
HAL Id: inria-00477528
https://inria.hal.science/inria-00477528

Submitted on 29 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling Modeling
Pierre-Alain Muller, Frédéric Fondement, Benoit Baudry

To cite this version:
Pierre-Alain Muller, Frédéric Fondement, Benoit Baudry. Modeling Modeling. ACM/IEEE 12th
International Conference on Model Driven Engineering Languages and Systems (MODELS’09), 2009,
Denver, Colorado, USA, United States. pp.2-16. �inria-00477528�

https://inria.hal.science/inria-00477528
https://hal.archives-ouvertes.fr

A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 2–16, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Modeling Modeling

Pierre-Alain Muller1, Frédéric Fondement1, and Benoît Baudry2

1 Université de Haute-Alsace, Mulhouse, France
{pierre-alain.muller,frederic.fondement}@uha.fr

2 IRISA / INRIA Rennes, Rennes, France
benoit.baudry@irisa.fr

Abstract. Model-driven engineering and model-based approaches have perme-
ated all branches of software engineering; to the point that it seems that we are
using models, as Molière’s Monsieur Jourdain was using prose, without know-
ing it. At the heart of modeling, there is a relation that we establish to represent
something by something else. In this paper we review various definitions of
models and relations between them. Then, we define a canonical set of relations
that can be used to express various kinds of representation relations and we
propose a graphical concrete syntax to represent these relations. Hence, this pa-
per is a contribution towards a theory of modeling.

1 Introduction

Many articles have already been written about modeling, offering definitions at vari-
ous levels of abstraction, introducing conceptual frameworks or pragmatic tools, de-
scribing languages or environments, discussing practices and processes. It is amazing
to observe in many calls for papers how modeling is now permeating all fields of
software engineering. It looks like a lot of people are using models, as Monsieur
Jourdain [22] was using prose, without knowing it.

While much has already been written on this topic, there is however neither precise
description about what we do when we model, nor rigorous description of the rela-
tions among modeling artifacts. Therefore we propose to focus on the very heart of
modeling, straight on the relation that we establish to represent something by some-
thing else, when we say that we model. Interestingly, the nature of these (some)things
does not have to be defined for thinking about the relations between them. We will
show how we can focus on the nature of relations, or on the patterns of relations that
we may discover between these things.

This paper is a contribution towards a theory of modeling. Whilst focused on mod-
eling in software development and model-management, the presented material may
apply to models in general, and in other disciplines. We define a canonical set of
relations that can be used to ease and structure reasoning about modeling. This ca-
nonical set contains 5 representation relations that may be refined with nature (ana-
lytical/synthetical) and causality (correctness/validity).

 Modeling Modeling 3

The paper proceeds as follows: after this introduction, section 2 (related works)
summarizes what several authors have said about models, section 3 defines a set of
primitive representation relations based on the analysis of these various points of
views, section 4 illustrates the use of the notation via several examples excerpted
from the software engineering field, and finally section 5 draws some final conclu-
sions and outlines future works.

This paper is the result of numerous informal discussions we have had with so
many people that it is almost impossible to enumerate them all here. We would like to
especially thank a few of them: including Jean-Marie Favre, Thomas Kuehne, Colin
Atkinson, Marc Pantel, and Christophe Gaston. We would also like to acknowledge
the invaluable comments of anonymous reviewers of an earlier version of this paper.

Table 1. Summary of model definitions

Bézivin “A model is a simplification of a system built with an intended goal
in mind. The model should be able to answer questions in place of
the actual system.” [2]

Brown “Models provide abstractions of a physical system that allow
engineers to reason about that system by ignoring extraneous details
while focusing on the relevant ones.” [3]

Jackson “Here the word ‘Model’ means a part of the Machine’s local
storage or database that it keeps in a more or less synchronised
correspondence with a part of the Problem Domain. The Model
can then act as a surrogate for the Problem Domain, providing
information to the Machine that can not be conveniently obtained
from the Problem Domain itself when it is needed. ” [4]

Kuehne “A model is an abstraction of a (real or language based) system

allowing predictions or inferences to be made.” [5]

Ludewig “Models help in developing artefacts by providing information
about the consequences of building those artefacts before they
are actually made.” [1]

OMG “A model of a system is a description or specification of that system
and its environment for some certain purpose.” [6]

Seidewitz “A model is a set of statements about some system under study
(SUS).” [7]

Selic “Engineering models aim to reduce risk by helping us better
understand both a complex problem and its potential solutions
before undertaking the expense and effort of a full implementation.”
[8]

Steinmüller A model is information: on something (content, meaning), created
by someone (sender), for somebody (receiver), for some purpose
(usage context). [9]

4 P.-A. Muller, F. Fondement, and B. Baudry

2 Related Works

Much has already been written on modeling. In this section we will examine related
works, and start to classify what authors have said about models. The following table
contains a summary of model definitions, even if Jochen Ludewig states in [1] that
“nobody can just define what a model is, and expect that other people will accept this
definition; endless discussions have proven that there is no consistent common under-
standing of models”.

Features of Models
According to Stachowiak [10] a model needs to posses the following three features:

• Mapping feature. A model is based on an original.
• Reduction feature. A model only reflects a (relevant) selection of an origi-

nal’s properties
• Pragmatic feature. A model needs to be usable in place of an original with

respect to some purpose.

According to Bran Selic [8] an engineering model must posses the following five
characteristics:

• Abstraction. A model is always a reduced rendering of the system that it
represents.

• Understandability. A model must remain in a form that directly appeals to
our intuition.

• Accuracy. A model must provide a true-to-life representation of the modeled
system’s features of interest.

• Predictiveness. A model must correctly predict the interesting but nonobvious
properties of the modeled system.

• Inexpensiveness. A model must be significantly cheaper to construct and ana-
lyse than the modeled system.

Different Kinds of Models
Ed Seidewitz classifies models in two categories: descriptions and specifications. “A
model may be used to describe a SUS (System Under Study). In this case, the model is
considered correct if all statements made in the model are true for the SUS. Alterna-
tively, a model may be used as a specification for a SUS, or for a class of SUS. In this
case, a specific SUS is considered valid relative to this specification if no statement in
the model is false for the SUS.” [7].

Jean-Marie Favre, reminds us that systems have the truth, not models: “Making the
distinction between specification models and descriptive models is useful to express
who, of the model or the system, has the truth” [11]. Jochen Ludewig further states
that in order to make our models more useful we have to compare them with reality:
“The reality is always right and the model is always wrong” [1]. This is also ac-
knowledged by Michael Jackson: “The model is not the reality” [4]. Wolfgang Hesse,

 Modeling Modeling 5

stresses the fact that in software engineering models often play a double role: they
may be either prescriptive or descriptive, depending on whether it is there earlier or
later than its original [12]. He coins this the Janus View. This is close to the opinion
of Bran Selic, in [8] where he states that the models may be developed as a precursor
to implementing the physical system, or they may be derived from an existing system
or a system in development as an aid to understanding its behavior.

Kuehne, going back to Peirce’s (1839-1914) seminal work about semiotic, also dis-
tinguishes between token and type models [5]. He gives the following definitions:

• Token models. “Elements of a token model capture singular (as opposed to
universal) aspects of the original’s elements, i.e., they model individual prop-
erties of the elements in the system.”

• Type models. “Most models used in model driven engineering are type mod-
els. In contrast to token models, type models capture the universal aspects of a
system’s elements by means of classification.”

Another classification of models is provided by Mellor and his colleagues in [13]
taking yet another perspective on models. The distinction is made between three kinds
of models, depending on their level of precision. A model can be considered as a
Sketch, as a Blueprint, or as an Executable. Fowler suggests in [14] a similar distinc-
tion based on three levels of models, namely Conceptual Models, Specification Mod-
els and Implementation Models.

Definition of Relations between Models
In [15] Bézivin identifies two fundamental relations coined RepresentationOf and
ConformantTo. Jean-Marie Favre shows in [16] that the ConformantTo relation is
actually a short-cut for a pattern of RepresentationOf and ElementOf relations. In
Jean-Marie Favre’s view (called mega-model), further expressed in [17], all MDE
artifacts can be described with 4 (+1 derived) basic relations (RepresentationOf, Ele-
mentOf, DecomposedIn, IsTransformedIn, and the derived ConformsTo).

Ed Seidewitz also identifies two relations [7], named interpretation (the relation-
ship of the model to the thing being modeled) and theory of the modeling language
(the relationship of a given model to other models derivable from it).

3 Towards a Model of Modeling

In this section we will define a model of modeling along with a notation to represent
relations between modeling artifacts. By a model of modeling (hence the title of this
paper: modeling modeling) we designate a representation of what we manipulate
when we use modeling techniques. Our target domain is software development; there-
fore, all our examples will be drawn from the software engineering field.

We will use a very simple language to build this representation, based on “things”
and “arrows” between them, such as the “objects” and “morphisms” found in Category
Theory [18]. Things can be anything (this includes what other authors have called
models and systems), and nothing has to be known about the internal structure of these

6 P.-A. Muller, F. Fondement, and B. Baudry

things (which therefore do not have to be collections of “elements”). Conversely, ar-
rows do not need to be functions between sets (thus arrows cannot be applied to “ele-
ments” but only composed with other arrows).

We do not want to come up with a brand new interpretation of what a model is. In
our mind, the model of modeling that we are defining should reflect (or encompass)
the various points of views which have already been expressed by the authors cited in
the related works. To this end, we will first analyze these points of view, and next use
our simple notation to synthesize them all into one single representation.

Let’s start by modeling the fact that we have things which represent others things.
As stated by Bran Selic [8], we first have to find a tradeoff between abstraction and
understandability; therefore we will depart from the single System class view of Jean-
Marie Favre [11], and distinguish between a source thing (that many authors call the
model) and a target thing (called original by Stachowiak [10]), although we under-
stand that being a source thing or a target thing is relative to a given arrow, and does
not imply anything about a given thing. This is represented in Figure 1, where the
source is named X, the target Y, and the RepresentationOf relation μ.

Fig. 1. X is a representation of Y

We are using on purpose a very simple graphic concrete syntax for representing
modeling relations. Our notation is based on arrows, and is intended to be easy to
draw by hand (on blackboard and napkins).

Intention
Neither things nor representations of things are built in isolation. As said by Stein-
müller, both exist for a given purpose, exhibit properties, are built for some given
stakeholders [9].

We can think about this as the intention of a thing. Intentional modeling [19] an-
swers questions such as who and why, not what. The intention of a thing thus repre-
sents the reason why someone would be using that thing, in which context, and what
are the expectations vs. that thing. It should be seen as a mixture of requirements,
behavior, properties, and constraints, either satisfied or maintained by the thing.

As already said earlier, the “category theory kind” of thinking that we take in this
paper does not require a description of the internals of the modeling artifacts (nor
their intentions). Hence, it is enough to say that artifacts have an intention. The inten-
tional flavor of models has also been used by Kuehne [23] in his description of meta-
modeling and by Gasevic et al. in their extension of Favre's megamodel [24]. The
consequences of intentional thinking applied to modeling can be understood and
represented using Venn diagrams [20]. The following table summarizes how the
μ-relation may be specialized:

 Modeling Modeling 7

Table 2. Variations of the μ-relation, and graphical notation

 Intention Description Notation
a)

X and Y have totally
different intentions. This
usually denotes a shift in
viewpoints.

b)

X and Y share some
intention. X and Y can be
partially represented by each
other. The representation is
both partial and extended.

c)

X is a partial representation
of Y. Everything which
holds for X makes sense in
the context of Y. Y can be
partially represented by X.

d)

X and Y share the same
intention. They can repre-
sent each other. This usually
denotes a shift in linguistic
conformance.

e)

X covers the intention of Y;
X can represent Y, but X has
additional properties. It is an
extended representation.

All authors agree to say that the power of models stems from the fact they can be

used in place of what they model, at least for some given purposes. This is what Sta-
chowiak [10] calls the pragmatic feature of models. In practice it is convenient to
work with a subset of the intention, and to consider that the μ-relation is a complete
representation of that given subset: hence the μ/I notation below, which means that X
is a representation of Y (for a given subset of the intention). The I sign can then be
used elsewhere in a diagram, to show that a given pattern holds for that subset of
the intention. If intention is constant throughout the diagram, it can be omitted as a
notation shortcut.

Table 3. Notation shortcut. X is a complete representation of Y, for a given subset of the
intention (in a given context).

X

X

Y

Y
X1 Y

X2

I(Y)

I(X) I(Y)

I(X) I(Y)

I(X) I(Y)

I(X) I(Y)

I(X) I(Y)

8 P.-A. Muller, F. Fondement, and B. Baudry

Analytical vs. Synthetical Nature of Representations
As seen earlier, several authors make a distinction between analytical models and
synthetical models (respectively descriptive and specification models in the sense of
Seidewitz [7] and Favre [11]).

An analytical representation relation states that the source expresses something
about the target. We define the analytical representation (represented μα) as:

where Tα is a relation such as X can be derived (or abstracted) from Y. In model-
driven parlance Tα could denote a model-transformation. Interestingly, intentions of
source and target do not necessarily have to overlap (notice that for convenience we
use here a simple arrow as a placeholder for the different kinds of relations that we
have defined in table 2). In terms of truth (as coined by Favre), truth is held by the
target in case of μα representation.

A synthetical representation relation explains that the target is generated from the
source. We define the synthetical representation (represented μγ) as:

where Tγ is a relation such as Y can be derived (or generated) from X. In model-
driven parlance Tγ could again denote a model-transformation. In terms of truth, truth
is held by the source in case of μγ representation. If we talk in terms of intentions, this
means that the intention of Y can be generated (synthesized) from the intention of X,
or at least be driven by the intention of X, as Y is actually the result of Tγ applied to
X. Quantifying the respective contributions of X and Tγ to the synthesis of Y is out of
the scope of this paper.

However, if one wants to represent that the transformation significantly contributes to
the target's intention, it is possible to use an explicit representation such as in Figure 2.
Y is partially generated from X (for the S part of the intention). The complement (the S'
part) is provided by Tγ. This could typically be used to represent that X is a PIM (Plat-
form Independent Model), and Y a PSM (Platform Specific Model), with the specifics
of the platform being introduced in Y by the Tγ transformation.

Fig. 2. Explicit representation of the contribution of the transformation used to generate Y from X

Causality
Causality addresses the synchronization concern raised by Michael Jackson [4]; it
expresses both when the μ-relation is established, and how (if ever) it is maintained

X Y

S

Tγ | Y = Tγ (X)

S’

 Modeling Modeling 9

over time. Causality is either continuous (the relation is always enforced) or discrete
(the relation is enforced at some given points in time). Causality is also tightly cou-
pled with the truth of Favre [11]; actually, causality is a concern about whether a
representation is still meaningful when the truth has changed. Going back to the defi-
nition of correctness and validity given by Ed Seidewitz [7], causality states:

• for an analytical representation, when X is correct wrt. Y.
• for a synthetical representation, when Y is valid wrt. X.

For computer based systems, causality is typically discrete, and making the models
meaningful requires adherence to results of information theory such as Nyquist-
Shannon sampling theorem [21]. Causality can be used to re-visit the definition given
by Wolfgang Hesse, who makes an amalgam between analytical/synthetical represen-
tation, and earlier/later existence, when he proposes to distinguish between descrip-
tive and prescriptive “depending on whether it is (the model) there earlier or later
than its original” [12]. A way to lift this ambiguity is to separate clearly between
nature (analytical/synthetical) and causality (correctness/validity) of the representa-
tion relation. In Figure 3 the model is a causal analytical representation of the system.
If the system changes, the causal μα relation implies that the model is updated. In turn,
as the model is also a causal μγ representation of the program, the program is updated
to remain an analytical representation of the system.

Causal representation

Fig. 3. Causality implies maintaining the representations over time

Transitivity
Transitivity addresses the composition properties of μ-relations of the same nature.
Transitivity is realized when the intention of a composed μ-μ-relation contains the
intention of a μ-relation. If transitivity holds, then it is possible to use the model of a
model of a thing, in place of the model of that thing.

In some cases, there is only one possible result for the composition of relations. For
example, on the third line of Table 4, if X is an extended representation of Y and if Y
has the same intention as Z, then X is an extended representation of Z. In some cases
there are 2 or 3 possible results when composing relations. For example, Figure 4
illustrates the two situations that can occur when X is an extended and partial repre-
sentation of Y and Y is an extended and partial representation of Z. In case a, the
intention that X shares with Y does not overlap at all with the intention that Y shares
with Z, this means that X and Z have two completely different intentions. In case b,
the intention that X shares with Y overlaps with the intention that Y shares with Z,
this means that X is an extended and partial representation of Z.

10 P.-A. Muller, F. Fondement, and B. Baudry

X Y Z
X

Y Z

a b

Fig. 4. Intention overlapping when composing partial extended relations

Table 4. Composition law for representations

4 Examples

4.1 This Is Not a Pipe

Let's examine the already classic example inspired from Magritte's painting. The pic-
ture is a μα representation of the pipe. The picture and the pipe share some intention. In
addition, the real pipe could be used to smoke, while the picture could be used to show
the pipe remotely. This is represented by an extended partial μα representation.

In the following example, the distribution of colors plays the role of an analytical
model, providing information about the picture from which it is generated. It does not
share intention either with the picture or with the pipe (this is modeled by the dashed
arrow); however it may be used to have an idea of the color of the real world pipe
(transitively following the μα relations).

 Modeling Modeling 11

Fig. 5. Example of μα relations

4.2 Jackson'sProblem Domain and Machine

In table 2, the c) case represents the fact that the target (in our case generated) thing
contains the intention of the source thing. This is especially interesting in case the
source was itself in a μα relation with a third thing. Figure 6 shows such situation. M
stands for model, S for system, and R for representation (with the idea that R is a
computerized representation, in other words a program which implements S).

Fig. 6. Generated machine implementing a μα representation

This is the typical case for modeling, such as described for instance by Michael
Jackson. S is the problem domain. R is what Jackson calls the machine. The μα rela-
tion from R to S is what Jackson calls the “‘model’ which is part of the local storage
or database that it keeps in a more or less synchronized correspondence with a part
of the problem domain” [4]. This view is also in line with Bran Selic, who states: “the
model eventually becomes the system that it was modeling” [8].

The partial μγ and the extended μα relations express the fact that R is “richer” than
M (and thus S) in terms of intention, because R contains additional information re-
quired for execution. The intention of the model can also be seen as the intersection of
the intensions of the machine and the problem domain. The grayed part represents the
additional intension required to "implement" the intention of the problem domain.
This is what we name platform dependence in Figure 7.

Fig. 7. The machine implements the subset of intention of the problem domain, represented by
the model

R = The Machine

S = The Problem Domain
Model

Real world object

Distribution of
colors

.jpg

Platfom Dependence

I (Problem Domain)

I (Model) I (Machine)

12 P.-A. Muller, F. Fondement, and B. Baudry

4.3 PIM, PSM and PDM

A PSM (Platform Specific Model) is a refinement of a PIM (Platform Independent
Model), which contains additional platform information as given by a PDM (Platform
Description Model). The Venn diagram in Figure 8 shows how all successive levels
of refinement extend the intention of the System, with platform dependent informa-
tion required for implementation.

We also see here how the previous example (the triad System-Model-Representation)
may be used as a meta-modeling pattern, by replacing M (the model) by PIM and R (the
representation) by PSM (PDM was left unexpressed in the pattern).

Fig. 8. Refinement of PIM into PSM, with platform specific information

4.4 Host-Target Development

In host-target development, the same program (here the model) is compiled both for a
host machine (typically a workstation) and a target machine (typically some embed-
ded computer). This allows early problem detection, even before the final hardware
machine is available. Therefore, the host implementation can be considered as a par-
tial analytical model of the target implementation (it may also be extended by host
specific concerns).

Fig. 9. The host implementation provides information about the target implementation

Model

Target
Implementation Host

Implementation

PSM2 PSM1 PIM System

PDM1 PDM2

I(PIM) I(PSM1)
I(PSM2)

 Modeling Modeling 13

4.5 Round-Trip Engineering

Code skeletons are generated from UML class diagrams (represented by the μγ). Then,
developers extend the skeletons by hand. If developers change the structure of the final
program (and therefore also the structure of the skeletons which get updated at the same
time as they live in the same file), then the class diagram has to be changed accordingly.
We model this with a causal μα relation between class diagrams and Java skeletons. The
causal nature of the relation implies that the model is always up-to-date.

Fig. 10. Using causality to model round-trip engineering

4.6 Model-Based Testing

Model-based testing is performed by generating test cases that can be used to test the
program. As represented in Figure 11, the model and the program are developed on
one side while the test cases are developed separately. Then, testing consists in check-
ing the consistency between these two views on the system. When an inconsistency is
detected, an error has been found.

The test model is a partial representation of the system, with an additional intention
of testing (looking for errors) that is not present in the system. The test model is also a
partial representation of the model that shares intentions with the model (the concepts
manipulated by these representations are the same), but again the test model has this
additional test intention. Symmetrically, the model is a representation of the system.
The model is then used to generate parts of the program.

When the test model is rich enough, test cases can be automatically synthesized
from this model, according to a test adequacy criterion. Thus there exists a μγ relation

Fig. 11. Model-based testing

Class
Diagram

Java
Skeleton

Java
Program

Model Program

System

Test
Cases

Test
Model

14 P.-A. Muller, F. Fondement, and B. Baudry

between these things. This particular relation also implies that the μα relation between
the test model and the system is propagated to the test cases that are thus also repre-
sentations of the system.

The last interesting relationship that appears on the figure is that test cases are rep-
resentations of the program since they can provide information to analyze the pres-
ence of errors in the program. However, these two things do not share any intention
since test cases aim at detecting errors in the program while the program aims at pro-
viding functionalities to some user.

4.7 Eclipse EMF

This example is drawn from the tutorial T38 "Introduction to the Eclipse Modeling
Framework" delivered at OOPSLA'06. The tutorial includes generating a working
graphical editor to create and manipulate instances of a UML model. The editor is
made of three generated Java projects (respectively Model, Edit, and Editor).

The process starts with an XML file that contains a schema which represents a pur-
chase order system. The various modeling artifacts are represented in Figure 12.

Purchase
Order System

.xsd .ecore

Model.java

Edit.java

Editor.java

.genmodel

Fig. 12. Purchase order Eclipse EMF tutorial

The XML schema (.xsd file) is a μα representation of the system (wrt. a given in-
tention I). The schema is used to generate an EMF model (.ecore file). The model and
the schema share the same intention I, as shown by μα/I relations. The model is then
used to generate a generation model (.genmodel) which is also in a μα relation with
the system. The .genmodel contains additional information (wrt. the model) to drive
the code generation process; therefore it is the target of a partial μγ relation. Three
Java projects are generated from the generation model: model, edit, and editor.
Edit.java is a Java projection of the model, thus it is a μα/I representation of the sys-
tem as well. Edit.java contains general editing mechanisms (not dependent on the
graphical user interface) and uses the java projection of the model (represented with
another μα relation). Finally, Editor.java provides end-user editing facilities to visual-
ize models, using a tree-based explorator.

5 Conclusion

In this paper we have analysed various definitions of models, as found in the related
works, and we have proposed a modeling language which can be used as a foundation

 Modeling Modeling 15

to represent the various representation relations between models, metamodels and
languages.

Our language focuses on representation relations between modeling artifacts, with-
out actually trying to understand the nature of these artifacts. Ignoring the details of
their internal structure appears to be very effective because it magnifies the fact that
modeling is a matter of relations and roles, and not intrinsic to the artifacts.

We have identified 5 variations of the representation relation (based on their inten-
tion), two natures (analytical and synthetical), and taken causal dependencies and
transitivity into account. We have illustrated our approach with several simple exam-
ples, drawn from the software engineering domain.

From a practical point of view, we hope that this step toward a better understand-
ing of representation relations will serve as a basis for rigorous metamodeling tools,
in the same way as relational algebra triggered the development of efficient databases.

References

[1] Ludewig, J.: Models in software engineering - an introduction. SoSyM 2(3), 5–14 (2003)
[2] Bézivin, J., Gerbé, O.: Towards a Precise Definition of the OMG/MDA Frame-work. Pre-

sented at ASE, Automated Software Engineering (November 2001)
[3] Brown, A.W.: Model driven architecture: Principles and practice. SoSyM 3(3), 314–327

(2004)
[4] Jackson, M.: Some Basic Tenets of Description. Software and Systems Modeling 1(1),

5–9 (2002)
[5] Kuehne, T.: Matters of (meta-) modeling. SoSyM 5(4) (2006)
[6] OMG, Model Driven Architecture, Electronic Source: Object Management Group,

http://www.omg.org/mda/
[7] Seidewitz, E.: What models means. IEEE Software 20(5), 26–32 (2003)
[8] Selic, B.: The pragmatics of Model-Driven Development. IEEE Software 20(5), 19–25

(2003)
[9] Steinmüller, W.: Informationstechnologie und Gesellschaft: Einführung in dieAnge-

wandte Informatik, Wissenschaftliche Buchgesellschaft, Darmstadt (1993)
[10] Stachowiak, H.: Allgemeine Modelltheorie. Springer, Wien (1973)
[11] Favre, J.-M.: Foundations of Model (Driven) (Reverse) Engineering: Models - Epi-sode I:

Stories of The Fidus Papyrus and of The Solarus. Presented at Dagstuhl Seminar 04101
on Language Engineering for Model-Driven Software Development, Dagsthul, Germany,
February 29-March 5 (2004)

[12] Hesse, W.: More matters on (meta-)modeling: remarks on Kuehne’s "matters". So-
SyM 5(4), 387–394 (2006)

[13] Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principle of Model Driven Ar-
chitecture. Addison Wesley, Reading (2004)

[14] Fowler, M., Scott, K., Booch, G.: UML distilled, Object Oriented series, 179 p. Addison-
Wesley, Reading (1999)

[15] Bézivin, J.: In Search of a Basic Principle for Model-Driven Engineering. Novatica Jour-
nal, vol. Special Issue March-April 2004 (2004)

[16] Favre, J.-M.: Foundations of the Meta-pyramids: Languages and Metamodels - Epi-sode
II, Story of Thotus the Baboon. Presented at Dagstuhl Seminar 04101 on Lan-guage En-
gineering for Model-Driven Software Development, Dagsthul, Germany, February 29-
March 5 (2004)

16 P.-A. Muller, F. Fondement, and B. Baudry

[17] Favre, J.-M.: Towards a Megamodel to Model Software Evolution Through Software
Transformation. In: Proceedings of the Workshop on Software Evolution through Trans-
formation, SETRA 2004, Rome, Italy, October 2, vol. 127 (2004)

[18] Fokkinga, M.M.: A Gentle Introduction to Category Theory - The calculational approach,
University of Twente (1994)

[19] Yu, E., Mylopoulos, J.: Understanding “Why” in Software Process Modelling, Analysis,
and Design". In: Proceedings of the 16th International Conference on Soft-ware Engi-
neering (ICSE), Sorrento, Italy, May 16-21, pp. 159–168 (1994)

[20] Venn, J.: On the Diagrammatic and Mechanical Representation of Propositions and Rea-
sonings. Dublin Philosophical Magazine and Journal of Science 9(59), 1–18 (1880)

[21] Shannon, C.E.: Communication in the presence of noise. Proc. Institute of Radio Engi-
neers 37(1), 10–21 (1949)

[22] Molière. Le Bourgeois gentilhomme (1607)
[23] Kuehne, T.: Matters of (Meta-) Modeling. Software and Systems Modeling 5(4), 369–385

(2006)
[24] Gasevic, D., Kaviani, N., Hatala, M.: On Metamodeling in Megamodels. In: Engels, G.,

Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 91–
105. Springer, Heidelberg (2007)

	Modeling Modeling
	Introduction
	Related Works
	Towards a Model of Modeling
	Examples
	This Is Not a Pipe
	Jackson'sProblem Domain and Machine
	PIM, PSM and PDM
	Host-Target Development
	Round-Trip Engineering
	Model-Based Testing
	Eclipse EMF

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

