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P2P Storage Systems: Data Life Time for

Different Placement Policies †

S. Caron and F. Giroire and D. Mazauric and J. Monteiro and S. Pérennes

MASCOTTE joint project team, INRIA, I3S, CNRS, Univ. Nice Sophia - B.P. 93, F-06902 Sophia Antipolis, France.

Les systèmes pair-à-pair à grande échelle représentent un moyen fiable pour stocker des données à faible coût. Afin

d’assurer la pérennité des données des utilisateurs, il est nécessaire d’ajouter de la redondance. Ainsi à partir de s

fragments initiaux composant un bloc de données, s + r fragments sont générés et répartis entre les pairs du réseau.

Nous étudions dans ce papier l’impact des différentes politiques de placement sur la durée de vie des données. Plus

particulièrement nous décrivons des méthodes pour calculer et approximer le temps moyen avant que le système perde

une donnée (Mean Time to Data Loss). Nous comparons cette métrique pour trois politiques de placement: deux sont

locales, distribuant les fragments sur des voisins logiques, et la troisième est globale.
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1 Introduction and System Description

The key concept of Peer-to-Peer storage systems is to distribute redundant data among peers to achieve

high reliability and fault tolerance at low cost. The addition of redundant data could be done by Erasure

Codes [6], such as Reed Solomon, as used by some RAID schemes. When using Erasure Codes, the original

user data (e.g. files, raw data, etc.) is cut into blocks that are in turn divided into s initial fragments. The

encoding scheme produces s+r fragments that can tolerate r failures. In other words, the original block can

be recovered from any s of the s+ r encoded fragments. In a P2P storage system, these fragments are then

placed on s+ r different peers of the network according to a placement policy, which is the main subject of

this paper. In [3] we studied placement policies by simulations, and we presented the amount of resource

(bandwidth and storage space) required to maintain redundancy and to ensure a given level of reliability. In

this paper, we present an analytical method to compute the metric Mean Time to Data Loss (MTTDL) for

three different placement policies. An extended version of this work can be found in [1]. The remainder

of this paper is organized as follows: first we briefly present the characteristics of the studied P2P storage

systems, followed by the related work. In Section 2, we describe the studied placement policies. Then, in

Section 3 we describe the analytical methods to compute exact values and approximations of the MTTDL

for the three policies. We conclude in Section 4.

Peer Failures. It is assumed that the peers stay connected almost all the time into the system. Indeed, in

our model a peer failure represents a disk crash or a peer that definitively leaves the system. In both cases,

it is assumed that all the data on the peer’s disk are lost. Following most works on P2P storage systems,

peers get faulty independently according to a memoryless process. For a given peer, the probability to fail

at a given time step is α.

Reconstruction Strategy. To ensure a durable long-term storage despite disk failures, the system needs to

continuously monitor the number of fragments of each block and maintain a minimum number of redun-

dancy fragments available in the network.

In this work, we study the case where the reconstruction starts as soon as one of its fragments is lost,

namely eager reconstruction strategy. In addition, the blocks are reconstructed in one time step, i.e., there is
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enough bandwidth to process the reconstruction quickly. After the reconstruction, the regenerated missing

fragments are spread among different peers. Hence, after each time step, the system is fully reconstructed.

We also studied systems with other reconstruction processes in [1], but we do not discuss them here due to

lack of space.

Related Work

The majority of existing or proposed systems, e.g., Intermemory, CFS, Farsite, PAST, TotalRecall, Glacier,

use a local placement policy. In [4] the authors disuss the impact of data placement. They do a practical

study of a large number of placement policies for a system with high churn. They exhibit differences of

performance in terms of delay, control overhead, success rate, and overlay route length. In the work closer

to ours [5], the authors study the impact of data placement on the Mean Time to Data Loss (MTTDL)

metric. All these studies consider the case of systems using replication. In this paper, we address the more

complex case of Erasure Codes which are usually more efficient for the same storage overhead [6].

2 Placement Policies

b1 b2

Global

b1 b2

Buddy

b1 b2

Chain

Figure 1: Placement of two blocks b1 and b2 in the sys-

tem using different policies.

It has been shown that fragment placement has a

strong impact on the system performance [3, 5]. We

study here three different strategies to place the s+ r

fragments of a block, as explained in the following

and depicted in Figure 1:

• Global Policy: fragments are sent to peers chosen

uniformly at random among all the N peers.

• Buddy Policy: peers are grouped into C indepen-

dent clusters of size exactly s+r each. The fragments

are then sent to a cluster chosen uniformly at random among the clusters. In this situation, all peers of a

cluster store fragments of the same set of blocks. It could be seen as a collection of local RAID like storage.

• Chain Policy: the network is seen as a directed ring of N peers and the fragments are sent to s + r

consecutive peers choosen uniformly at random. This policy corresponds to what is done in most distributed

systems implementing a DHT.

The use of the Global policy allows the system to distribute more uniformly the load among peers,

leading to a faster reconstruction and a smoother operation of the system [3]. However, the use of Buddy

and Chain, namely local strategies, brings practical advantages [2]. For example, the management traffic

and the amount of meta-information to be stored by the peers are kept low.

Figure 2: Illustrative example of the cumulative number of

dead blocks for a period of three years.

Data Loss Rate. A data loss occurs when at least

one block is lost. A block is considered lost if

it loses at least r + 1 fragments during one time

step, otherwise, recall that all the s + r fragments

are fully reconstructed at next time step. The data

loss rate for a given block comes straightforward.

This loss rate does not depend on the placement

policy (as soon as it is assured that all fragments

are stored on different peers). Hence, we have the

same expected number of lost blocks for the three

placement policies.

However, as stated in [3], the measure of the

time to the first occurrence of data loss shows that

the three policies have very distinct behaviors. It is

shown by simulations that the average quantity of

data loss per year is the same, but the distribution

across time of these losses is very different (see
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Figure 2). In the Global policy the losses occurs regularly. Conversely, they occur very rarely for the Buddy

placement, but, when they occur, they affect a large batch of data. Basically, all the blocks of a Buddy

cluster are lost at the same time. The behavior of the Chain policy is somewhere in the middle of both. In

the next section we propose analytical methods to compute these variations through the metric MTTDL.

3 Mean Time to Data Loss (MTTDL)

In this section we present methods to compute exact values and approximations of the MTTDL for the three

placement policies (see [1] for more details and proofs). For each policy, we calculate the probabilty Ppolicy

to lose data at any given time step. Then, we deduce MT T DLpolicy = 1/Ppolicy.

3.1 Global Placement Policy

In the Global policy, given i ≥ r +1 failures, the probability to lose a given block is

Pblock(i) = P [block loss | i failures] =
∑

s+r
j=r+1

(

i
j

)(

N−i
s+r− j

)

(

N
s+r

) ,

that is, the enumeration of the possible ways of placement that kill this block in the case of i failures,

over all the possible combinations
(

N
s+r

)

of placement. For a system with B blocks, the probability that

none of them is lost is (1−Pblock(i))
B. We then consider all the different failure scenarios, which gives

the probability to have at least one block loss Pglobal = ∑
N
i=r+1 P [i failures] · (1− (1−Pblock(i))

B), where

P [i failures] =
(

N
i

)

αi(1−α)N−i. Then comes directly MTTDLglobal = 1/Pglobal . Assuming that αN ≪ 1,

we obtain the following approximation

MTTDLglobal ≈
1

B ·
(

s+r
r+1

)

αr+1
(1)

3.2 Buddy Placement Policy

In the Buddy placement policy, given a cluster, the probability to have a block loss is the probability that

the cluster loses at least r + 1 peers, given by Pcluster = ∑
s+r
j=r+1

(

s+r
j

)

α j(1−α)s+r− j. In fact, when that

happens all the data stored on that cluster is lost. Remember that α is the probability of a given peer to fail

at one time step. Since all the C clusters are independent, the probability to have a data loss is given by

Pbuddy = 1− (1−Pcluster)
C, and thus MTTDLbuddy = 1/Pbuddy.

If the average number of cluster failures per time step C·Pcluster ≪ 1, as expected in a real system

(i.e., the probabilty of simultaneous cluster failures is small), then we have Pbuddy ≈ C·Pcluster, and so

MTTDLbuddy ≈ 1/(C ·Pcluster).
If (s + r)α ≪ 1, we can approximate even more and obtain Pcluster ≈

(

s+r
r+1

)

αr+1. In other words, this

assumption means that the probability of a peer failure α is small. We obtain

MTTDLbuddy ≈
1

N
s+r

·
(

s+r
r+1

)

αr+1
. (2)

3.3 Chain Placement Policy

For the Chain policy, the computation of MTTDLchain is more difficult than the two previous ones. From

the definition of the Chain policy, a data loss occurs only when r + 1 (or more) peer failures are located at

s+ r consecutive peers.

The idea is to survey the N sequences S1,S2, . . . ,SN of s+ r consecutive peers. First, we define a binary-

vector (bi,bi+1, . . . ,bi+s+r−1) for each Si, where the elements of this vector represent the state of peers of

Si: b j = 1 if the peer numbered j is failed, b j = 0 otherwise, i ≤ j < i+s+r. Remark that the binary-vector

of Si+1 is (bi+1, . . . ,bi+s+r).
Then, we use a discrete time discrete space Markov chain to represent the transitions between sequences.

Indeed, the set of states V of such Markov chain is the set of all possible binary-vectors of size s+r such that
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the sum of its elements is at most r, plus an absorbing state namely vdead (containing all other binary-vectors

of size s+ r in which the sum of its elements is greater than r). For a binary-vector (bi,bi+1, . . . ,bi+s+r−1),
we have two possible transitions: (bi+1, . . . ,bi+s+r−1,1) with probability α and (bi+1, . . . ,bi+s+r−1,0) with

probability 1−α. One of these vectors (states) could belong to vdead . Remark that we can see this Markov

chain as a De Bruijn graph.

First, we assume that the N peers are ordered in a line instead of a ring. We can compute the distribution

of probability π after N steps as follows: π = v0MN where v0 = (0,0, . . . ,0) is the state without peer failures

and M is the transition matrix of our Markov chain. In that case Pchain is π(vdead). To get the right value

of Pchain, we have to carefully take into consideration sequences containing peers on both borders of the

network (becoming a ring again). We get π = ∑v∈V P(v)(v0Mbi1
. . .Mbis+r

MN−(s+r)Mbi1
. . .Mbis+r−1

) with

P(v) the probability to have v as initial state, and Mk, k ∈ {0,1}, the transition matrix replacing α by k.

The number of states of the previously described Markov chain is |V | = 1 + ∑
r
i=0

(

s+r
i

)

states. We can

reduce it in order to have |V | = 1 + ∑
r
i=0

(

s+r
i

)

−∑
r
k=1 ∑

k−1
j=0

(

s+k−1
j

)

seeing some properties (see [1] for

details and proofs).

We also propose two other methods to compute an approximation of the MTTDL. The first one is based

on classical approaches for absorbing Markov chains. Indeed if we consider that the number of peers is

infinite, then the corresponding fundamental matrix gives us the average time tabs to absorption, that is the

average number of consecutive sequences of peers to find a data loss. Thus MT T DLchain ≈ ⌊tabs/N⌋. The

second one assumes that α is small enough to derive an analytical expression:

MT T DLchain ≈
1

N r+1
s+r

(

s+r
r+1

)

αr+1
. (3)

4 Discussion and Conclusion

The approximations given by the Equations (1), (2), and (3) give an interesting insight on the relation

between the placement policies. For instance, note that the ratio between MTTDLbuddy and MTTDLchain

does not depend of N, nor B, nor s. When B ≪
(

N
r+1

)

, the ratio between MTTDLbuddy and MTTDLglobal

depends on the number of fragments per disk B(s+ r)/N.

MTTDLbuddy

MTTDLchain

≈ r +1,
MTTDLbuddy

MTTDLglobal

≈
B(s+ r)

N
,

MTTDLchain

MTTDLglobal

≈
B(s+ r)

N(r +1)
.

We succeeded in quantifying the MTTDL of the three policies. The Buddy policy has the advantage of

having a larger MTTDL than the Chain and the Global. However, when a failure occurs a large number

of reconstructions start. When the bandwidth available for reconstruction is low, the reconstructions are

delayed which may lead to an increased failure rate. This trade-off has still to be investigated.
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