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Tradeoffs in routing reconfiguration problems†

N. Cohen1, D. Coudert1, D. Mazauric1, N. Nepomuceno1,2, and N. Nisse1

1MASCOTTE, INRIA, I3S, CNRS, Univ. Nice Sophia, France.
2Universidade Federal do Ceará, Fortaleza, CE, Brazil

Nous étudions le problème du reroutage d’un ensemble de connexion dans un réseau. Il consiste à passer d’un routage
initial (ensemble de chemins reliant des paires de nœuds) à un autre, en traitant séquentiellement chaque connexion.
Il est parfois indispensable d’en interrompre temporairement certaines au cours du processus de reconfiguration, ce
qui nous amène à étudier les compromis possibles entre deux mesures d’efficacité : le nombre total de connexions
interrompues et le nombre maximum de connexions interrompues simultanément. Nous prouvons qu’établir de tels
compromis mène à des problèmes NP-complets et difficiles à approcher (APX-difficiles voir non APX). Nous montrons
ensuite que de bons compromis sont impossibles en général. Enfin, nous exhibons une classe d’instances de reroutage
pour laquelle il est possible de minimiser le nombre de requêtes interrompues simultanément sans “trop” augmenter
le nombre total de connexions interrompues. Ces résultats sont obtenus en modélisant ce problème par un jeu à l’aide
d’agents mobiles.

Keywords: Graph searching games, process number, routing reconfiguration problem

1 Motivations and Modeling
The routing reconfiguration problem occurs in connection-oriented networks such as telephone, MPLS,

or WDM [3, 4, 12]. In such networks, a connection corresponds to the transmission of a data flow from a
source to a destination, and it is usually associated with a capacitated path‡. Since links of the network could
have to be repaired (and so made unavailable for some time), it might be necessary to change the routing
of the connections using them, and so possibly the routing of other connections to free strategic resources.
Once a new routing not using the unavailable links is computed, it is not acceptable to stop at once all the
connections going on in order to change the routing, since it would result in a very poor quality of service.
Instead, it is preferred that each connection first establishes (sets up) the new path on which it transmits
data, and then stops (tears down) the former one. This requires a proper scheduling to avoid conflicts in
accessing resources. The routing reconfiguration problems consists in finding a scheduling for rerouting
each connection minimizing the total number of interruptions, resp., the maximum number of simultaneous
interruptions (as cyclic dependencies might force to interrupt connections).

Fig. 1 represents an instance of the routing reconfiguration problem for a network composed of 10 nodes
with symmetric arcs. Fig 1(a) corresponds to the initial routing. For example if links (d,g), (a,e), and
( f , i) need to be repaired, then we must change the set of routes. Fig 1(b) represents a new routing not
using unavailable links. A way to reconfigure the instance depicted in Fig. 1 is to interrupt connections
(h,c),(d,b),(e, j), then set up the new paths of all other connections, tear down their old routes, and finally,
set up the new paths of connections (h,c),(d,b),(e, j). Another strategy may consist in interrupting the
connection (h, i), then sequentially : interrupt connection (h,c), reconfigure (d,c) without interrupting it, set
up the new route of (h,c), then reconfigure in the same way requests (d,b) and (e,b), and then connections
(e, j) and (i, j). Finally, set up the new route of (h, i). The first (resp. second) strategy interrupts a total of 3
(resp. 4) connections, and at most 3 (resp. 2) requests are simultaneously interrupted.

Following [4, 8], the routing reconfiguration problem can be expressed as a theoretical game on the
dependency digraph [8]. Given an initial routing of all requests and a new one, the dependency digraph

†This work was partially funded by région PACA, ANR AGAPE, and ANR DIMAGREEN.
‡ In this paper, each arc in the network has a capacity of one, and each connection requires one unit of capacity. Consequently, two

different paths cannot share the same arc (a valid assumption in WDM networks).
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FIG. 1: Instance of the reconfiguration problem consisting of a network with 10 nodes, symmetric arcs, and 8 connec-
tions (h, i),(h,c),(d,c),(d,b),(e,b),(e, j),(i, j),(g, i) to be reestablished.

contains one node per connection that must be switched. There is an arc from node u to node v if the initial
route of connection v uses resources that are needed by the new route of connection u. Fig. 1(c) represents
the dependency digraph of the instance depicted in Fig. 1. Indeed, there is an arc from vertex (d,c) to vertex
(h,c), because the new route used by connection (d,c) (Fig. 1(b)) uses resources seized by connection (h,c)
in the initial configuration (Fig. 1(a)). Other arcs are built in the same way.

In this paper, we study the routing reconfiguration problem through the digraph processing game [4],
analogous to the graph searching game [7]. This game is defined by operations (or rules), which are very
similar to the ones defining the node search number [7, 9] of a graph. The goal is to clear, or to process, all
the vertices of a contaminated digraph D through a sequence of the following three operations :

R1 Place an agent on a vertex v of D (interrupt the initial route of the corresponding connection) ;
R2 Remove an agent from a vertex v of D if all its outneighbors are either processed or occupied by an

agent, and process v (establish the new route of the corresponding connection) ;
R3 Process an unoccupied vertex v of D if all its outneighbors are either processed or occupied by an

agent (establish the new route, and then interrupt the old one, of the corresponding connection).

A sequence of such operations that processes all vertices of D is called a process strategy of D. During
this process, we use mobile agents that are sequentially placed at and removed from the vertices of D (note
that an agent which has been removed from a vertex can be reused later). The number of agents used by a
process strategy for D is the maximum number of agents present at the vertices of D during its execution.
A vertex is covered during a strategy if it is occupied by an agent at some step of the process strategy.

We study this game according to two measures : (1) the total number of agents used, and (2) the total
number of vertices covered by an agent during the processing of D. The reconfiguration problem is equiva-
lent to the clearing of its dependency digraph. In this context, the two measures respectively correspond to
the maximum number of simultaneous disruptions during the rerouting of the connections and to the total
number of requests disrupted during the whole process. Previous works have studied the problem of mini-
mizing each of these parameters independently [8, 3]. For the instance of Fig 1, the first strategy described
before minimizes metric (2) and the second achieves the minimum for metric (1). It is easy to show that for
this instance, there does not exist a strategy such that 2 agents are used covering at most 3 nodes.

In this paper, we study the tradeoff between both these conflicting objectives, proving that there exists
some instances for which minimizing one of these objectives arbitrarily impairs the quality of the solution
for the other one. Since we prove that any digraph is the dependency digraph of some instance of the routing
reconfiguration problem, it is sufficient to focus our study on the digraph processing game.

2 Definitions and Previous Work
Let D be a n-node directed graph. In the following, a (p,q)-process strategy denotes a process strategy

for D using at most p agents and covering at most q vertices. When the number of covered vertices is not
constrained, we note p-process strategy instead of (p,n)-process strategy. Similarly, when the number of
agents is not constrained, we note q-process strategy instead of (n,q)-process strategy.

The process number of a digraph D, pn(D), is the smallest p such that there exists a p-process strategy
for D. The digraph D of Fig. 1(c) has pn(D) = 2. While digraphs with process number 0, 1, and 2 can
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be recognized in polynomial time [5], computing the process number in general digraphs is not in APX
and is NP-hard [4]. A distributed polynomial-time algorithm to compute the process number of trees with
symmetric arcs has been proposed in [2]. Furthermore, the first heuristic computing the process number of
any digraph is described in [3]. The node search number and the pathwidth (introduced by Robertson and
Seymour in [11]) are graph invariants closely related to the notion of process number for undirected graph.
The node search number of a graph G, denoted by sn(G), is the smallest p such that rules R1 and R2 (R3 is
omitted) are sufficient to process G using at most p agents (see [7, 9]). It has been proved in [6] by Ellis et
al. that for any graph G, pw(G) = sn(G)−1, and in [4] that pw(G)≤ pn(G)≤ pw(G)+1, where the graph
G is considered as a symmetric digraph. Since the problem of determining the pathwidth of a graph is not
in APX [10], it can be proved that the computation of all these parameters also is.

The cover number of a digraph D, m f vs(D), is the smallest q such that there exists a q-process strategy
for D. The digraph of Fig. 1(c) has m f vs(D) = 3. Determining the cover number of a digraph D entails the
computation of the size of a minimum feedback vertex set (MFVS§), which is well known to be NP-complete
and APX-hard.

In the following, we introduce new tradeoff metrics in order to study the loss one may expect on one
parameter while constraining the other. In particular, what is the minimum number of vertices that must be
covered by a process strategy using pn(D) agents ? Similarly, what is the minimum number of agents that
must be used to process D covering at most m f vs(D) vertices ?
Definition 1 Given an integer q≥m f vs(D), we denote by pnq(D) the minimum p such that a (p,q)-process
strategy for D exists. We write pnm f vs(D) instead of pnm f vs(D)(D).
Definition 2 Given an integer p≥ pn(D), we denote by m f vsp(D) the minimum q such that a (p,q)-process
strategy for D exists. We write m f vspn(D) instead of m f vspn(D)(D).

mfvs(D)

pn(D)

(D)pnmfvs

(D)q = mfvsp

(D)qp = pn pnmfvs(D)

p

q

FIG. 2: m f vsp(D) as a function of p.

Note that m f vspn(D) is the minimum number of vertices
that must be covered by a pn(D)-process strategy, and that
pnm f vs(D) is the minimum number of agents required by a
m f vs(D)-process strategy. To illustrate the pertinence of these
tradeoff metrics, consider the digraph D of Fig. 1(c). We can
verify that there does not exist a (2,3)-process strategy for
D (a process strategy minimizing both metrics). On the other
hand, we have previously described a (2,4)-process strategy
and a (3,3)-process strategy for D. We have : pnm f vs(D) = 3
while pn(D) = 2, and m f vspn(D) = 4 while m f vs(D) = 3.
Fig. 2 depicts the shape of the variation of the minimum
number q of vertices covered by a p-process strategy for D
(p ≥ pn(D)), i.e. m f vsp(D) as a function of p. Note that this
function is non-increasing and lower bounded by m f vs(D).

3 Our Results
We first prove that any digraph is the dependency digraph of an instance of the routing reconfiguration

problem. Thus it shows the relevance of studying these problems through dependency digraph notion. We
then prove that computing the process number of a digraph D is not in APX (and thus NP-hard), even if
the subset of covered vertices is given, disproving a conjecture of Solano [12]. Other results consist of an
analysis of the behaviour of the two measures m f vspn

m f vs and pnm f vs
pn , both in general digraphs and in symmetric

digraphs. As mentioned above, in general, no process strategy minimizes both the number of agents and the
number of covered vertices (see example of Fig. 1). Hence, we are interested in the loss on one measure
when the other is constrained. Due to lack of space, all proofs are omitted and can be found in [1]. The
following theorem shows the complexity of estimating the possible tradeoffs.

Theorem 1 Let α ∈ [0,1]. Given a digraph D, the problem of minimizing α.pnm f vs(D)+ (1−α)pn(D) is
not in APX, and the problem of minimizing α.m f vspn(D)+(1−α)m f vs(D) is APX-hard.

§ A feedback vertex set of a digraph D is a set of vertices whose removal makes D acyclic
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FIG. 3: Digraph D with arbitrarily large m f vspn(D)/m f vs(D)

We also show that computing these values replacing pnm f vs by pnm f vs+q, and m f vspn by m f vspn+p,
p,q≥ 0, are also not in APX and APX-hard. Then, we show that no good tradeoffs exist in general.

Theorem 2 pnm f vs
pn and m f vspn

m f vs are not bounded, even in the class of bounded process number digraphs.

Sketch of proof : To show that pnm f vs(D)/pn(D) is not bounded in general, we consider a symmetric star
D with n branches of length 2 (see Fig 1(c) for n = 3). We have pn(D) = 2 and pnm f vs(D) = n. Indeed to
process D with 2 agents, the central node r and one node of each branch must be covered (a total of n + 1
nodes). Moreover, a strategy covering at most n nodes needs to put simultaneously n agents at neighbors
of r. We generalize this result showing that for any q, pnm f vs+q(D)/pn(D) is not bounded in general.
This can be shown using a digraph composed of q + 1 stars of n branches each. For the second ratio,
consider the digraph D depicted in Fig. 3 with pn(D) = 3 and m f vspn(D) = 4 + k where k is the number
of pairs of nodes between the two symmetric triangles (K3). Furthermore m f vs(D) ≤ 4 because removing
two nodes per K3 is sufficient to make the digraph acyclic. We generalize this result proving that, for any p,
m f vspn+p(D)/m f vs(D) is not bounded. The proof is similar, using Kp+1 instead of K3. 2

FIG. 4: Sym. digraph D for n = 5.

However, good tradeoffs may exist in particular classes.

Theorem 3 m f vspn(D)
m f vs(D) ≤ pn(D) for any symmetric digraph D.

Furthermore we exhibit a class of symmetric digraphs such that
m f vspn/m f vs ≥ 3− ε, for any ε > 0. A symmetric digraph D
in this class is such that m f vspn(D)/m f vs(D) = (3n+2)/(n+4)
where n+1 is the size of the central clique (see Fig 4). We conjec-
ture that m f vspn(D)/m f vs(D)≤ 3 for any symmetric digraph D.
g
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