G. Pfurtscheller and C. Neuper, Motor imagery and direct brain-computer communication, Proceedings of the IEEE, vol.89, issue.7, pp.1123-1134, 2001.
DOI : 10.1109/5.939829

F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, A review of classification algorithms for EEG-based brain???computer interfaces, Journal of Neural Engineering, vol.4, issue.2, pp.1-13, 2007.
DOI : 10.1088/1741-2560/4/2/R01

URL : https://hal.archives-ouvertes.fr/inria-00134950

H. Ramoser, J. Muller-gerking, and G. Pfurtscheller, Optimal spatial filtering of single trial EEG during imagined hand movement, IEEE Transactions on Rehabilitation Engineering, vol.8, issue.4, pp.441-446, 2000.
DOI : 10.1109/86.895946

B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. Müller, Optimizing Spatial filters for Robust EEG Single-Trial Analysis, IEEE Signal Processing Magazine, vol.25, issue.1, pp.41-56, 2008.
DOI : 10.1109/MSP.2008.4408441

B. Blankertz, K. R. Müller, G. Curio, T. M. Vaughan, G. Schalk et al., The BCI Competition 2003: Progress and Perspectives in Detection and Discrimination of EEG Single Trials, IEEE Transactions on Biomedical Engineering, vol.51, issue.6, pp.1044-1051, 2004.
DOI : 10.1109/TBME.2004.826692

B. Blankertz, K. R. Müller, D. J. Krusienski, G. Schalk, J. R. Wolpaw et al., The BCI Competition III: Validating Alternative Approaches to Actual BCI Problems, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.14, issue.2, pp.153-159, 2006.
DOI : 10.1109/TNSRE.2006.875642

B. Reuderink and M. Poel, Robustness of the common spatial patterns algorithm in the BCI-pipeline, Tech. Rep, 2008.

M. Grosse-wentrup, C. Liefhold, K. Gramann, and M. Buss, Beamforming in Noninvasive Brain–Computer Interfaces, IEEE Transactions on Biomedical Engineering, vol.56, issue.4, pp.1209-1219, 2009.
DOI : 10.1109/TBME.2008.2009768

B. Blankertz, M. Kawanabe, R. Tomioka, F. Hohlefeld, V. Nikulin et al., Invariant common spatial patterns: Alleviating nonstationarities in brain-computer interfacing, 2008.

H. Lu, K. Plataniotis, and A. Venetsanopoulos, Regularized common spatial patterns with generic learning for EEG signal classification, EMBC, pp.6599-6602, 2009.

H. Kang, Y. Nam, and S. Choi, Composite Common Spatial Pattern for Subject-to-Subject Transfer, IEEE Signal Processing Letters, vol.16, issue.8, pp.683-686, 2009.
DOI : 10.1109/LSP.2009.2022557

F. Lotte and C. Guan, Spatially Regularized Common Spatial Patterns for EEG Classification, 2010 20th International Conference on Pattern Recognition, pp.3712-3715, 2010.
DOI : 10.1109/ICPR.2010.904

URL : https://hal.archives-ouvertes.fr/inria-00447435

J. Farquhar, N. Hill, T. Lal, and B. Schölkopf, Regularised CSP for sensor selection in BCI, 3rd international BCI workshop, 2006.

X. Yong, R. Ward, and G. Birch, Sparse spatial filter optimization for EEG channel reduction in brain-computer interface, ICASSP, pp.417-420, 2008.

O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, vol.88, issue.2, pp.365-411, 2004.
DOI : 10.1016/S0047-259X(03)00096-4

C. Vidaurre, N. Krämer, B. Blankertz, and A. Schlögl, Time Domain Parameters as a feature for EEG-based Brain???Computer Interfaces, Neural Networks, vol.22, issue.9, pp.1313-1319, 2009.
DOI : 10.1016/j.neunet.2009.07.020

P. Pudil, F. J. Ferri, and J. Kittler, Floating search methods for feature selection with non monotonic criterion functions, Patt Recog, vol.2, pp.279-283, 1994.

A. Tikhonov, Regularization of incorrectly posed problems, Soviet Math, vol.4, pp.1624-1627, 1963.

Z. Xiang, Y. Xi, U. Hasson, and P. Ramadge, Boosting with spatial regularization, NIPS, 2009.

D. Cai, X. He, Y. Hu, J. Han, and T. Huang, Learning a Spatially Smooth Subspace for Face Recognition, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383054

G. Dornhege, B. Blankertz, G. Curio, and K. Müller, Boosting Bit Rates in Noninvasive EEG Single-Trial Classifications by Feature Combination and Multiclass Paradigms, IEEE Transactions on Biomedical Engineering, vol.51, issue.6, pp.993-1002, 2004.
DOI : 10.1109/TBME.2004.827088

A. Schlögl, F. Lee, H. Bischof, and G. Pfurtscheller, Characterization of four-class motor imagery EEG data for the BCI-competition, J Neural Eng, pp.14-22, 2005.

M. Naeem, C. Brunner, R. Leeb, B. Graimann, and G. Pfurtscheller, Seperability of four-class motor imagery data using independent components analysis, Journal of Neural Engineering, vol.3, issue.3, pp.208-216, 2006.
DOI : 10.1088/1741-2560/3/3/003

P. Sprent and N. Smeeton, Applied nonparametric statistical methods, 2001.

G. Cardillo, Myfriedman: Friedman test for non parametric repeated measure analysis of variance. [Online] Available: http: //www.mathworks.com/matlabcentral/fileexchange/25882 [27] V. Vapnik, The Nature of Statistical Learning Theory, 2000.

S. Fazli, F. Popescu, M. Danóczy, B. Blankertz, K. Müller et al., Subject-independent mental state classification in single trials, Neural Networks, vol.22, issue.9, pp.1305-1312, 2009.
DOI : 10.1016/j.neunet.2009.06.003

F. Lotte and C. Guan, An efficient P300-based brain-computer interface with minimal calibration time, AMD-NIPS, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00430563

M. Grosse-wentrup and M. Buss, Multi-class common spatial pattern and information theoretic feature extraction, IEEE Trans on Biomed Eng, vol.55, issue.8, 1991.
DOI : 10.1109/tbme.2008.921154

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.2915

M. Alamgir, M. Grosse-wentrup, and Y. Altun, Multitask learning for brain-computer interfaces, AISTATS, pp.17-24, 2010.

R. Tomioka and K. Müller, A regularized discriminative framework for EEG analysis with application to brain???computer interface, NeuroImage, vol.49, issue.1, pp.415-432, 2010.
DOI : 10.1016/j.neuroimage.2009.07.045