
In: Proceedings of the 2nd Workshop on Model Size Metrics (MSM’07) at MoDELS’2007, 2007

Counts count

M. Monperrus, J. Champeau, B. Hoeltzener

ENSIETA
2, rue F. Verny

F-29806 Brest cedex 9
Contact: martin.monperrus@ensieta.fr

Abstract. Based on the 2006 edition of the Model Size Metrics work-
shop, we believe that counts are undervalued as useful model metrics.
In this position paper, we provide arguments from the literature so as
to consider counts as important metrics for the model measurement.
We then state associated issues and sketch a model-driven framework
to raise the abstraction level of the implementation of model metrics,
starting with count metrics.

1 Introduction

According to historians [1], writing was invented by the end of the 4th millennium
BC to record counts, for instance the number of animals in a herd. Indeed, the
first quantitative knowledge of any system is a count.

However, in regard to the previous edition of this workshop1, it seems that
model measurement by means of counts is undervalued . The following quota-
tions are given so as to illustrate this statement. McQuillan et al. [2] state that
the majority of the UML metrics proposed are primarily simple counting met-

rics. Weil et al [3] do not believe, however, that simply counting the element in

a model to produce a single number provides a meaningful result. And Stoerrle
[4] considers that the simplest and most general approach is to always count ev-

erything, and instrument the count by an external weight table. The substantive
“simple” is used three times: simple, simply, simplest without any counterbal-
ancing adjectives.

In fact, we agree with the cited authors, a count itself is really simple. But
replaced in a broader context, we believe that counts i.e., number of metrics,
are more important than they first seem to be.

To set the context of our reflexion on model metrics, we consider the Goal-
Question-Metric (GQM) approach [5]. The GQM approach helps to specify a
measurement system targeting a particular set of issues. Since this position pa-
per does not introduce a particular metric, one cannot use directly the GQM
approach, but a kind of GQM at a higher level of abstraction. In fact, we aim
to show that count metrics are relevant answers to several questions linked to a
primary goal that is measuring models. To sum up this point, we now consider
the standard GQM notation:

1 Model Size Metrics workshop at Models’2006, Genova, october 2006

In: Proceedings of the 2nd Workshop on Model Size Metrics (MSM’07) at MoDELS’2007, 2007

Goal Improve the quantitative knowledge on models from the modeler point of
view.

Question #1 What model metrics can be related to development cost?
Question #2 What model metrics can be related to psychological complexity?
Question #3 What model metrics can be related to product defects?
Metrics The family of count metrics.

The paper is built as follows. The premises of our reflexion are elements of the
software metrics literature. These elements are grouped into propositions that
are: the software measurement literature is rich of useful count metrics; the Oc-
cam’s razor principle defends counts; industrial measurement plan may include
counts; complex metrics may be interestingly grounded by counts; counting is a
fully-fledged modeling goal. These propositions support our initial claim: Count

counts. We then discuss the consequences and present a model-driven framework
as a preliminary answer.

2 Main arguments

2.1 Count metrics are important in software engineering

Metrics in model-driven engineering (MDE) can be compared with their software
metric ancesters. Existing software metrics are defined as counts or are count-
based. In this perspective, the undervaluation of counts in MDE described above
constrats with the rich literature on counts in the software measurement domain.

For instance, whatever the definition (see [6] for several variations), the lines
of code metric is a count. Empirical studies based on historical data have shown
that the line of code metric is relevant to the correlation between the software
product and the cost [7], to evaluate an attribute of the software quality (e.g.
the defect rate metric), or to study the team productivity [8].

Another example is the structural complexity SC [9] (see figure 1). The struc-
tural complexity is part of the psychological complexity of software [10]. It im-
pacts the time to understand and modify a system accordingly. The definition of
SC [9], exposed in equation 1, involves the number of edges |A| and the number
of modules |M |.

SC =
|A|

|M |
(1)

The goal of this paragraph is not to list all software metrics which are counts
but to emphasize that known and useful software metrics are counts or count-
based. This is a clue not to discard counts in the upcoming generation of accepted
model metrics.

2.2 The application of the law of parsimony to metrics

Using more sophisticated measures do not necessarily guarantee better

results. Zuse [9, 410]

In: Proceedings of the 2nd Workshop on Model Size Metrics (MSM’07) at MoDELS’2007, 2007

Fig. 1. The structural complexity [9] is based on the counts of dependency edges
and modules

The Occam’s razor, also known as the law of parsimony [11], is a principle
most commonly stated as follows: Entities are not to be multiplied beyond neces-

sity. It is a polymorphic principle and one of its instance is the Keep It Short &

Simple (or K.I.S.S) engineering rule. This principle applied to model metrics is
a strong argument in favor of counts compared to more complex metrics. Counts
are very simple metrics, but may give model users the appropriate information.

Considering that the law of parsimony has been proven as a powerful principle
in both science and philosophy (e.g. [11]), counts should be considered with a
positive a priori judgement.

2.3 Counts ground more complex metrics

Counts are simple but can ground more complex metrics. For instance, in [12]
(cited in [13]) a linear relationship is found with a high statistical confidence
between defects and some language constructs in a given technical context (#
denotes the number of):

Field defects = 0.11#ifthen + 0.03#calls (2)

In this case, a defect measure is derived from some counts.
In a similar manner, the Cocomo model [7] outputs a cost with several in-

puts. Inputs are cost drivers and a size parameter. In a similar technical and
management context i.e. for similar cost drivers, the main parameter is a count
of lines of code.

Since counts are able to ground more complex metrics, they must be carefully
considered. The first way to build more complex metrics is to define a weighted
sum of counts (as in equation 2 and emphasized in [4] and [3]). It is not the
unique solution, non linear combinations in a bigger space of functions can be
explored.

2.4 Counts are part of industrial development processes

Counts are valuable enough to be adopted in an industrial context. Cheng et
al. [14] examine the automated metrics-based analysis and detection of design

In: Proceedings of the 2nd Workshop on Model Size Metrics (MSM’07) at MoDELS’2007, 2007

Error Description Model A Model B

SEVERE ERRORS
Abstract class not inherited 8 82
Circular association 0 8
Circular dependency 102 0
Abstract class inherits from concrete class 6 34
Class inherits from one or more non-base classes 0 5
Interface to class expected but defined improperly 1 53
Two methods exist in the model with the same signature 1 0
Two objects exist in the model with the same name 5 23
Parent accessing attributes/operations of child class 0 2

Table 1. Counts of violations of a given pattern from [14]

guideline violations in the Siemens context. In fact, the metrics explored in this
paper are counts of violations of a given pattern (see table 1) and ground the
whole analysis. In another company, Motorola [3], a list of around 150 counts of
UML elements is used to control the model-driven development process.

2.5 Counting is a fully-fledged modeling goal

Modeling goals are multiple [15]: execution, test generation, transformation, etc.
In domains where textual artifacts are historically done, modeling is a way to
isolate and count concepts. For instance, expressing software and system re-
quirements with models allows a precise count of explicited elements [16]. These
counts are difficult to retrieve with textual requirements with a similar validity
and reliability. In such cases, counting is part of the primary modeling goals.

3 Consequences

This section discusses the consequences and challenges raised by the fact that
counts count.

3.1 What artefacts in a model need to be counted?

The first challenge is to determine what needs to be counted in a model. A goal,
a metamodel, and a corpus of models set the context of an empirical answer. Ef-
fectively, according to the GQM approach, a goal precises the question. A model
space is identified with a metamodel or a part of a metamodel. For instance,
what are the elements of UML2 models to be counted and given as inputs of a
cost estimation model? Furthermore, since the quality of a metric resides on its
empirical validation [17], a validation must be done on a statistically big enough
corpus of data, with as less as possible of uncontrolled variables.

Unfortunately, our community does not yet have such a corpus of data. By
analogy with the non model-based database, maintained by the ISBSG [18], a

In: Proceedings of the 2nd Workshop on Model Size Metrics (MSM’07) at MoDELS’2007, 2007

database of count metrics of models and their associated dependent variables
would be of great use to select count metrics and validate count based derived
metrics. It is to be noted that the confidentiality of industry data obstruct the
making of database. Contrary to whole models, count metrics have the advantage
to be almost completely free of business information, yet are a kind of signature
of models.

3.2 How are these artefacts counted?

As stressed in [19] the natural language is not enough to precisely define metrics.
For instance, in the figure 1, do signatures include parameters name? To that
extent, an issue is to rigorously define what to count.

We also consider that the implementation of count metrics should satisfy the
following requirements:

1. The model measurement tool is accessible via a command-line interface.

2. The model measurement tool integrates into a modeling environment.

3. The code includes an API to implement estimation models on top of count
metrics.

4. The model measurement tool let the modeler to tailor implemented count
metrics.

5. The model measurement tool let the end-user to define its own business
relevant metrics.

6. The model measurement tool is independent of a specific persistence format.

Marinescu et al. [20] underline the issue of the implementation complexity of
object-oriented metrics. By analogy, and regarding to the above requirements,
we assume that the implementation of model metrics, including count metrics,
introduces a similar complexity. Consequently, it raises the development and
maintenance cost of a modeling environment and may hamper the code quality
of the whole tool. In section 3.3 below, this issue is adressed with an abstraction
level to define model metrics from which implementation and integration into a
modeling tool are automatically derived.

3.3 Model-driven implementation of count metrics for DSMLs

Motivation On the one hand, counts count. On the other hand, the implemen-
tation of count and count-based metrics can be costly. The development of a
domain-specific modeling language (DSML) is usually done with tight time-to-
market and cost constraints [21]. Thus, several frameworks and techniques try to
generate as much as possible of the DSML modeling environment and associated
tools (eg. [22]). Our motivation is to leverage code generation for the DSML met-
ric implementation, starting with counts, to eventually give an enhanced editor
with metric capabilities.

In: Proceedings of the 2nd Workshop on Model Size Metrics (MSM’07) at MoDELS’2007, 2007

Fig. 2. Model-driven engineering of counts

Sketch In figure 2, we sketch the whole process as an UML activity diagram.
The framework is involved in the three activities highlighted in gray.

The design of a DSML environment starts with the metamodeling activity.
The metamodel identifies the concepts of the domain and their relationships.
Tools are implemented to create, edit and browse models as well as to check the
conformity to the metamodel. Frameworks exist to generate such tools from a
metamodel (e.g. EMF/GMF2).

Then, the DSML designer defines the metrics at a higher level of abstraction
than code. The family of count metrics defines an abstraction level. Each metric
of this family is specified by a predicate [?]. The value of the metric is the number
of elements that satisfy the predicate. For sake of brevity, we only make a short
presentation of predicates. A predicate is a function that takes an object as input
and makes tests on it to determine if it has to be counted. Predicates refer to
the concepts expressed in the metamodel. The tests are made on type, attribute
values and/or referenced objects. A predicate can be as long and complex as
needed. A predicate can be expressed in a metric specific language or in an
existing query language (e.g. OCL). Two examples of predicates in an OCL-like
language are shown in figure 3.

A toolchain generates the DSML modeling environment, then compiles the
declarative description of metrics directly in the modeling tool to augment it
with counting capabilities (the two central activities of the figure 2).

Finally, the DSML user sees its model changes instantly reflected in the
metric values. This approach has three major advantages:

2 Eclipse/Graphical Modeling Framework, see www.eclipse.org/emf

www.eclipse.org/emf

In: Proceedings of the 2nd Workshop on Model Size Metrics (MSM’07) at MoDELS’2007, 2007

-- metric #1: number of leaf abstract classes

self.isTypeOf(Class) and self.abstract = true and self.children->size() = 0

-- metric #2: number of too big use cases

self.isTypeOf(UseCase) and self.includedUsesCases->size() > 10

Fig. 3. Examples of predicates expressed in OCL

– metrics are defined at a higher level of abstraction without caring about how
this can be implemented in a DSML modeling environment;

– the implementation of the enhanced editor is generated;
– DSML users can edit and measure models in the same environment.

Implementation We are developing a prototype of this framework where the
metamodel is expressed in Ecore3, and the predicates in Kermeta4, which has
good query capabilities. EMF/GMF generate editors in Java and the prototype
compiles the predicates inside the editor Java code.

4 Conclusion

We presented a set of arguments in order to rehabilitate counts as first class
citizens for the model measurement:

– software measurement history involves important count metrics;
– the law of parsimony prefers simple metrics;
– counts ground more complex metrics;
– counts are part of industrial measurement processes;
– counting is a fully-fledged modeling goal.

We hope that these arguments can provide a fertile basis for the discussion during
the upcoming workshop. We then discussed the consequences and sketched a
model-driven framework for count metrics. The contribution of this approach
is to give an instant, reliable and low cost implementation of count metrics
seamlessly integrated into modeling tools.

Acknowledgments The authors would like to thank B.Baudry and the anonymous
reviewers for helpful comments. This work is supported by a DGA grant.

References

1. J. Goody, The Domestication of the Savage Mind. Cambridge University Press,
1977.

3 XMI format of EMF
4 a model-driven language and workbench, see www.kermeta.org and [23]

www.kermeta.org

In: Proceedings of the 2nd Workshop on Model Size Metrics (MSM’07) at MoDELS’2007, 2007

2. J. McQuillan and J. Power, “Some observations on the application of software
metrics to UML models,” in Proceedings of the Model Size Metrics workshop at
Models’2006, 2006.

3. F. Weil, A. Neczwid, and K. Farbelow, “Model size metrics research in motorola,”
in Proceedings of the Model Size Metrics workshop at Models’2006, 2006.

4. H. Störrle, “On different notions of model size,” in Proceedings of the Model Size
Metrics workshop at Models’2006, 2006.

5. V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric ap-
proach,” in Encyclopedia of Software Engineering, Wiley, 1994.

6. C. Jones, Programming Productivity. McGraw-Hill, 1986.
7. B. Boehm, B. Clark, E. Horowitz, R. Shelby, and C. Westland, “An Overview of

the COCOMO 2.0 Software Cost Model,” in Software Technology Conference, Apr.
1995.

8. C. Jones, Software Productivity and Quality Today: The Worldwide Perspective.
Carlsbad, Calif.: IS Management Group, 1993.

9. H. Zuse, Software Complexity. Berlin: Walter de Gruyter, 1991.
10. B. Henderson-Sellers, Object-Oriented Metrics, measures of complexity. Prentice

Hall, 1996.
11. A. Baker, “Simplicity,” in Stanford Encyclopedia of Philosophy, The Metaphysics

Research Lab, Stanford University, 2004.
12. B. Lo, “Syntactical construct based apar projection,” tech. rep., IBM Santa Teresa

Laboratory Technical Report, California, 1992.
13. S. H. Kan, Metrics and Models in Software Quality Engineering. Reading, MA:

Addison Wesley, 1995.
14. B. H. C. Cheng, R. Stephenson, and B. Berenbach, “Lessons learned from auto-

mated analysis of industrial uml class models (an experience report).,” in Proceed-
ings of MODELS’ 2005, pp. 324–338, 2005.

15. D. C. Schmidt, “Model-driven engineering,” IEEE Computer, vol. 39, pp. 25–31,
February 2006.

16. R. J. Costello and D.-B. Liu, “Metrics for requirements engineering,” J. Syst.
Softw., vol. 29, pp. 39–63, Apr. 1995.

17. V. R. Basili and D. M. Weiss, “A methodology for collecting valid software engi-
neering data.,” IEEE Trans. Software Eng., vol. 10, no. 6, pp. 728–738, 1984.

18. The International Software Benchmarking Standards Group, “ISBSG repositories,”
2007.

19. A. Baroni, S. Braz, and F. Abreu, “Using OCL to formalize object-oriented design
metrics definitions,” in ECOOP’02 Workshop on Quantitative Approaches in OO
Software Engineering, 2002.

20. C. Marinescu, R. Marinescu, and T. Gı̂rba, “Towards a simplified implementation
of object-oriented design metrics.,” in IEEE METRICS, p. 11, 2005.

21. J. White and D. Schmidt, “Simplifying the development of product-line customiza-
tion tools via model driven development,” in MODELS’2005 workshop on MDD
for Software Product-lines: Fact or Fiction?, 2005.

22. A. Lédeczi, A. Bakay, M. Maroti, P. Vőlgyesi, G. Nordstrom, J. Sprinkle, and
G. Karsai, “Composing domain-specific design environments,” IEEE Computer,
vol. 34, pp. 44–51, Nov. 2001.

23. P. A. Muller, F. Fleurey, and J. M. Jézéquel, “Weaving executability into object-
oriented meta-languages,” in Proceedings of MODELS/UML 2005, 2005.

