N

N

Introducing variability into Aspect-Oriented Modeling
approaches
Philippe Lahire, Brice Morin, Gilles Vanwormhoudt, Alban Gaignard, Olivier

Barais, Jean-Marc Jézéquel

» To cite this version:

Philippe Lahire, Brice Morin, Gilles Vanwormhoudt, Alban Gaignard, Olivier Barais, et al.. Intro-
ducing variability into Aspect-Oriented Modeling approaches. In Proceedings of ACM/IEEE 10th
International Conference on Model Driven Engineering Languages and Systems (MoDELS 07), 2007,
Nashville, TN, USA, United States. inria-00477562

HAL 1d: inria-00477562
https://inria.hal.science/inria-00477562
Submitted on 29 Apr 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00477562
https://hal.archives-ouvertes.fr

Introducing Variability into Aspect-Oriented
Modeling Approaches

Philippe Lahire?, Brice Morin!, Gilles Vanwormhoudt?, Alban Gaignard?,
Olivier Barais', and Jean-Marc Jézéquel®

L IRISA Rennes, Projet Triskell, IRISA - Campus de Beaulieu F-35042 Rennes Cedex
2 13S Nice-Sophia Antipolis, Equipe Rainbow, 13S-UNSA
Les algorithmes, 2000 route des lucioles BP 121 F-06903 Sophia-Antipolis Cedex
3 GET Telecom-Lille 1/ LIFL, Université de Lille 1, F-59655 Villeneuve d’Ascq Cedex

Abstract. Aspect-Oriented Modeling (AOM) approaches propose to
model reusable aspects, or cross-cutting concerns, that can be composed
in different systems at a model or code level. Building complex systems
with reusable aspects helps managing software complexity. But in gen-
eral, reusability of an aspect is limited to a particular context. On the one
hand, if the target model does not match the template point-to-point,
the aspect cannot be applied. On the other hand, even when it is actually
applied, it is woven into the target model always in the same way. In this
papeil], we point out the needs of variability in the AOM approaches and
introduce seamless variability mechanisms in an existing AOM approach
to improve reusability. Our aspects can fit various contexts and can be
composed into the base model in different ways. Introducing variability
into AOM approaches will turn standard aspects into highly reusable
aspects.

1 Introduction

The Aspect Oriented Software Development (AOSD) paradigm first appeared
at the code level a decade ago [7] with the most famous AOP language As-
pectJ [6]. The aspect paradigm offers a new way to construct complex systems
by composing crosscutting concerns with the base system. In the earlier stages
of the software life-cycle, several Aspect-Oriented Modeling approaches (AOM)
already exist [TI2I4IT6], with various levels of abstraction (requirement, design,
architecture). In general, these approaches decrease the complexity of systems
by composing models that represents the different concerns of the system (busi-
ness, security, persistence ...). To help developers saving time designing sys-
tems and therefore reduce the time-to-market of these systems, models should
be reusable.

Currently, AOM approaches provide some means to design reusable and flex-
ible aspects. But, reusability and flexibility are often limited. In general, they

! This work was partially supported by the French National Research Agency
(RNTL FAROS Project).

G. Engels et al. (Eds.): MoDELS 2007, LNCS 4735, pp. 498[513] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Introducing Variability into Aspect-Oriented Modeling Approaches 499

describe one possible variant of an aspect and propose one possible way to in-
tegrate it. For example, a designer cannot model a design pattern in its full
genericity with these approaches: he can only model one specific implementa-
tion choice for this design pattern. Consequently, aspects are only reusable in
similar or very related contexts. In this paper, we argue that aspects must be
reusable in various contexts. Designing context independent aspects requires
seamless variability mechanisms for specifying the weaving, the pointcut expres-
sion, etc... . Such mechanisms will turn standard aspects into highly reusable
and flexible pieces of models. The contribution of this paper is to point out the
needs of variability in the AOM approaches, to provide some mechanisms to
support variability in one particular AOM approach and to illustrate these new
mechanisms on a concrete example. To address variability in software develop-
ment, Software product lines (SPL) offer some mechanisms to support functional
variabilityﬁ and to derive products that match the user’s needs. However, this
variability only concerns the software module specifications. In the case of AOM
approaches, variability should also be applied onto the composition mechanisms.

The remainder of this paper is organized as follows. Section [2] points out the
needs of variability in the AOM approaches with a motivating example. Section[3]
presents an overview of an AOM approach. This approach is extended in the
section @ to support variability mechanisms. Section [l describes a metamodel
for this approach and the implementation of a modeling tool. Section [f] presents
related works and section [concludes and discusses future work.

2 DMotivating Example

To illustrate the needs of variability in the AOM approaches, we use the example
of a mobile phone device. Figure [Il shows a simplified class diagram presenting
the main functionalities of an accountancy package for a mobile phone.

11

Clock B "
HIMobnlePhone HistoryCall
-time : Time L il contains Call
+incrementTime() 1 T eall() adursiion _ Jline
+getTime() 1 +answer() 1 * |+getDuration()
1 Gul
injtTime -time : Time

+initTime()

OutgoingCall
1 +setTime(Time t)()
+displayTime() IncomingCall

Fig. 1. A Simplified class diagram of the mobile phone

When the user is calling (resp. is called by) someone, the HistoryCall class
creates a new outgoing (resp. incoming) call and saves the duration. The class
GUI can display its local variable time which is initialized when switching on
the phone. The class Clock only contains a variable time which is incremented
every minute.

% see Software Product Line Conferences : http://www.splc.net

500 P. Lahire et al.

2.1 Matching Variability

Two optional requirements, total calls and total outgoing calls, can be added
to our mobile phone in order to compute the total duration of the (outgoing)
calls. We will use the Counter pattern [I1] to realize these two requirements.

HistoryCall IncomingCall
CounterPattern | ‘ Counter, computes, oy contains Call K] —
Element, T, getValue A
¢ 0 +call() ———>\-duration : Time OutgoingCall
+answer() 1* [+getDuration()
Counter computes Element +compute() gomputep =
value : T “Total calls™: -1
+compute() 1 * |[+getValue() Counter <-> HistoryCall ; Element <-> Call [Counter
computes <-> contains ; T <-> Time I— - — “
getValue() <-> getDuration() |+_—tT1
compul

computes <->none ; T <-> Time
getValue() <-> getDuration()

"Total outgoing calls":
Counter <-> none ; Element <-> Call

Fig. 2. The Counter pattern realizing the total calls requirement

In most of the AOM approaches [2TIT6], a template specifies the model
elements of the concern that have to be bound with target model elements.
Reusability is then limited to iso-structural target models because if the structure
does not match the template point-to-point, the aspect cannot be applied.

Figure[2 shows the Counter pattern composition into the mobile phone model.
In order to realize the total calls requirement, we use the existing HistoryCall
and Call classes to respectively act as Counter and Element. We now want to
realize the total outgoing calls requirement in a separate Counter class. This
requires the creation of a new class acting as a Counter and the insertion of a new
association between this class and the OutgoingCall class. Instead of modifying
the base model to this end, it would be more efficient that the Counter pattern
automatically introduces all these missing elements. However this is not possible
with classic AOM approaches [2ITTIT6] because the weaving process of the aspect
upon the base system can not vary depending on the bindings.

2.2 Adaptation Variability

One optional requirement, display time, can be added in order to display and
update the time every minute, when the internal clock is updated. The Observer
pattern will realize this requirement, notifying the GUI (Observer) that the
Clock (Subject) has been updated.

In most of the AOM approaches [2ITTIT6], aspects are composed into the target
model using one composition rule at a time, offering poor flexibility. Depending
on the context, it would be very useful to easily switch between different compo-
sition rules. In the context of embedded systems it may be preferable to reduce
the number of classes because of memory limitations, and completely merge the
aspect while in some other cases, it may be preferable to compose the aspect

Introducing Variability into Aspect-Oriented Modeling Approaches 501

"display time":
Observer <-> GUI

ObserverPattern | Observer, Subject, | [Observer e o
notifyingMethod(), | T <> Time
n i

notifyingMethod()

| +update(Clock s)

I <-> incrementTime()
Subject Z%
Observer observers -value : T 7T Clock
+register(Observer o) SemT initTime [time : Time
- +unregister(Observer o) iMEERIme) +incrementTime()
+update(Subject s) +notifyingMethod() +displayTime() 1 +changeValue()
+changeValue() +setTime(Time t) +register(Observer o)
observers +unregister(Observer o)

J *

Fig. 3. The Observer pattern merged into the base model

by inheritance in order to improve readability. Figure 3] illustrates another com-
position rule where Subject is merged into Clock whereas GUI inherits from
Observer.

This motivating example has shown the needs of variability in two contexts i.e.
matching and adaptation. There is also a need for functional variability e.g. how
to design many versions of the Counter pattern (total or average for example).
Since Software Product Line approaches [I7] can help modeling this kind of
variability, we do not cover them into this paper.

3 An AOM Approach Overview

The approach which is presented in this paper is only one among many possi-
ble approaches for addressing AOM [BITT]. Tt focuses on providing capabilities
for concerns (functional or extra-functional) to be reused. In this context, the
expressiveness of the concern modeling is not a primary objective. For exam-
ple, contrary to other non aspect-oriented approaches like [I7], we do not offer
more capabilities for expressing the variability of concerns than the one provided
by the underlying metamodel used for the concern specification. The approach
called SMARTADAPTERS had been applied first to Java programs [8] and more
recently to EMF models. It leverages the notions of subject [14] and aspect pro-
gramming [6[7]. Tts key concepts are concerns, adapters, adaptations and
adaptation target. The main idea is the following: each concern identified as
reusable should go with an adapter which specifies a composition protocol,
that is a set of adaptations and adaptation targets describing how the concern
should be composed with other concerns when it is reused. This protocol will
guide the designer to identify the specific parts for reuse when composing a
reusable concern into a target concern.

We propose to explain this approach through the reuse of the Observer de-
sign pattern. First we define its composition protocol (see Figure H). For better
readability, we use a concrete textual syntax in order to specify this composition
protocol. Details in the concrete syntax are not important and the syntax might
be slightly modified in the future.

502 P. Lahire et al.

01 concern designpattern.observer
02 abstract adapter ObserverAdapter {

03

04 abstract Class target “class(es) representing an observer” : observerClass
05 abstract Class target “class(es) representing a subject ” : subjectClass

06 abstract Method target “ method(s) notifying changes ” : notifyingMethod
07 require notifyingMethod in subjectClass.*

08

09 adaptation becomeObserver “Modify class to make it an observer” :

10 inherit Observer in observerClass

11

12 adaptation becomeSubject “Modify class in order to make it a subject ” :
13 merge class subjectClass with Subject

14

15 adaptation introduceLink “introduce an association (subject to observer) 7 :
16 introduce Association observers (subjectClass -j observerClass)

17

18 adaptation notifyingObserver

19 “ Alter notifyingMethods to tell observers about modification” :

20 extend method notifyingMethod(...) with after { changeValue(); }

21

22 abstract adaptation updateObserver “add an update facility to observers ” :
23 introduce method public void update(subjectClass s) in Observer

24

25 ... Protocol includes also :object initialization,observers registration,...
26 }

Fig. 4. Snippet of the composition protocol for the Observer design pattern

Let us now detail this example illustrated in Figure @l Line 01 specifies the
concern to be reused. The adapter called ObserverAdapter describes its composi-
tion protocol (Line 02). When the composition protocol is defined the concern(s)
that may reuse it are not known so that we do not know the classes corresponding
to the objects acting as subjects and those acting as observers. The only thing
that we may assume is that there are classes that act as observers and subjects.
They are represented by the two abstract targets of type class: observerClass
and subjectClass (Lines 04 and 05). Each of these targets may be associated to
one or several classes at composition time.

Considering the design pattern Observer of Figure Bl any subject must in-
form an observer that its content has been modified by calling the method
changeValue. For the same reasons that the classes mentioned above are not
known the method(s) playing this role are also not known but they should exist
and be declared in the subjectClass (Lines 06 and 07). To ensure that the call to
change Value is performed by the method(s) notifyingMethod, the composition
protocol specifies an adaptation of type interception which adds this call at
the end of the corresponding method(s) (Lines 18 to 20).

More generally this kind of adaptation deals with some actions to be taken when
a classifier member (attributes, methods...) is accessed or called. These adapta-
tions allow the designer to add behavior at the beginning, end or around some
existing methods but also to add some treatment when an exception is triggered.
For attributes, interception may occur when the attribute is read or modified.

Let us continue with our example. To be able to call changeValue or any
other feature of class Subject, it is necessary to have access to it from within
the classes corresponding to subjectClass. This means that we have to specify
another adaptation. Two possibilities could be chosen: to merge all the features

Introducing Variability into Aspect-Oriented Modeling Approaches 503

of class Subject into subjectClass, or to make subjectClass inherit from Subject.
Here we choose an adaptation of type Merging (Lines 12 and 13).

Such adaptations deal mainly with packages, classifiers features and asso-
ciations. Method merging is particularly interesting if there is a support for
describing the behavior (programming constructs in KERMETA [I3], Sequence
diagrams in UML, etc.). At present time merging policies are mainly execution
of one method before the other; the handling of interlaced method bodies could
be inspired by approaches like [9]. Merging classifiers is either straightforward
(no conflict, name of features to be merged are identical, feature appear only
in one of the classes,...) or may need more information in order to relate the
features of the classifiers that need to be merged [2/16].

All these adaptations were dealing with the subjects. It is then necessary to
address observers and to also insert class Observer at the right place(s) in the
target concern. We chose here to inherit from it (Lines 09 and 10). Such adap-
tation is of type Introduction. It deals not only with superclass introduction
as it is the case here but also with adding classifier members (new attributes or
methods), as well as association. It is also possible to add a classifier invariant
or a method assertion (Precondition or postcondition).

We use the same type of adaptation to insert the association between subject
and observer classes as specified in the design pattern. Depending on the asso-
ciation to be introduced we may provide additional information. For example,
in the current case the association is unidirectional from subjects to observers
(Lines 15 and 16).

It only remains one thing to do: to add to the observerClass class(es) a method
update (also an adaptation of type Introduction), that reacts to the changes
made in the subject object. At this time we do not know the content of this
feature because we do not know what the purpose of the target concern is. This
is why the adaptation is abstract. The advantage to plan this adaptation in the
composition protocol is to guide and control the reuse of the design pattern.

This composition protocol continues with the description of the initialization
and the registration of observers but for space reasons we do not include it.

Let us suppose now that this concern is reused by the concern described
in Figure [1 (Section) dealing with mobile phones. So we need to compose
these two concerns. The information which is imcomplete into the composition
protocol (abstract targets and adaptations) is described into a concrete adapter
ApplicationPhone which specializes the adapter ObserverAdapter as it is shown
in Figure Bl Please note that, in this example, the insertion is in situ. It means
that adaptations are performed within the concern application.phone. In some
cases, it is better to make the composition ex situ that is to say to compose the
two concerns into a new one.

In the above composition protocol (Figure 4) we made several assumptions
about the target concern. For example, we suppose that the association does
not yet exist between the classes GUI (the observer) and Clock (the subject).
This is a drawback because if the composition does not deal with a concern
which satisfies these assumptions, it will be impossible to reuse the composition

504 P. Lahire et al.

01 concern application.phone
02 compose designpattern.observer with application.phone
03 adapter ApplicationPhone extends ObserverAdapter {

05 target typeOfValue = Time

06 target subjectClass = application.phone.Clock

07 target observerClass = application.phone. GUI

08 target notifyingMethod = application.phone.Clock.incrementTime()

12 adaptation observerUpdate :

13 introduce method public void update (subjectClass s) in observerClass {
14 setTime(time++)

14 displayTime()

15

16 }

Fig. 5. Reuse of Design Pattern Observer for a mobile phone

protocol in another context. Thus, we reach the conclusion that we need to
introduce some variability within the composition protocol. This is the purpose
of section Ml

4 Extension to Support Variability

In Section[F we proposed an overview of the SMART ADAPTERS approach. We now
consider the needs of variability pointed out in Section 2l Our objective in this
section is to introduce matching and adaptation variability into the composition
protocol in order to make it more reusable and as consequence to make the
concern itself more reusable. SMARTADAPTERS is a support for explaining our
approach but we plan to address other AOM approaches. Variability mechanisms
introduced are inspired by Software Product Lines approaches, especially [I7].

Figure [l shows what we should introduce in an adapter to better customize
the composition protocol. In Section [§ we will describe the metamodel containing
the capabilities that are suggested here.

We may note first that adapter ObserverAdapter is now preceded by the key-
word derivable (Line 02). This means that it may present several alternatives to
implement the composition and may consider some adaptation targets or adap-
tations as optional. This adapter acts as a template where some information
should be given in order to choose between possible variants or options.

A first possible customization is dealing with the insertion of the features pro-
vided by classes Subject and Observer. Depending on the target concern or more
generally on the context of reuse, it may be interesting to have the choice between
inheriting from those classes or merging their features into observerClass and sub-
jectClass. In Figuredla choice is made a priori. In Figure[d, the choice is described by
the Lines 09 to 24 through a clause Alternative InsertionChoices which specifies
here two variants (more variants could be defined if needed). A variant may con-
tain several adaptation target declarations and adaptations. Implicitly this means
that these targets and adaptations are dependent from each others.

Now, we can introduce the update method. If we merge the Subject and the Ob-
server, we need to introduce the update method in the class where the Observer
is merged i.e., observerClass (Lines 22 and 23). Subject is also merged in a target

Introducing Variability into Aspect-Oriented Modeling Approaches 505

01 concern designpattern.observer
02 derivable adapter Observerddapter {

03

04 abstract Class target ‘‘class(es) representing an observer’’ : observerClass
05 abstract Class target ‘‘class(es) representing a subject ’’ : subjectClass
06 abstract Method target ‘¢ method(s) notifying changes ’’ : notifyingMethod
07 require notifyingMethod in subjectClass.*

08

09 Alternative InsertionChoices ‘ Choice between inheritance and merging’’ {
10 [Vinheritancel ‘¢ Inheritance variant ’’

11 adaptation becomeSubject ¢‘Modify class in order to make it a subject ’°
12 inherit class Subject in subjectClass

13 adaptation becomeObserver °‘Modify class to make it an observer’’

14 inherit Observer in observerClass

15 abstract adaptation updateObserver °‘add an update facility to observers °’’
16 introduce method public void update(Subject s) in Observer

17 or else [Vmergel ‘¢ Merging variant ’°°

18 adaptation becomeSubject ‘¢ Modify class in order to make it a subject °°
19 merge class subjectClass with Subject

20 adaptation becomeObserver °‘Modify class to make it an observer’’

21 merge class observerClass with Observer

22 abstract adaptation updateObserver °‘add an update facility to observers ’’
23 introduce method public void update(subjectClass s) in observerClass
24 }

25

26 Alternative NotificationTime ‘¢ Choice of notification time’’ {

27 [Vbegin] ‘¢ Method beginning variant’’

28 adaptation notifyingObserver

29 ‘¢ Alter notifyingMethods to tell observers about modification’’

30 extend method notifyingMethod(...) with before { changeValue(); }

31 or else [Vend] ‘¢ Method ending variant’’

32 adaptation notifyingObserver

33 €< Alter notifyingMethods to tell observers about modification’’

34 extend method notifyingMethod(...) with after { changeValue(); }

35 }

36 ...Protocol <ncludes also :object initialization,observers registration,...
37 }

Fig. 6. Composition protocol for the Observer with variability

class, therefore the parameter of the update method has the type of this target class
i.e. subjectClass. If the pattern is composed by inheritance, the update method is in-
troduced in the Observer class itself, and the parameter has the type Subject (Lines
15 and 16). The update method is very related to the composition variant, so we
integrate its introduction in the InsertionChoices alternative. Depending on the
chosen composition variant, the right update method will be introduced. In both
cases the contents of this method is not already known, that is why this method is
abstract.

A second possible customization is related to the location of the call to method
change Value within notifyingMethod. It may be useful depending on the target con-
cern to notify the subject changes to observers either at the beginning or at the end
of the execution of notifyingMethod. The corresponding variants are described by
the Lines 22 to 31 through asecond clause Alternative. Each variant corresponds
to a unique adaptation of type Interception.

In figure[fwe extend this protocol to experiment the combination of optional
and constraint clauses. We now address the association between observers and
subjects (called observers in the design pattern of Figure[2)). It is very likely that

506 P. Lahire et al.

01 concern designpattern.observer
02 derivable adapter Observerddapter {

03

04

05 is optional AssociationExist ‘¢ association (observers to subject) may exist ’’ {
06 abstract Association target ‘‘ handling association mapping’’

o7 subjectObserverAssociation

08 adaptation mergelLink °‘merge association with the Observer pattern one °°
09 merge association subjectObserverAssociation with observers

10 require subjectObserverAssociation C (subjectClass -> observerClass)
11 }

12

13 is optional LinkModificationl ‘¢ Ezisting assoctiation may be renamed °’ {

14 abstract adaptation renamelLink ‘rename association-end of association
15 rename association subjectObserverAssociation

16 is optional LinkModification2 ‘¢ Ezisting association may be redefined ’°

17 adaptation alterLink ‘‘add an association-end to association 0

18 add association observers (subjectClass -> observerClass)

19 .

20 constraint AssociationHandling ‘‘working on association implies it ewists ’’ {
21 LinkModificationl depends on {AssociationExist}

22 LinkModification2 depends on {AssociationExist}

23 {LinkModificationl, LinkModification2} are exclusive

24 }

25 }

Fig. 7. Options and matching variability

depending on the target concern this association may already exist in it. In order
to authorize both situations we propose some optional adaptations (Lines 05 to
18). A first optional clause assumes that the association exists in the target con-
cern and is identified by the target subjectObserverAssociation; it must be merged
with observers. Then it may be possible to specify a renaming adaptation because
nothing can ensure that it has the same association-end name in the target con-
cern. It is also possible to add an association-end when the association exists but
in the opposite way in this concern.

The example developed in Figures [Gl and [1 especially illustrates the needs for
optional parts and variant definitions. In order to insure the consistency of the
composition protocol, the user can define mutual exclusion and dependency con-
straints. These constraints restrict the number of possible combinations to sen-
sible ones. In our example, we want to ensure that i) renaming and redefinition
may not be performed if the association between observers and subjects does not
exists in the target concern and, ii) renaming its association-end is incompatible
with adding observers. These contraints are expressed (Figure[7]- Lines 20 to 23)
by introducing dependencies between LinkModificationl, LinkModification2 and
AssociationExists options and a mutual exclusion between the first two options.

Now, we can compose the variable “Design Pattern Observer” into the mobile
phone base model. In addition to the tasks described in figure [it is necessary to
select options and variants (adaptation targets and adaptations) which are suit-
able for the concern “mobile phone”. Of course the abstract adaptation targets
and adaptations to concretize in the adapter ApplicationPhone depends on the
variants and options which are selected (Figure[q]).

The selection is made through a clause derive (Lines 05 to 08). No association
can match the observers association in the target model, so the optional clauses

Introducing Variability into Aspect-Oriented Modeling Approaches 507

01 concern application.phone
02 compose designpattern.observer with application.phone
03 adapter ApplicationPhone derives ObserverAdapter {

04

05 derive designpattern.observer with {

06 options: none

07 alternatives: InsertionChoices#[Vinheritance], NotificationTime# [Vend]
08 1}

09

10 target typeOfValue = Time

11 target subjectClass = application.phone.Clock

12 target observerClass = application.phone. GUI

13 target notifyingMethod = application.phone. Clock.incrementTime()

15 adaptation observerUpdate :

16 introduce method public void update (Subject s) in observerClass {
17 setTime(time++)

18 displayTime()

19

20 }

Fig. 8. Reuse of Design Pattern Observer for a mobile phone

are not selected (note that an association exists in application.phone but in the
opposite way so that it would be possible to keep only one association selecting
AssociationEzist and LinkModification2). We also select the two variants associ-
ated to the alternative clauses InsertionChoices and Notification Time. Finally, we
have to concretize the update method, specifying that the GUI has to increment its
variable time and refresh the screen. Concretizing abstract methods in a concrete
adapter is close to the mechanism defined in the AOP approach of Hannemann et
al. [B5]. Mandatory targets and adaptations of Figure [l are processed normally in
the same way as it is done in Figure[3l

Figure[@shows two types of composition i.e, merging and inheritance, in order
to realize the display time requirement. Inheritance corresponds to the adapter
we have derived above, while Mlerging corresponds to another possible derivation
provided by the protocol.

Merging Inheritance Subject
observers *
* Observer observers |+register(Observer o)
\ ; Fwnregister(Observero)
GUI : _CIOCk +update(Subject s) * « [#changeValue()
fime - Time initTime -time : Time % Z%
- - +incrementTime()
+displayTime =
+set$imye(Tim(; 1) 1 4 [tehangeValue() cul Clock
+update(Clock clk) +register(GUI gui) e initTime -time : Time
+unregister(GUI gui) -time : Time = =
= i
displayTime() +incrementTime()

+setTime(Time t)

Fig. 9. Two possible compositions of the Observer pattern

In the motivating example, we were not able to realize the total outgoing calls
with the standard Counter pattern because the template approach was not flexible
enough. We can now realize the total calls and the total outgoing calls require-
ments using the same Counter pattern. Indeed, the Counter pattern now can be
applied either if the class acting as Counter is present or not in the base model. For

508 P. Lahire et al.

space limitation, the derivable adapter and the concrete adapter are not shown but
the principle is similar to the Observer protocol (Figures[6] [[land [{]).

Finally, it is interesting to note that introducing variability did not affect the
guidance and the controls when reusing a derivable concern. On the contrary, the
choices induced by the addition of variability is also controlled and guided thanks
to the expressiveness of the composition protocol.

5 Metamodeling and Implementing AOM with Variability

This section proposes a metamodel of concerns that includes concepts for adapters
and variability illustrated in sections Bl and [l This metamodel aims at giving a
precise formulation of concerns and make it possible their integration into modeling
tools. Figure[[0lshows an excerpt of the metamodel where concepts introduced to
handle variability are identified with a circle at the upper left. The key concepts of
the metamodel are concern, adapter, target and adaptation.

[T — ! ! -
isApplicableTo(DerivableAdapter) 7.+ |name:String T
comment : String 1.7
TargetDeclaration

o

xor

Adaptation
JaN

Declaration

concretizedTarget
redefinedTarget
Declaration

target

o EntityDependenc:
- source : AdapterElement 0.
superAdapter targets : List< AdapterElement >

‘ ‘ ‘ MutualExclusion
entities : List<AdapterElement>

0.*

newAdaptation

gt

‘ PackageEntity ‘

compositionProtocol

\
PointcutExpression newTargetDeclaration : List<TargetDeclaration>
s 2

N N

xorConstraints
dependencies
alternatives

isProtocolOf

RegularPointcut $ - 1
resolve(Derivation) : Adapter o
options : List:

Fig. 10. Metamodel of SmartAdapter with variability

A reusable concern (class ReusableConcern) is associated to a package (class
PackageEntity) which contains the concern descriptiorﬁ and its protocol of compo-
sition (class AbstractAdapter). Concerns are not always reusable (class Concern).

3 We assume that a concern is described by a package of classes similarly to a UML class
diagram.

Introducing Variability into Aspect-Oriented Modeling Approaches 509

For example the concern which describes the GUI of an application is rather spe-
cific and may not be reusable; such concerns do not have a composition protocol
but could be composed with other concerns. A concern refers to as many concrete
adapters (ConcreteAdapter) as there are concern to be integrated with it.

An adapter (class Adapter) is identified by a name and may inherit (i.e. special-
ize) from another adapter. An adapter may be abstract (class AbstractAdapter),
concrete (class ConcreteAdapter) or derivable (class DerivableAdapter). Each
adapter contains adaptations (class Adaptation) and adaptation targets (class Tar-
getDeclaration). A derivable adapter is an abstract adapter which supports vari-
ability: it allows the designer to customize the set of adaptations or/and the set
of adaptation targets by expressing options, alternatives, dependencies and exclu-
sions. Such an adapter is not intended to be used directly for composing concerns
but serves to derive an adapter. A derived adapter is obtained using the method
resolve of class DerivableAdapter which takes a derivation (class Derivation) pa-
rameter to select the adaptations and the adaptation targets among the options
and variants. This adapter may be concrete, abstract or derivable depending on
what is resolved by the derivation parameter.

Atarget declaration (class TargetDeclaration) specifies an adaptation target that
matches the entities on which the adaptations relies on. An adaptation target may
identify just one required element (class AbstractTargetDeclaration) (like the ob-
servers or the subjects in the design pattern Observer) or be fully specified (class
ConcreteTargetDeclaration) by referencing the real element (class, method, ...) to
adapt.

An adaptation (class Adaptation) specifies the action to be taken for an element
of the reusable concern when it is composed. The metamodel includes a hierarchy of
adaptation classes that are typed according to the types of target entities (package,
classifier, method, attributes and association) and reflect the four kinds of adap-
tation currently proposed: interceptions, introduction, merging and redefinitions.
Figure[IOshows two of the adaptation classes used in the previous examples (class
ClassMerging and class MethodIntroduction).

To be able to take into account several variants for the integration of the concern,
the metamodel includes the concept of alternative entity (EntityAlternative). An
alternative entity may refer to several adaptations or adaptation targets (see zor
link) but only one will be selected at composition time.

Adaptations, adaptation targets and even alternatives can be optional in a
derivable adapter, that is to say that they are planned in the composition protocol
but they could be retained or not when the concern is composed with another one.
Optional elements of a derivable adapter are referenced by its options link.

Practically several adaptations or adaptations targets may be described in a
given variant or be declared as an optional block. For this purpose we propose a
way to group thoses entities (class Entity Conjunction).

In a derivable adapter, classes EntityDependency and MutualFxclusion allows
designers to specify that an AdapterElement (variant or option) may not be se-
lected with other ones or on the contrary must be selected if some others are se-
lected. These classes define constraints that are checked before deriving a derivable

510 P. Lahire et al.

adapter, in order to insure the consistency of the derived adapter. If a derivation
does not respect these constraints then an exception is raised that asks the user to
modify the derivation.

The metamodel described above has been used to build a modeling tool inte-
grated in the Eclipse environment. This tool currently provides two main func-
tionalities: designing models of concerns and adapters; composing concerns from
their models. This tool has been implemented using the Eclipse Modeling Frame-
work (EMF) and the Kermeta language [I3]. We have exploited EMF to define a
Ecore version of our metamodel, reusing the Ecore metamodel for the description
of concerns. The Kermeta language has been exploited to extend the Ecore ver-
sion of our metamodel with operational behavior. This behavior performs several
tasks related to the design and composition of concerns: it checks the consistency of
adapters, computes derived adapters and compose elements of concerns from a set
of adaptations. At this time, we are investigating the design of a concrete textual
syntax for our metamodel like the one used in the previous section and we plan to
build the concrete syntax tool using a meta-model centric approach as [12].

6 Related Work

There exists numerous AOM approaches but few of them support variability mech-
anisms at the composition level [AI6JI]. In [2], Clarke et al. model an aspect in
a template package specifying the structure and the behavior of the aspect with
a class diagram and sequence diagrams. The template is composed of model ele-
ments present in the concern’s class diagram and specifies the elements that have
to be matched in the target model. There is no functional or matching variabil-
ity mechanism. The composition relationship authorizes multiple bindings i.e. it
is possible to match several target model elements to the same concern model el-
ement. Adaptation lacks variability: concerns are indeed always merged into the
target model. Note that it is possible to generate AspectJ code to postpone the
weaving at code level. Our adaptation protocol allows the designer to define dif-
ferent variants of how the concern will be integrated in the target model. All the
variability mechanisms we have identified may be adapted to Theme.

Muller et al. [T1] also propose an approach to compose a reusable model ex-
pressed as a template package with an existing model. To express this composition,
they introduce an apply operator that specifies the mapping between template pa-
rameters and elements of the target model. Their approach addresses variability at
the composition level by giving the capacity to annotate the apply operator with
different strategies such as "merge” or ”view”. Strategies are only provided to get
different resulting models. Compared to our proposal, this solution does not offer
any mechanism to express options and variants for the reusable model. It is also
less flexible as it does not offer finer grain mechanisms to control how elements of
reusable and target models must be composed.

France et al. [16] have developed a systematic approach for composing class
diagrams in which a default composition procedure based on name matching can
be customized by user-defined composition directives. These directives constrain

Introducing Variability into Aspect-Oriented Modeling Approaches 511

how class diagrams are composed. The framework automatically identifies conflicts
between models that have to be composed and it solves them thanks to the compo-
sition directives. Contrary to Theme, composition directives address the weaving
only from the structural point of view. They consider the composition as a model
transformation. The variability can be addressed by designing several composi-
tion directives depending on the integration context. However, the definition of the
composition directive would then become messy and error-prone. Besides, it is a
symmetric AOM approach in which they do not differentiate between aspect model
and base model. Consequently, they do not currently provide a pointcut language
to manage the composition.

In [5], Hannemann et al. propose an AOP approach to implement design patterns
with AspectJ. They propose up to seven different implementations for each design
pattern. The only variability mechanism is the generalization relationship between
an abstract aspect and an aspect. For example, the update method of the Observer
is declared abstract in an abstract aspect and its contents will be specified in a
concrete aspect. We also use this mechanism but the variability mechanisms we
introduced allow a concern to be applied in multiple contexts whereas we would
have to create a new aspect depending on the context with the Hannemann et al.
approach. Option and variant notions do not exist, reducing the reusability of the
aspects. Our concerns are adaptable and do not need modifications to be applied,
but only customization. Introducing the same variability mechanisms at the code
level code could enhance the expressiveness of AOP language such as AspectJ.

7 Conclusion

In this work, we propose an approach for introducing variability in aspect-oriented
modeling (AOM). To achieve this goal, two important parts of such an AOM ap-
proach were needed: A concern model and a weaver that support variability. In
this paper we mainly focus on the second one. Indeed, the variability in the con-
cern specification depends on the expressiveness of the meta-model dedicated to
concern modeling. Consequently, a reasonable solution to integrate variability in
the concern model can be inspired by product lines researches and more precisely
by [17].

To introduce variability in the weaving process, the composition meta-model of
our AOM approach has been extended. These extensions concern the adaptations
primitives and the pointcut specification. They are composed of a set of entities
specifying optional parts, alternatives, dependencies and mutual exclusion con-
straints. These extensions allow the user to design a family of aspects at the design
level that can be derived to be applied in a particular context.

One of the main benefits of building a composition protocol is the capability to
control and guide the software architect when he designs new applications. The
variability introduction does not affect the guidance and the control when reusing
a derivable concern. On the contrary, the choices induced by the addition of vari-
ability are also controlled and guided thanks to the expressiveness of the compo-
sition protocol.

512 P. Lahire et al.

In the SMARTADAPTERS platform, we plan to improve the pointcut language
and the target identification. One possible solution is to describe the pointcut with
atemplate model and to use pattern matching [I5] to identify targets. We also want
to generalize the SMART ADAPTERS to various metamodels, not only class diagrams
or Java programs. In [10], we have proposed and implemented a metamodel-driven
approach to generate domain-specific AOM frameworks that uses the aforemen-
tioned pointcut language. Finally, AOM approaches can be used to manage vari-
ability in software product line. Our work can be merged to these approaches to
show why variability is also needed in the aspects in order to use an AO approach
to build software product line.

References

1. Aldawud, O., Elrad, T., Bader, A.: UML Profile for Aspect-Oriented Software De-
velopment. In: 3rd International Workshop on Aspect Oriented Modeling (In con-
junction of AOSD’03), Boston, Massachusetts (March 2003)

2. Baniassad, E., Clarke, S.: Theme: An Approach for Aspect-Oriented Analysis and
Design. In: ICSE ’'04. Proceedings of the 26th International Conference on Software
Engineering, pp. 158-167. IEEE Computer Society, Washington, DC, USA (2004)

3. Barais, O., Le Meur, A.F., Duchien, L., Lawall, J.: Safe integration of new concerns
in a software architecture. In: ECBS ’06. Proceedings of the 13th Annual IEEE In-
ternational Symposium and Workshop on Engineering of Computer Based Systems,
pp. 52-64. IEEE Computer Society, Washington, DC, USA (2006)

4. Elrad, T., Aldawud, O., Bader, A.: Aspect-Oriented Modeling: Bridging the Gap
between Implementation and Design. In: Batory, D., Consel, C., Taha, W. (eds.)
GPCE 2002. LNCS, vol. 2487, pp. 189-201. Springer, Heidelberg (2002)

5. Hannemann, J., Kiczales, G.: Design Pattern Implementation in Java and Aspectj.
In: OOPSLA ’02. Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pp. 161-173. ACM
Press, New York, NY, USA (2002)

6. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
Overview of Aspectj. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327-353. Springer, Heidelberg (2001)

7. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J-M.,
Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220-242. Springer, Heidelberg (1997)

8. Lahire, Ph., Quintian, L.: New Perspective To Improve Reusability in Object-
Oriented Languages. Journal Of Object Technology (JOT) 5(1), 117-138 (2006)

9. Mens, T., Kniesel, G., Runge, O.: Transformation Dependancy Analysis, a Compar-
ison of two Approaches. In: Rousseau, R., Urtado, C., Vauttier, S. (eds.) Proceedings
of LMO 2006, Langages et Modeles a Objets, Nimes, France, pp. 167-182. Hermes-
Lavoisier (Mars 2006)

10. Morin, B., Barais, O., Jézéquel, J.M., Ramos, R.: Towards a Generic Aspect-Oriented
Modeling Framework. In: 3rd International Workshop on Models and Aspects (In
conjunction of ECOOP’07), Berlin, Germany (2007)

11. Muller, A., Caron, O., Carré, B., Vanwormhoudt, G.: On Some Properties of Param-
eterized Model Applications. In: Proceedings of ECMDA’05: First European Con-
ference on Model Driven Architecture - Foundations and Applications, Nuremberg,
Germany (November 2005)

12.

13.

14.

15.

16.

17.

Introducing Variability into Aspect-Oriented Modeling Approaches 513

Muller, P.A, Fleurey, F., Fondement, F., Hassenforder, M., Schneckenburger, R.,
Gérard, S., Jézéquel, J.M: Model-driven analysis and synthesis of concrete syntax.
In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 98-110. Springer, Heidelberg (2006)

Muller, P.A., Fleurey, F., Jezequel, J.M.: Weaving Executability into Object-
Oriented Meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, Springer, Heidelberg (2005)

Ossher, H., Tarr, P.: Hyper/J: Multi-Dimentionnal Separation of Concern for Java.
In: Ghezzy, C. (ed.) Proceedings of ICSE’00, Limerick, Ireland, ACM Press, New
York (2000)

Ramos, R., Barais, O., Jézéquel, J.M.: Matching model-snippets. In: MoDELS ’07.
Model Driven Engineering Languages and Systems, 10th International Conference,
Nashville, Tennessee (2007)

Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N., Song,
E., Georg, G.: Directives for Composing Aspect-Oriented Design Class Models. In:
Rashid, A., Aksit, M. (eds.) Transactions on Aspect-Oriented Software Development
1. LNCS, vol. 3880, pp. 75-105. Springer, Heidelberg (2006)

Ziadi, T., Jézéquel, J.M.: Families Research Book. In: Product Line Engineering with
the UML: Products Derivation. LNCS, pp. 557-588. Springer, Heidelberg (2006)

	Introducing Variability into Aspect-Oriented Modeling Approaches
	Introduction
	Motivating Example
	Matching Variability
	Adaptation Variability

	An AOM Approach Overview
	Extension to Support Variability
	Metamodeling and Implementing AOM with Variability
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

