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Abstract: Survival of mammalian cells is achieved by tight control of cell vol-
ume while transmembrane potential is known to control many cellular functions
since the seminal work of Hodgkin and Huxley. Regulation of cell volume and
transmembrane potential have a wide range of implications in physiology, from
neurological and cardiac disorders to cancer and muscle fatigue. Therefore un-
derstanding the relationship between transmembrane potential, ion fluxes, and
cell volume regulation has become of great interest. In this paper we derive a
system of differential equations that links transmembrane potential, ionic con-
centrations, and cell volume. This model demonstrates that volume stabilization
occurs within minutes of changes in extracellular osmotic pressure. We infer a
straightforward relationship between transmembrane potential and cell volume.
Our model is a generalization of previous models in which either cell volume was
constant or osmotic regulation instantaneous. When the extracellular osmotic
pressure is constant, the cell volume varies as a function of transmembrane po-
tential and ions fluxes thus providing an implicit link between transmembrane
potential and cell growth. Numerical simulations of the model provide results
that are consistent with experimental data in terms of time-related changes in
cell volume and dynamics of the phenomena.
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4 C. Poignard, A. Silve et al.

1 Introduction

Cell volume and resting transmembrane potential constitute two fundamental
parameters of cell life. A cell contains inside its cytoplasm substances such
as DNA, amino acids, ions like K+ or Na+ and sugar, which are essential to
its survival. This synthetic process favors swelling of the cell [17], since the
membrane permeability is very low. Without volume changes, the pressure cre-
ated by the osmolarity difference between the outer medium and the cytoplasm
could reach an atmosphere [1, 7], which is much larger than the maximal pres-
sure that the cell membrane can withstand. Whereas plasmalemma of bacteria
are protected by a thick peptidoglycan layer that can support such pressures,
Eukaryotic cells have no wall and therefore must adjust their osmolarity by
transferring ions and water accross their membrane. Over many years, it be-
came clear that the osmotic stabilization of living Eukaryotic cells was related
to the active transport of Na+ out of and K+ into the cell [9, 16, 11, 12]. These
ion fluxes create a potential difference across the membrane that changes the
value of the transmembrane potential. Therefore the cell volume regulation and
the transmembrane potential are intrinsically correlated.

Based on the extensive review of Fraser and Huang [7, 8], all theoretical
models (to our knowledge) describing the behavior of the transmembrane po-
tential, of the ionic fluxes, and of the cell volume consider that the water flux
across the membrane is instantaneous. Therefore an osmotic equilibrium of the
cell is constantly required [1, 5, 7]. However, such a requirement does not ex-
plain the delay in the experiments reported by Rouzaire-Dubois et al. [21, 4, 22]
in the osmotic stabilization of the cell, when a high osmotic stress is imposed.
Actually, when the ionic fluxes across the membrane are small, the osmotic
equilibrium can be considered constant as supposed by Fraser and Huang [7, 8]
or Armstrong [1] for instance. However should the cell be subjected to a large
osmotic stress, then water flux across the membrane must be accounted for.

In this paper we aim to clarify the relationship between cell volume, trans-
membrane potential and ion fluxes. More precisely, we aim at providing a new
electrophysiological model of the cell in order to dynamically link the cell vol-
ume, the ionic concentrations, and the transmembrane potential by considering
the water flux accross the membrane. Our model is a generalization of the
previous models in the sense that it describes the models of Jakobsson [14],
Armstrong [1], Fraser and Huang [7] or Endresen et al. [5] under their respec-
tive restrictive hypotheses. Our goal is also to propose an explanation for the
results presented by Rouzaire-Dubois et al.[21, 4, 22].

In order to derive our model, we consider in vitro cell cultures and more
precisely spherical cells in suspension. The extracellular ionic concentrations
are supposed constant and the cell volume regulation occurs homothetically
(i.e. equivalently in all directions). These assumptions are justified for in vitro
experiments since the volume of the ambient medium is much larger than the
cell volume and since no mechanical stress is imposed to the cell. Experimen-
tally, the osmotic equilibrium is not enforced instantaneously contrary to the
assumptions of the models of Jakobsson [14], Armstrong [1], Fraser and Huang
[7], and Endresen et al. [5]. The main feature of the present model is the time-
dependent variability of the cell volume vi since water molecules slowly diffuse
across the cell membrane. Our model leads to an implicit dynamic link (the
time derivative of the cell volume is a function of the transmembrane potential)

INRIA



Electrophysiological dynamic model for Eukaryotic cells 5

between the cell volume, the transmembrane voltage potential, and the ionic
concentrations. In the case of spherical cell, we explicit this link and perform
numerical simulations.

Such a dynamic relationship between the cell volume and the transmembrane
potential has not yet, to the best of our knowledge, been investigated. Three
main results are presented in this paper: the new cell model (which takes the
water diffusion into account), the explicit link between the cell volume and the
transmembrane potential, and the explicit expression of the potential in terms
of ionic concentrations.

For the sake of simplicity, we omit the contribution of active channels such
as Na+/K+ pumps and voltage-dependent ionic channels. These more accurate
descriptions of the ionic fluxes can be added to our model with a very slight
modification and without affecting the modelling principle. Our model can al-
ready provide some insight in specific mechanisms such as regulation of muscle
fatigue. Osmotically induced cell swelling has been observed during muscle con-
traction [23], while muscle fatigue is associated with membrane depolarization
[15, 2]. Our model represents an integration of these results.

In section 2, we derive the ordinary differential equations that describe the
transmembrane potential in terms of ionic concentrations and cell volume. Sec-
tion 3 is devoted to the numerical simulations of the equations. In Section 4,
experiments that corroborate the numerical results are presented and we con-
cluded by discussion.

2 The transmembrane potential

According to its phospholipid composition, the cell membrane is a resistive
medium with a capacitance Cm in F.m−2. We denote by Sions the group of ionic
species. For our numerical simulations, Sions is {Na+, Cl−, K+, X−}, where
X− denotes the whole of the other ions that are considered non-permeant. This
set is globally negatively charged on account of the excess Na+ and K+ inside
the cell, and the mean charge valency of X− equals −1.6 according to Fraser
and Huang [7] and the references therein.

The membrane is sprinkled over with ionic channels, across which ionic ex-
changes occur. The valency of the ions S is denoted by zS , and the constant
PS denotes the membrane permeability to the species S. In the following, R
and F denote respectively the gas constant and the Faraday constant, and the
temperature is denoted by T . Glossary of Table 1 summarizes the notations
used in the paper.

2.1 Ion flux through channels

According to the literature [1, 3, 5, 13], the ionic fluxes depend on the trans-
membrane potential Vm. We use the convention Vm = Vi−Vo, where the indices
i and o hold respectively for inner and outer part of the membrane. The ion flux
equation previously described in 1943 by Goldman [9], and modified in 1949 by
Hodgkin and Katz [11], is based on a Gas-Law model. It is precisely described
in the book of Malmivuo and Plonsey [19], and in the article of Endresen et al.
[5] (see also Armstrong [1]). According to these models, the current IS of the

RR n° 7269



6 C. Poignard, A. Silve et al.

Table 1: Glossary
R gas constant
F Faraday constant
T temperature
c equal to F/(2RT )

vi cell volume
A (Γ) membrane area
Cm cell capacitance
Vm transmembrane potential
τw membrane penetrability to water
Θw equal to RTτw

Sions group of all the considered ionic species
S specific ionic species belonging to the group Sions

[S]e extracellular concentration of ions S
[S]i cell concentration of ions S
ni

S
amount of substance of ions S in the cell

PS membrane permeability to ions S
zS valency of S
IS current due to the fluxes of ions S
gS conductance for ions S
VS Nernst equilibrium potential of the ions S

Σe total sum of outer concentrations
Σi total sum of inner concentrations

INRIA
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permeant ion S equals:

IS =
1

2
zSPSF

(

[S]ie
zScVm − [S]ee

−zScVm

)

,

where c = F/(2RT ). The Nernst equilibrium potential VS of the species S is
the potential such that IS vanishes:

VS =
1

2czS

log

(

[S]e
[S]i

)

, (1)

Let gS be the membrane conductance for the species S defined by

gS = PSz2
ScF

√

[S]e[S]i, (2)

we therefore infer

IS = gS

sinh(zSc(Vm − VS))

zSc
. (3)

When zSc(Vm − VS) is small compared to 1, equation (3) leads to the linear
equation

IS = gS(Vm − VS). (4)

2.2 Evolution of the ionic concentrations

The global amount of ions driven by the total current of ions S ∈ Sions across
the membrane Γ equals

dni

S

dt
= −

A (Γ)

zSF
IS , (5)

where A (Γ) denotes the membrane surface area.

2.3 Osmolarity

We denote by Σe and Σi the respective sums of the outer and inner concentra-
tions

Σe =
∑

S∈Sions

[S]e, Σi =
∑

S∈Sions

ni

S/vi.

Since the water is incompressible, we suppose that the change of the cell volume
is described by the rate of flow of water across the membrane. Let τw be the
water membrane penetrability1 in s.m−1 in S.I. units. We denote by Θw the
following coefficient

Θw = RTτw.

According to the Landahl model [16] we infer

dvi

dt
= −ΘwA (Γ)(Σe − Σi), (6)

1The parameter τw is a penetrability hence it is homogeneous to the inverse of a velocity.
We refer to Landalh [16] for more precision.

RR n° 7269



8 C. Poignard, A. Silve et al.

Recently, Hernández and Cristina [10], or Mathai et al. [20] replaced Θw by the
product of the membrane permeability Pw by the partial molar volume of water
Vw. Therefore the coefficients τw and Pw are linked by the following equality:

τw =
PwVw

RT
.

Remark 2.1. In many models [1, 5, 7, 19], the plasma membrane cannot sup-
port a pressure difference. Therefore osmotic equilibrium is required at any time

Σe = Σi, which leads to vi =
1

Σe

∑

S∈Sions

nS

i .

This equality enforces the volume to change instantaneously when the osmotic
equilibrium is modified. However, the cell volume is adjusted by the diffusion
of water molecules across the membrane. This phenomenon takes time and is
described by the model of Landahl [16], which is based on Fick’s law type model
to describe the diffusion of water molecules through the membrane.

Remark 2.2. Note that Mathai et al. [20] write the volume change (6) in a
different way. Let Rvol be the ratio of the volume vi at the time t divided by the
initial volume v

0
i
, and denote by Σ0

i
the sum of the initial inner concentrations.

Mathai et al. suppose that cell membrane is perfectly non permeant. Since no
exchange occurs inner and outer amounts of substance of the ionic species are
constant. Therefore

Σi = Π0
i /Rvol,

and we infer the Mathai et al. equation:

dRvol

dt
= −Θw

A (Γ)

v0
i

(

Σe −
Π0

i

Rvol

)

. (7)

However, we emphasize that we cannot consider the inner amounts of substance
constant since the ionic fluxes drive ions across the membrane. Therefore equa-
tion (6) must be used. Observe that equation (6) leads to (7) by considering that
no ionic flux across the membrane occurs.

2.4 Equations for the transmembrane potential

Our model links the transmembrane potential, the cell volume, and the ionic
concentrations inside and outside the cell. The unknown quantities are the
transmembrane potential Vm, the cell volume vi, and the amount in the cell of
substances ni

S
of the ions S ∈ Sions. We obtain a system of ordinary differential

equations. This system is very similar to the models of Endresen et al. [5] and
Armstrong [1]. The main difference consists in the fact that the cell volume
evolution is governed by an ordinary differential equation while Endresen et
al. and Armstrong et al. required osmotic equilibrium at any time. Using the

INRIA



Electrophysiological dynamic model for Eukaryotic cells 9

Kirchoff law and the above equalities we infer

Cm

dVm

dt
+

∑

S∈Sions

IS = 0, (8a)

IS = gS

sinh(zSc(Vm − VS))

zSc
, for S ∈ Sions, (8b)

dni

S

dt
= −

A (Γ)

zSF
IS , (8c)

dvi

dt
= −ΘwA (Γ)(Σe − Σi), (8d)

where






[S]i = ni

S
/vi, VS =

1

2zSc
log ([S]e/[S]i) , gS = z2

SPScF
√

[S]eni

S
/vi,

Σe =
∑

S∈Sions
[S]e, Σi =

∑

S∈Sions
[S]i.

(8e)

For the linearized model we replace (8b) by

IS = gS(Vm − VS). (9)

The novelty of the model consists in equation (8d), which describes the evolution
of the cell volume. To solve problem (8), initial conditions are chosen for Vm,
vi, and concentrations ni

S
.

2.5 Explicit link between the cell radius and the potential

Problem (8) provides an implicit link between the cell volume and the trans-
membrane potential through the ionic concentrations and the ionic fluxes. The
aim of the paragraph is to write explicitly this link. Equation (8d) can be
rewritten as follows

1

Θw

vi

A (Γ)

dvi

dt
= −Σevi +

∑

S∈S

ni

S .

Differenciating the above equality and using equation (8c) leads to

1

Θw

d

dt

(

vi

A (Γ)

dvi

dt

)

= −Σe

dvi

dt
−

A (Γ)

F

∑

S∈S

1

zS

IS .

Considering the linearized model for the ionic fluxes we therefore infer the ex-
plicit link between the shape of the cell and the transmembrane potential:

1

Θw

d

dt

(

vi

A (Γ)

dvi

dt

)

= −Σe

dvi

dt
−

A (Γ)

F

∑

S∈S

gS

zS

(Vm − VS). (10)

Observe that the above equation involves both cell volume and membrane area.
To uniquely determine the shape of the cell it is necessary to add a law on the
membrane surface. However, in the experiments, the cells in suspension are
almost spherical and therefore the geometry is entirely determined by the cell
radius. The next paragraph is devoted to give the explicit link between the
transmembrane potential and the cell radius.

RR n° 7269



10 C. Poignard, A. Silve et al.

2.5.a The case of spherical cells

Let us now consider spherical cells. Equation (8d) leads to the following equation
on the cell radius r:

1

Θw

dr

dt
= −

(

Σe −
∑

S∈S

ni

S

4πr3/3

)

.

Using equation (8c) with the linearized model of the ionic fluxes, and by differ-
enciation we obtain a non-linear differential equation on r:

1

Θw

1

3r2

d

dt

(

r3 dr

dt

)

= −Σe

dr

dt
−

∑

S∈Sions

gS

zSF
(Vm − VS). (11a)

The initial conditions are then :

r|t=0 = r0,
dr

dt

∣

∣

∣

∣

t=0

= −Θw(Σe − Σ0
i ). (11b)

Denote by V rest
m the resting transmembrane potential defined such that:

∑

S∈Sions

gS

zS

(V rest

m − VS) = 0.

If the cell is initially in osmotic equilibrium and if Vm equals V rest
m then equa-

tion (11) shows that r remains at its initial value. However, a slight change in
the value of Vm leads to an increase (or a decrease) of the cell radius.

2.6 Explicit formula for the transmembrane potential.

It is interesting to obtain an explicit expression of the transmembrane potential
in terms of the ionic concentrations. This can be achieved by assuming that the
cell shape does not change. Actually if the cell volume vi and the membrane
area A (Γ) are constant –i.e. the osmotic equilibrium is reached– then using
equality (8c), the equation (8a) writes

Cm

dVm

dt
=

vi

A (Γ)
F
∑

S∈S

zS

d[S]i
dt

.

Denoting by V 0
m and [S]0

i
, the initial potential and inner concentrations re-

spectively, we infer the explicit formula for the potential in terms of the inner
concentrations at each time t:

(

Vm − V 0
m

)

=
vi

A (Γ)

F

Cm

∑

S∈S

zS([S]i − [S]0i ). (12)

Define the initial potential by

V 0
m =

vi

A (Γ)

F

Cm

∑

S∈S

zS [S]0i . (13)

INRIA



Electrophysiological dynamic model for Eukaryotic cells 11

Then, the following formula, that is similar to the “Charge Difference” equation
of Fraser and Huang holds

Vm =
vi

A (Γ)

F

Cm

∑

S∈S

zS [S]i.

Observe that the factor vi/A (Γ) ensures the dimensional consistency of the
previous equality. It is striking that equation (12) involves only the inner con-
centrations, while the concentrations of the exterior solution is expected to have
an influence on the potential. This is hidden behind the hypothesis that the
outer concentrations are constant, and by supposing that this equality (13) holds
at the initial time. Actually, if the outer concentrations change, using the mass
conservation law, we would have:

dne

S

dt
= −

dni

S

dt
.

Therefore the expression (12) of the potential would be:

(

Vm − V 0
m

)

=
F

2Cm

vi

A (Γ)

∑

S∈S

zS

(

([S]i − [S]e) − ([S]0i − [S]0e)
)

, (14)

and then supposing that

V 0
m =

F

2Cm

vi

A (Γ)

∑

S∈S

zS([S]0i − [S]0e),

we would have

Vm =
F

2Cm

vi

A (Γ)

∑

S∈S

zS([S]i − [S]e).

This formula is exactly the Endresen et al. formula (63) of [5]: just replace the
factor CmA (Γ) by the factor C of [5]. Observe that Endresen et al. consider C
in the Farad unit (see Table 2 of [5]), while here Cm is a capacitance in F.m−2.
Therefore C and CmA (Γ) are homogeneous. Equation (14) is a generalization
of the result of Endresen et al.

3 Numerical simulations

We perform numerical simulations of the linearized problem for the case of spher-
ical cells. For all simulations, the initial radius equals 10µm. The numerical
parameters are given in Table 2.

Observe that the constant 1/Cm is quite large since Cm ∼ 5.10−2 S.I. There-
fore a steady-state is reached faster by the transmembrane potential than by
the cell radius and the ionic concentrations. To solve the ordinary differential
equations of the model we use the 4th order Runge-Kutta scheme. This scheme
has the advantage of being explicit (thus simple to implement) and at the same
time quite stable compared with the usual Euler explicit scheme.

RR n° 7269



12 C. Poignard, A. Silve et al.

Table 2: Numerical parameters
R (gas constant) 8.3 J.K−1.mol−1

F (Faraday constant) 310 C.mol−1

T (temperature) 310 K

r0 (initial cell radius) 5.10−5 m
Cm (cell capacitance) 7.10−2F.m2

PK (K+ permeability) 4.10−10m.s−1

PNa (Na+ permeability) 0.04PK

PCl (Cl− permeability) 3PK

PX (permeability of non-permeant ions) 0

zK (K+ valency) 1
zNa (Na+ valency) 1
zCl (Cl− valency) -1

zi

X
(valency of non-permeant ions inside the cell) -1.04

ze

X
(valency of non-permeant ions outside the cell) -1.06

3.1 Effect of an osmotic stress on the transmembrane po-

tential and the cell volume.

The value of τw is fixed at 10−12 s.m−1 as given by Landahl [16], which cor-
responds to a water permeability Pw of 10−5 m.s−1 (see Mathai et al. [20]).
According to Lodish et al. [18], the inner and outer ionic concentrations for the
mammalian cell in osmotic equilibrium are

[Na]i = 12 mM, [K]i = 139 mM, [Cl]i = 4 mM, [X]i = 141 mM, (15a)

[Na]e = 145 mM, [K]e = 4 mM, [Cl]e = 116 mM, [X]e = 31 mM, (15b)

and we imposed the values of the ions permeabilities and valencies given by
Fraser and Huang [7] as2

PK = 4.10−10 m.s−1, PNa = 0.04 PK , PCl = 3PK , PX = 0, (15c)

zNa = zK = 1, zCl = −1, zi

X = −1.04, ze

X = −1.06 (15d)

For such concentrations, the resting transmembrane potential for a cell of radius
10 µm equals −88 mV3. We imposed this value as the initial condition for the
transmembrane potential.

The simulations deal with the effect of an osmotic stress both on transmem-
brane potential and cell volume. The osmotic stress is applied at t = 0, and
we let the system evolve. For the hypertonic trial, the outer osmotic pressure
of the solution is set at 456 mM, while for the hypotonic trial, we increase the
inner osmotic pressure to 456 mM. For both cases we investigate three types of

2The valencies zi

X
and ze

X
are the respective mean valencies of the non-permeant ions inside

and outside the cell in order to ensure the electroneutrality of both outer and inner media.
Since the non-permenant ions inside and outside the cell are different, then their respective
mean valencies differ also.

3Observe that −88 mV is the resting membrane potential obtained by Fraser and
Huang (Table 2 page 466 in [7]) for similar concentrations.
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osmotic stresses: first we add non-permeant ions X−, then study the effect of
an increase in NaCl concentrations and then do the same for KCl.

3.1.a Hyperosmotic stress

In order to study an hypertonic stress, we increase the outer osmolarity by 150
mM (from 296 mM to 446 mM). This stress is simulated in three ways: addition
of non-permeant ions X ([X]e = 181 mM), addition of NaCl ([Na]e = 220 mM,
[Cl]e = 191 mM), and addition of KCl ([K]e = 79 mM, [Cl]e = 191 mM), while
the other concentrations remain unchanged. Fig. 1(b) gives the evolution of
the cell volume for the three stresses. We observe the coincidence of the three
curves, meaning that cell volume regulation is independent of the osmotic stress
type.

The stabilization delay and change in volume obtained with the model corre-
spond to experimental results presented by Ferencziet al. (Fig 4.B, pp 429 [6]).
On Fig. 1(a), we observe that the value of the transmembrane potential is highly
dependent on the stress type. The value of the steady potential is around -90
mV when the stress is achieved by adding X ions or NaCl, whereas the potential
changes dramatically and raises up to -50 mV when KCl is added. Stabilization
of the transmembrane potential occurs within few seconds for the three stresses,
while cell volume stabilization is achieved much later, as expected.
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Figure 1: Transmembrane potential (Fig. 1(a)) and cell volume (Fig. 1(b))
responses to a hypertonic stress: Pe = 446 mM, Pi = 296 mM. The water
penetrability equals τw = 10−12 s.m−1.

3.1.b Hypo-osmotic stress

We then study hypotonic stress, increasing the inner osmolarity by 150 mM
(from 296 mM to 446 mM). Here again, the stress is simulated in three ways:
addition of non-permeant ions X ([X]i = 291 mM), addition of NaCl ([Na]i =
87 mM, [Cl]i = 79 mM), and addition of KCl ([K]i = 219 mM, [Cl]i = 74
mM), other concentrations being unchanged. The evolution of the cell volume
for the three stresses is displayed in Fig. 2(b). We observe that the three curves
coincide, which means that the cell volume regulation is independent of the
three types of osmotic stress, similarly to the hypertonic stresses. However,

RR n° 7269



14 C. Poignard, A. Silve et al.

the 3 minutes delay required for the cell volume stabilization is much larger
than for the hypertonic trial. On Fig. 2(a), we observe that the value of the
transmembrane potential is highly dependent on the stress type: it stabilizes
around -30 mV when the stress is produced by addition of X ions or NaCl,
whereas it dramatically lowers down to -90 mV with the addition of KCl. The
transmembrane potential stabilizes within few seconds for the three stresses as
for the hyperosmotic stresses.
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Figure 2: Transmembrane potential (Fig. 2(a)) and cell volume (Fig. 2(b))
behaviours for hypertonic solution: Pe = 296 mM, Pi = 446 mM. The water
penetrability equals τw = 10−12 s.m−1.

3.1.c Influence of the coefficient τw on the dynamics

In this paragraph we study the effect of a reduction in water penetrability τw on
the dynamics of the phenomena. Note the difference between the coefficient τw

and the coefficient of permeability, since S.I. units for penetrability are s.m−1

and m.s−1 for permeability. The coefficient τw describes the time taken by a
water molecule to cross the membrane: the higher τw, the more permeant the
membrane is. In accordance with Landahl [16], τw usually equals 10−12 s.m−1.
We numerically investigate the effect of a reduction of this value. According
to Fig. 3, when the membrane penetrability to water τw decreases from 10−12

s.m−1 to 10−14 s.m−1, a delay in the stabilization of the cell volume can be
observed. Actually, while the stabilization occurs in a few seconds for τw =
10−12 s.m−1, the cell volume reaches its steady state within a minute when
the value of τw decreases to 10−13 s.m−1 and no stabilization occurs before 4
min for τw = 10−14. Compared with the experiments of Rouzaire-Dubois et al.
[21, 4, 22], the value of the stabilized cell volume is plausible. A decrease of τw,
caused by alterations of the membrane phospholipids for instance, could explain
the differences in the delays experimentally observed by Rouzaire-Dubois et
al. [4, 21] in the cell osmotic stabilization. Moreover let us note that the values
of the steady potential given by Fig. 4 are similar (around -90 mV) for τw equals
10−12, 10−13 or 10−14, meaning that a decrease of the penetrability of water
does not affect the value of the transmembrane potential but dynamics of the
volume regulation.
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Figure 3: Cell volume behaviour for hypotonic (Fig. 3(a)) and hyper-
tonic (Fig. 3(b)) stresses of amplitude 150 mM by changing the concentration
of non-permeant ions X.
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Figure 4: Transmembrane potential behaviours for hypotonic (Fig. 4(a)) and
hypertonic (Fig. 4(b)) stresses of amplitude 150 mM by changing the concen-
tration of non-permeant ions X.

4 Preliminary experiments

In order to validate the theoretical results we performed preliminary experi-
ments. More precisely in this section, we aim at showing that the dynamic of
the experimental cell volume stabilization occurs within the time predicted by
the model after osmotic stresses.

4.1 Materials and Methods

4.1.a Cell culture

DC-3F cells (Chinese hamster fibroblast lung cells) were grown in Minimum Es-
sential Medium (Invitrogen, Cergy-Pontoise, France) supplemented with 10%
fetal bovine serum (Invitrogen), 500 U/ml penicillin, 500 µg/ml streptomycin
(Invitrogen) defined as complete medium. Cultures were maintained in a hu-

RR n° 7269



16 C. Poignard, A. Silve et al.

midified atmosphere with 5% CO2 at 37oC. Cells were routinely passed every
two days.

4.1.b Solutions used

The solutions used were all PBS based (D-PBS 10x, Invitrogen, diluted with
milli-Q water, final molarities : Na+ - 154 mM ; K+ - 4 mM ; Cl− - 140 mM
; H2PO−

4 - 1,5 mM ; HPO2−

4 - 8 mM). Hypertonic solutions were obtained
by adding either NaCl or KCl in order to increase their concentration by a
minimum of 25 mM and a maximum of 300 mM.

4.1.c Fluorescence Activated Cell Sorter (FACS) experiments

Cells were harvested by trypsin and placed in a PBS solution for 15 minutes
before any osmotic stress. The hypertonic stresses were obtained by adding the
suitable volume of PBS supplemented with 300 mM NaCl or KCl to 500 µL of
the PBS containing the cells in suspension. In FACS analysis, forward scattering
(FSC) was used to estimate the final volume ratios. Approximately 50.000 cells
were run through the FACS three minutes after the hypertonic stresses. The
measure lasted 40 s during which the FSC was stable. The dynamic evolution
of the FSC was obtained starting with 800 µL of cells in suspension. 300 µL of
those were used to obtain the initial FSC value. The tube was then removed
from the FACS and replaced with another one containing the remaining 500µL
mixed with the right volume of PBS supplemented with NaCl solution at 300
mM just before starting the stressed cells FACS acquisition. Each reported
value is the average of 100 to 500 cells FSC acquisition.

4.2 Statistical analysis of FSC measurements

In static experiments, since the cells populations did not follow a Gaussian
distribution, the mean FSC for each individual experiment is the average value
of all the events considered as cells. Final results are the average of three
individual experiments ± standard deviation (SD).

4.3 Results

For different hypertonic solutions, cells were analyzed using a FACS three min-
utes after the hypertonic stress. The mean FSC, which can be considered as a
good representation of cells size, was measured and experimental volume ratios
were thus calculated. Simultaneously numerical simulations of the model are
performed with the experimental values of the initial concentrations. Experi-
mental and numerical ratios are plotted on Fig. 5. It appears that theoretical
values are very close to experimental data even though they are slightly under
estimated for the hypertonic stress obtained by addition of KCl. Noticeably,
for the same increase in molarity, the model predicts a lower amplitude of the
volume change after KCl than NaCl stress. Experimental data confirm this
tendency but show a difference more important than the one predicted.

The dynamic evolution of the FSC (as explained in Materials and Methods)
was recorded for the three different NaCl stresses indicated on Fig. 5. The
experimental averaged data are plotted in thin line, the beginning of the stresses
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(a) Addition of NaCl (b) Addition of KCl

Figure 5: Relative cell volume after stabilization for an osmotic stress of 150
mM by adding respectively NaCl (Fig.5(a)) and KCl (Fig. 5(b)) (Means ± SD
of three experiments).

being voluntarily shifted of ten seconds each. The part of the curves at no change
in cell volume (initial FSC) were acquired from a 300 µL cell suspension. Then,
the missing part of the curves corresponds to the time required for removing the
tube from the FACS and replacing it with the cells just osmotically stressed.
On Fig. 6 we have superimposed theoretical volume evolution for three different
values of membrane penetrability to water denoted by τw. The experimental
data provided by FSC cannot be precisely fitted since Fig. 5 shows that the
final volume ratio values differed from the prediction. Still, we can give a good
framing of τw as all three stresses have their best fit for τw = 7.10−13 s.m−1.
Stress 2 in particular validates the dynamic part of the model.

Figure 6: Dynamic evolution of the relative cell volume for the 3 stresses defined
in the text.
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5 Discussion

We have proposed a complete and generic model for the transmembrane po-
tential and cell volume regulation. This model, based on ordinary differential
equations, links dynamically the membrane potential, the cell volume, and the
internal and external ionic concentrations. The main insight consists in taking
into account the water diffusion across the membrane due to the osmotic pres-
sure. This leads to an ordinary differential equation of the cell volume with
respect to ionic concentrations. In the case of spherical cells, we explicitly link
the behaviour of the cell volume to the transmembrane potential.

Preliminary experiments validate the model proposed in this manuscript.
The numerical simulations fit very well with the experimental data after NaCl
addition, while a larger difference appears after KCl addition. It can be noticed
that the final values obtained during dynamic experiments are coherent with the
ones obtained by static analysis of a large number of cells. Moreover, the time
resolution of the FACS seems well adapted to this kind of dynamics. Indeed, the
FACS is fast enough to describe quite precisely the volume evolution, the time
needed to actually mix solutions in order to make the stress being the limiting
factor. FACS thus appears as an efficient tool to evaluate the volume evolution
dynamically. In a next step it will be interesting to investigate if the dynamics
are different depending on the cell types. Indeed the differences between KCl
and NaCl stresses might be relevant to metabolic issues. Using different cells
types or acting on metabolism with appropriate drugs are avenues that appear
worth exploring.

Our model can be derived to obtain the models presented previously by
Jakobsson [14], Armstrong [1], Endresen et al. [5], Fraser and Huang [7], and
Hernández [10]. More precisely, if the cell volume is constant, we recover the
model of Endresen et al. [5], and if the osmotic equilibrium is instantly reached,
our model is then similar to the model of Arsmtrong [1] and leads to the “Charge
Difference” equation of Fraser and Huang [7]. However, these two hypotheses
cannot explain the delays in cell volume stabilization experimentally observed
by Rouzaire–Dubois et al. [4, 22] for the fifth generation of cells in culture
submitted to a permanent osmotic stress. Comparatively, the first generation
stabilizes very quickly [4]. Our model provides a possible explanation for such
delays. Alterations of the membrane lipids, increasing with each new generation
of cell culture, could decrease the value of τw, thus leading to such results.
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