J. Abbott, Quadratic interval refinement for real roots. Poster presented at the, 2006.
DOI : 10.1145/2644288.2644291

URL : http://arxiv.org/abs/1203.1227

S. Basu, R. Pollack, and M. Roy, Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics, vol.10, 2006.
DOI : 10.1007/978-3-662-05355-3

URL : https://hal.archives-ouvertes.fr/hal-01083587

E. Berberich and P. Emeliyanenko, Cgal's Curved Kernel via Analysis, Algorithms for Complex Shapes, 2008.

E. Berberich, E. Fogel, D. Halperin, K. Mehlhorn, and R. Wein, Sweeping and Maintaining Two-Dimensional Arrangements on Surfaces: A First Step, Proc. of the 15th Ann. Europ, Symp. on Algorithms, pp.645-656, 2007.
DOI : 10.1007/978-3-540-75520-3_57

E. Berberich, M. Hemmer, M. I. Karavelas, and M. Teillaud, Revision of the interface specification of algebraic kernel, Algorithms for Complex Shapes, 2007.

E. Berberich and M. Kerber, Exact arrangements on tori and Dupin cyclides, Proceedings of the 2008 ACM symposium on Solid and physical modeling , SPM '08, pp.59-66, 2008.
DOI : 10.1145/1364901.1364912

E. Berberich, M. Kerber, and M. Sagraloff, An efficient algorithm for the stratification and triangulation of an algebraic surface, Computational Geometry, vol.43, issue.3, pp.257-278, 2010.
DOI : 10.1016/j.comgeo.2009.01.009

G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, Proc. of the 2nd GI Conference on Automata Theory and Formal Languages, pp.134-183, 1975.

G. E. Collins and A. G. Akritas, Polynomial real root isolation using Descarte's rule of signs, Proceedings of the third ACM symposium on Symbolic and algebraic computation , SYMSAC '76, pp.272-275, 1976.
DOI : 10.1145/800205.806346

M. De-berg, M. Van-kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry: Algorithms and Applications, 2000.

L. Ducos, Optimizations of the subresultant algorithm, Journal of Pure and Applied Algebra, vol.145, issue.2, pp.149-163, 2000.
DOI : 10.1016/S0022-4049(98)00081-4

L. Dupont, M. Hemmer, S. Petitjean, and E. Schömer, Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics, Proc. of the 15th Ann. Europ. Symp. on Algorithms, pp.633-644, 2007.
DOI : 10.1007/978-3-540-75520-3_56

URL : https://hal.archives-ouvertes.fr/inria-00165663

A. Eigenwillig, Real Root Isolation for Exact and Approximate Polynomials Using Descartes' Rule of Signs, 2008.

A. Eigenwillig and M. Kerber, Exact and efficient 2d-arrangements of arbitrary algebraic curves, Proc. of the nineteenth annual ACM-SIAM Symposium on Discrete Algorithms (SODA'08), pp.122-131, 2008.

A. Eigenwillig, M. Kerber, and N. Wolpert, Fast and exact geometric analysis of real algebraic plane curves, Proceedings of the 2007 international symposium on Symbolic and algebraic computation , ISSAC '07, pp.151-158, 2007.
DOI : 10.1145/1277548.1277570

P. Emeliyanenko, E. Berberich, and M. Sagraloff, Visualizing Arcs of Implicit Algebraic Curves, Exactly and Fast, Advances in Visual Computing : 5th International Symposium, pp.608-619, 2009.
DOI : 10.1007/978-3-642-10331-5_57

I. Z. Emiris, A. Kakargias, S. Pion, M. Teillaud, and E. P. Tsigaridas, Towards and open curved kernel, Proceedings of the twentieth annual symposium on Computational geometry , SCG '04, pp.438-446, 2004.
DOI : 10.1145/997817.997882

I. Z. Emiris and G. M. Tzoumas, Exact and efficient evaluation of the InCircle predicate for parametric ellipses and smooth convex objects, Computer-Aided Design, vol.40, issue.6, pp.691-700, 2008.
DOI : 10.1016/j.cad.2008.05.001

A. Fabri, G. J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr, On the design of CGAL a computational geometry algorithms library, Software: Practice and Experience, vol.12, issue.11, pp.1167-1202, 2000.
DOI : 10.1002/1097-024X(200009)30:11<1167::AID-SPE337>3.0.CO;2-B

I. Hanniel and R. Wein, An exact, complete and efficient computation of arrangements of B??zier curves, Proceedings of the 2007 ACM symposium on Solid and physical modeling , SPM '07, pp.253-263, 2007.
DOI : 10.1145/1236246.1236282

M. Hemmer and D. Hülse, Generic implementation of a modular gcd over algebraic extension fields, 25th European Workshop on Computational Geometry, p.4, 2009.

M. Hemmer, O. Setter, and D. Halperin, Constructing the exact voronoi diagram of arbitrary lines in space
URL : https://hal.archives-ouvertes.fr/inria-00480045

M. Hemmer, E. P. Tsigaridas, Z. Zafeirakopoulos, I. Z. Emiris, M. I. Karavelas et al., Experimental evaluation and cross-benchmarking of univariate real solvers, Proceedings of the 2009 conference on Symbolic numeric computation, SNC '09, pp.7274-7319, 2009.
DOI : 10.1145/1577190.1577202

URL : https://hal.archives-ouvertes.fr/inria-00340887

V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap, A core library for robust numeric and geometric computation, Proceedings of the fifteenth annual symposium on Computational geometry , SCG '99, pp.351-359, 1999.
DOI : 10.1145/304893.304989

M. I. Karavelas, A robust and efficient implementation for the segment Voronoi diagram, Proc. Internat. Symp. on Voronoi diagrams in Science and Engineering (VD2004), pp.51-62, 2004.

M. Kerber, Geometric Algorithms for Algebraic Curves and Surfaces, 2009.

L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap, Classroom examples of robustness problems in geometric computations, Computational Geometry, vol.40, issue.1, pp.61-78, 2008.
DOI : 10.1016/j.comgeo.2007.06.003

URL : https://hal.archives-ouvertes.fr/inria-00344515

C. The and . Project, CGAL User and Reference Manual. CGAL Editorial Board, 3.6 edition, 2010.

C. K. Yap, Robust geometric computation, Handbook of Discrete and Computational Geometry, chapter 41, pp.927-952, 2004.
DOI : 10.1007/978-0-387-30162-4_349

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=