Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms

Abstract : One of the most popular feature extraction algorithms for Brain-Computer Interfaces (BCI) is the Common Spatial Patterns (CSP) algorithm. Despite its known efficiency and widespread use, CSP is also known to be very sensitive to noise and prone to overfitting. To address this issue, some groups have recently proposed to regularize CSP. In this paper, we present a simple and unifying theoretical framework to perform such a CSP regularization. We then present a mini-review of existing Regularized CSP (RCSP) algorithms, and describe how to cast them in this framework. We also propose 4 new RCSP algorithms. Finally, we compare the performances of 11 different RCSP algorithms (including these 4 new ones and the original CSP), on EEG data from 17 subjects, from BCI competition data sets. Results showed that the best RCSP methods can outperform CSP by nearly 10% in median classification accuracy and lead to more neurophysiologically relevant spatial filters. They also enable us to perform efficient subject-to-subject transfer. Overall, the best RCSP algorithms on these data were the CSP with Tikhonov Regularization and Weighted Tikhonov Regularization, both newly proposed in this paper.
Type de document :
Article dans une revue
IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, 2011, 58 (2), pp.355-362
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00476820
Contributeur : Fabien Lotte <>
Soumis le : vendredi 24 septembre 2010 - 10:37:20
Dernière modification le : lundi 21 février 2011 - 09:50:09
Document(s) archivé(s) le : samedi 25 décembre 2010 - 02:26:13

Fichier

tbme10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00476820, version 4

Citation

Fabien Lotte, Cuntai Guan. Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms. IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, 2011, 58 (2), pp.355-362. 〈inria-00476820v4〉

Partager

Métriques

Consultations de la notice

380

Téléchargements de fichiers

5201