 previous references) has an RDI;4 of
(12 = 7) x 10 = 50 instructions...

The distributions of RDI; and RDI;4 are very dif-
ferent, as shown in Figure 1. This difference represents
the spatial locality: a 16 byte line takes advantage of
the spatial locality, whereas a 4 byte line does not.

If, in contrast, each reference in the reference
stream had been really far from the previous ones
(poor spatial locality), then the distribution of RDI;4
would have been the same as the distribution of RDI,
(each reference would have matched a different line in
both cases).

4For instance, the data at absolute address ‘a’ will be at line
address: a >> logy(line size).
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Figure 1: Distributions of data reuse distances for the
data stream used in the example (4 byte and 16 byte
line sizes).

4.1.4 Data Representation

The multivariate statistical representation of a mea-
sured program is composed of individuals (the execu-
tion slices) and variables (measures). Given a line size
ls, for each slice, and for each integer n, we gather the
number of memory accesses which RDI;5 is between
2" and 2"t — 1 (this logarithmic scaling limits the
number of variables and, accordingly, the amount of
data the metric has to produce). For example, the
RDI4 is represented as follows:

Variables
A
- ~
RDIi6
16 16 16
TIA e Tidhe  tr Tinag
2 .
< :
= : : :
2 rlé 16 16
2 %,1 T %,J16 oo %,m16
el
<]
L] . . .
16 16 16
N1 o TN 0 TNomie

The value of the jigth variable for the ith observa-
tion (r;% ) is the reference rate (among all references
done during the ith execution slice) which RDI;4 value
is between 2716 and 2/16+! — 1 instructions:

6 Card ({m € X;/RDlLig(x) € [2716; 2016+ 1]})
b6 T Card(X;)

With: X; = {References referenced in the ith slice}
Note that mie is defined by: 3Ii,ri6 # 0, and

,N16
. 16 _
Vi1 641 = 0.

4.1.5 Discussion

The metrics proposed above are very difficult to in-
terpret directly, but they discriminate execution slices
against each other, with respect to temporal and spa-
tial locality of data memory accesses. This charac-
teristic is sufficient to apply a statistical classification
method.

Moreover, it can be noticed that these metrics do
not depend on the slice size: the behavior for a slice,
say, twice as big would be similar to the behavior of
two smaller consecutive slices. For this reason, the
fixed slice size we chose here (see 4.3) does not restrict
its generality.

At last, characterizing locality this way have several
computational advantages: it is possible to gather sev-
eral RDI distributions (different line sizes) for all the
slices of execution in a single simulation pass. Also,
this simulation is far less time consuming than simu-
lating a couple of cache configurations or computing
the real LRU distance (i.e. the number of distinct
references between 2 references at the same (line) ad-
dress) which necessitates stack processing [2, 15].

4.2 Classification Method Used

Non-hierarchical classification methods [11] are
computationally efficient, but they require an a pri-
ori known number of classes and an estimation of
their center location. Instead, hierarchical classifica-
tion methods [10] “form the final classes by hierar-
chically grouping subclusters or splitting parent clus-
ters.” For an aggregative (i.e. grouping) method, a
hierarchical classification method derives all classifi-
cation levels from a set of clusters corresponding to
the set of points (each point is a cluster), to a unique
cluster grouping all the points. The classical represen-
tation for a hierarchical classification result is a tree
(or dendogram), where each level indicates the merg-
ing (or splitting) of two subclusters (see Fig. 2).
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Figure 2: A classification tree.

Once a hierarchical classification method is applied



to a data set, each level in the tree gives a number of
classes. Since only one slice (the representative point)
will be simulated per class, the amount of simulated
data depends on the level chosen in the tree.

We chose to use a hierarchical classification method
because it makes it possible to examine all the classi-
fication levels before one is chosen. Furthermore, our
wmdc indicator can be examined for all the levels in
the tree.

For this study, we have used a tool called CHAVL
which implements the Likelihood Linkage Analysis
(LLA) hierarchical classification method [19, 20]. We
chose this classification tool because it has proven to
be efficient: only a few minutes were necessary to get
the classification of a data set containing up to 8000
points with 61 variables. Note that other hierarchical
classification tools may be suitable for this study but
they may be more time and memory consuming.

4.3 Experimental Setup

We used the calvin2 + DICE toolset [17] to run the
RDI metrics and enable on-the-fly cache simulations.
The calvin2+DICE toolset consists in:

e an assembly code annotator (calvin2) which
provides target programs with an efficient fast-
forwarding mode,

e and DICE, an embedded emulator which makes
it possible to run on-the-fly simulations.

At run time, target programs can switch from direct
execution (fast mode) to the emulation mode managed
by DICE.

To simulate various level-1 data cache config-
urations (detailed in Table 1), we connected the
Dynero IV on-the-fly cache simulator 3 to DICE in the
target programs.

Varying size (from 4KB to 512KB)

4-way set associative, 32-byte line size, LRU,
write back, write allocate.

Varying line size (from 16B to 128B)

4-way set associative, 32 KB, LRU, write back,
write allocate.

Table 1: Level-1 data cache configurations simulated.

We tested and validated our approach on the
SPEC95 benchmark suite®. FEach program was
5See http://www.cs.wisc.edu/~markhill/DineroIV/

SInstructions caches were not tested because SPEC95 bench-
marks generate too few instruction cache misses [4].

RE(%) = 100x |1 —

compiled with gcc (version egcs-2.90.29), with
the -03 optimization option, and run on a
143 MHz UltraSPARC-I workstation running Linux
(UltraPenguin-1.1.9 distribution, kernel 2.2.10).

For this study, the slice size was not important be-
cause we only focussed on the choice of the slices and
their representativity among all the consecutive exe-
cuted slices. For this reason, we chose an arbitrary
slice size: one million instructions.

4.4 Experimental Results

For each program execution slice, we collected RDI
for line sizes of 16, 64, 256, and 4096 bytes. Experi-
ments showed that this set of line sizes was sufficient to
characterize the locality of the data reference stream
with respect to the range of data cache configurations
we simulated.

Besides, we simulated each SPEC95 benchmark
with several level-1 data cache configurations (vary-
ing sizes and line sizes) and collected results for every
execution slice from the beginning to the end. The
purpose of our experiment was not to define a set of
representative execution slices that would be used for
several years (during the lifetime of a microprocessor
design project) since this would have required using
many workstations during a month or so. Instead,
our experiment only demonstrates the validity of our
approach with affordable CPU time. For this reason,
on a few applications, we reduced the train input data
sets to limit the number of executed instructions to a
few billions; the other programs were run with their
train input data set. With these data sets, the num-
ber of executed instructions vary from 275 millions to
8 billions, depending on the program. Note that this
does not restrict the generality of our results since we
evaluated the representativeness of the selected slices
among all other slices executed, and since most of the
data cache configurations we simulated exhibited non-
negligible miss rates.

At last, in order to validate our slice selection ap-
proach, for each simulated cache configuration, we
compared the weighted mean cache miss rate com-
puted over the selected slices” with the overall mean
cache miss rate. To represent this comparison, we
computed the relative error:

weighted mean miss rate (selected slices)

overall mean miss rate

Once, for a given target program, the classification
tree has been obtained, there is still a tradeoff to con-
sider to cut the tree. Globally and intuitively, better

"The weights are those presented in Section 3.



accuracy in the simulation results is obtained when
the tree is cut at a level where many classes appear
because many slices are simulated. In other words, the
rate of simulated instructions over the entire executed
instructions (we call it the simulation rate) is high.
On the other hand, if the classification tree is cut near
its root, a few classes appear, so only a few execution
slices are selected and simulated. In this latter case,
simulation take less time, but results are expected to
be more erroneous.

For the SPEC95 programs, we examined several
levels in the classification tree and examined the value
of the wmdc indicator in conjunction with the simula-
tion rate. The slice selection gave accurate results (i.e.
relative error smaller than 10 % for absolute cache miss
rates higher than 1%) when the wmdc indicator was
less than 2 and the simulation rate was more than
0.5%. For all the programs but gcc, obtaining this
value of the wmdc necessitated to cut the classification
tree at level which gave a few classes as summarized
in Table 2 (the average relative error is for cache miss
rates of more than 1% among all the cache configura-
tions simulted) 8.

wmde Sim. rate Avg. RE
(%) (%)

compress9H 1.84 1.01 3.56
gce 1.99 32.41 1.26
go 1.95 0.56 1.56
ijpeg 1.97 6.37 0.20
li 0.98 0.56 1.51
m88ksim 0.72 0.40 2.92
vortex 1.02 0.53 2.63
applu 1.59 2.03 1.34
apsi 1.54 0.51 0.26
fpppp 0.88 0.70 1.16
hydro2d 1.99 3.37 0.17
mgrid 1.54 0.51 2.59
su2cor 1.98 1.51 1.28
swim 1.91 3.66 0.99
tomcatv 1.30 0.51 0.05
turb3d 1.77 0.80 3.82
waveb 1.99 1.33 0.56
Avg. 1.59 3.34 1.52
Avg. (gcc excl.) 1.56 1.52 1.54

Table 2: SPEC95 slice selection: wmdc indicator val-
ues and average relative errors for trained cache sim-
ulations.

Gecce appears to have a characterization difficult to

8We did not processed the program perl because its cache
miss rates appeared to be too low (< 1%) for all the cache
configurations but one.

classify. Hopefully, our indicator allows us to be aware
of this feature. So, we cannot expect to extract a few,
very representative slices: we know before running the
cache simulations that a simulation rate of less than
32.42 % may lead to erroneous results. However, with
a simulation rate of 7.77% (wmdc = 2.63), the maxi-
mum relative error for the cache simulation (for cache
miss rates less than 1 %) was 5.74 % which is still ac-
ceptable despite the relative high value of the wmdc.
Thus, a high value of the wmdc only indicates that we
should not be too confident in the representativeness
of the simulation results because the average distance
of the points from their representant is high.

4.4.1 Comparison with Other Techniques

We compare our method, with a method consisting in
choosing one big execution slice after the initialization
stage, and the systematic statistical sampling method.

In order to determine the representativeness only
of the simulated slices, results for the three methods
correspond to cache simulations on the selected slices
with trained caches: we used cache simulations on the
complete run of the programs, and results were gath-
ered each million simulated instructions.

For the “big slice” method, the resulting cache miss
rates are averages upon consecutive 1-million slices
representing 10 % of the applications. In order to skip
the initialization phase, the slice started in the middle
of the execution.

To implement the systematic statistical sampling
approach, simulations are run over 1-million instruc-
tion samples. The interval between samples is a multi-
ple of 1-million instructions semi-randomly generated
to avoid periodic behavior as in [9)].

Simulation results with trained caches are displayed
in Table 3 (all the numbers are averages for cache miss
rates of more than 1%).

We can notice that both techniques, and particu-
larly the “big slice” one, exhibit high variations be-
tween programs. For m&8ksim, the semi-randomly
generated sample set has been exceptionally bad for
the 10 % sampling ratio. Note that other sample sets
may give better results.

Another results shown by Table 3 is that “big
slices” cannot be considered to be representative of
overall program behaviors, since the relative errors
may or may not be less than 10 % (and globally, they
are not).

Comparing Table 3 and Table 2 underlines that our
approach with very low simulation rates (except for
gcc) is globally better than the statistical trace sam-



Trac.e “Big slice”
sampling
5% 10% 10%

compress95 1.59 2.97 9.80
gee 14.25 2.34 10.79
go 0.37 0.54 5.65
ijpeg 12.99 5.06 14.70
li 0.48 0.18 6.11
m88ksim 16.73 | 130.76 16.73
vortex 12.05 16.17 2.06
applu 3.22 3.20 1.39
apsi 0.76 0.67 1.32
fpppp 1.18 2.03 0.13
hydro2d 0.48 0.37 2.60
mgrid 2.54 0.35 0.67
su2cor 2.13 0.65 56.98
swim 5.36 4.59 24.49
tomcatv 0.52 0.21 5.26
turb3d 25.47 2.74 66.22
waveb 2.78 1.60 34.47
Avg. 6.05 10.26 15.26
Ave. (m88ksim | o4 | 573 15.16
excl.)

Table 3: Trace sampling and “big slice” technique on
the SPEC95: average relative errors for trained cache
simulations.

pling technique with a sampling ratio of 10 %. This
means that 1) the metrics we chose are well suited to
cache simulations, and 2) our approach is really able
to extract a few representative execution slices for sim-
ulations.

5 Summary and Conclusion

In this paper, we have presented an efficient ap-
proach to select representative slices of program exe-
cution for microarchitecture simulations. To this end,
we first characterize the target program behavior us-
ing metrics chosen independent from the further sim-
ulated microarchitecture implementation. The gath-
ered program characterization consists of measures for
each consecutive fixed size slice of program execution.
From this program characterization, we derive a mul-
tivariate statistical representation of the program ex-
ecution (each individual being an execution slice) and
then apply a classification method on it. The classi-
fication groups sets of “close” execution slices. Then,
in each group, the slice nearest to the virtual center is
selected (we assume it to be the most representative
slice in its group) and weighted by the representative-
ness of the group (i.e. the number of slices in the group
over the total number of slices).

We have applied this method to data memory ac-
cesses, and we have compared it with the commonly
used technique consisting in choosing one big exe-
cution slice and the trace sampling approach. For
trained cache simulations on the SPEC95 benchmarks,
our method exhibited better results in terms of slice
representativity. Also, to obtain results equivalent to
the trace sampling method, far less program activity
has to be simulated (in most cases less than 1% is
sufficient instead of 10 % for trace sampling).

In this study, we have deliberately focussed on the
representativity of the selected slices and therefore re-
ported simulation results for trained caches. However,
for real cache simulations, the problem of cold start
misses at the beginning of the selected slices is the
same as in the trace sampling case, at the beginning of
the samples. For this reason, methods applied to the
trace sampling approach to reduce this “non-sampling
bias” [5] (such as the use of bigger slices, warm-up pe-
riods, trace stitching... [1, 6, 7, 28]) may also apply to
our approach.

Slices selected by our method may be far from
the beginning of the program. This necessitates
to skip a lot of instructions before the simulation
starts as enabled by the direct execution mode of the
calvin2 + DICE toolset [17].

The ultimate use of the method presented in this
paper is for complete microprocessor simulations. To
this aim, we plan to add several metrics to also char-
acterize the instruction stream (e.g. instruction mix,
control transfer instruction characterization), the data
dependencies (e.g. distribution of data dependency
distances), etc. In the end, a classification will be
applied to all the program slices, each of them being
characterized by all the metrics.
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