
HAL Id: inria-00480045
https://inria.hal.science/inria-00480045

Submitted on 3 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructing the Exact Voronoi Diagram of Arbitrary
Lines in Space

Michael Hemmer, Ophir Setter, Dan Halperin

To cite this version:
Michael Hemmer, Ophir Setter, Dan Halperin. Constructing the Exact Voronoi Diagram of Arbitrary
Lines in Space. [Research Report] RR-7273, INRIA. 2010, pp.19. �inria-00480045�

https://inria.hal.science/inria-00480045
https://hal.archives-ouvertes.fr


appor t  




de  r ech er ch e


IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
2

7
3

--
F

R
+

E
N

G

Algorithms, Certification, and Cryptography

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Constructing the Exact Voronoi Diagram of

Arbitrary Lines in Space

with Fast Point-Location

Michael Hemmer — Ophir Setter — Dan Halperin

N° 7273

May 2010





Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Constru
ting the Exa
t Voronoi Diagram ofArbitrary Lines in Spa
ewith Fast Point-Lo
ationMi
hael Hemmer ∗ , Ophir Setter† , Dan Halperin†Theme : Algorithms, Certi�
ation, and CryptographyAlgorithmi
s, Programming, Software and Ar
hite
tureÉquipes-Projets Geometri
aRapport de re
her
he n° 7273 � May 2010 � 16 pagesAbstra
t: We introdu
e a new, e�
ient, and 
omplete algorithm, and itsexa
t implementation, to 
ompute the Voronoi diagram of lines in spa
e. Thisis a major milestone towards the robust 
onstru
tion of the Voronoi diagramof polyhedra. As we follow the exa
t geometri
-
omputation paradigm, it isguaranteed that we always 
ompute the mathemati
ally 
orre
t result. Thealgorithm is 
omplete in the sense that it 
an handle all 
on�gurations, in par-ti
ular all degenerate ones. The algorithm requires O(n3+ε) time and spa
e,where n is the number of lines. The Voronoi diagram is represented by a datastru
ture that permits answering point-lo
ation queries in O(log2 n) expe
tedtime. The implementation employs the Cgal pa
kages for 
onstru
ting ar-rangements and lower envelopes on parametri
 surfa
es together with advan
edalgebrai
 tools. Supplementary material and in parti
ular the prototypi
al 
odeof our implementation 
an be found in the website: http://a
g.
s.tau.a
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Constru
tion du diagramme de Voronoï exa
t dedroites quel
onques dans l'espa
eave
 lo
alisation e�
a
eRésumé : Nous présentons un nouvel algorithme e�
a
e et 
omplet, ainsi queson implantation exa
te, pour 
al
uler le diagramme de Voronoï de droites dansl'espa
e. C'est une étape majeure vers la 
onstru
tion robuste du diagrammede Voronoï de polyèdres. Nous suivons le modèle du 
al
ul géométrique exa
t,il est don
 garanti que nous 
al
ulons toujours le résultat mathématiquement
orre
t. L'algorithme est 
omplet en 
e sens qu'il peut traiter toutes les 
on�g-urations, en parti
ulier tous les 
as dégénérés. L'algorithme a une 
omplexité
O(n3+ε) en temps et en espa
e, où n est le nombre de droites. Le diagramme deVoronoï est représenté par une stru
ture de données permettant de répondre auxrequêtes de lo
alisations de points ave
 une 
omplexité moyenne en O(log2 n).L'implantation utilise les modules CGAL de 
onstru
tion d'arrangements etd'enveloppes inférieures sur des surfa
es paramétriques ainsi que des outils al-gébriques avan
és. Le matériel supplémentaire et en parti
ulier le 
ode proto-type de notre implantation peuvent être trouvés sur le site: http://a
g.
s.tau.a
.il/proje
ts/internal-proje
ts/3d-lines-vor/proje
t-page.Mots-
lés : Diagramme de Voronoï, Lo
alisation, Enveloppe Inférieure, Cal-
ul Géométrique Exa
t, CGAL
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The Exa
t Voronoi Diagram of Arbitrary Lines 31 Introdu
tionThe Voronoi diagram (VD) is among the most fundamental stru
tures in Com-putational Geometry, and is known to be a useful tool in a variety of domains.For instan
e, stru
tural biology [24, 35℄ and robot motion planing [19, 34℄ applyVoronoi diagrams to en
ode point sets keeping maximal distan
e from atomsor obsta
les, respe
tively. A related 
on
ept is the medial-axis transform [6℄,whi
h is 
onsidered fundamental in solid modeling and applied to problemssu
h as �nite element meshing, shape morphing, and feature re
ognition. Yet,the adaptation of 
omplex three-dimensional Voronoi diagrams in professionaltools has been very slow. Their use is hindered by the di�
ulty of design-ing and implementing reliable geometri
 algorithms for 
omplex stru
tures inthree-dimensional spa
e.Voronoi diagrams have been the subje
t of a tremendous amount of resear
h.We refer the reader to the survey by Aurenhammer and Klein [2℄ of work pub-lished up till 2000. Voronoi diagrams in R2 are well understood in almost all as-pe
ts, that is, in terms of 
omplexity and optimal algorithms as well as in termsof robust and e�
ient implementations. In R3 mu
h less is known, even for sim-ple obje
ts su
h as lines, segments, or polyhedra. For example, a tight boundon the 
ombinatorial 
omplexity of the VD of n lines or line segments in R3is unknown; it is 
onje
tured that the 
omplexity is near-quadrati
; the knownlower bound is Ω(n2) [1℄, but the best known upper bound is1 O(n3+ǫ) [31℄.In the 
ase of lines with a �xed number c of orientations the upper bound wasimproved to O(c4n2+ε) [25℄. A 
omplete analysis of all possible 
ombinatorial
ases for three arbitrary lines is presented by Everett et al. [17, 18℄.Today, there are many published results on robust 
onstru
tions of di�erenttypes of Voronoi diagrams in R2. Not only Voronoi diagrams of points are 
on-sidered, but also Voronoi diagrams of line segments [22℄, 
ir
les [15℄, ellipses [16℄,and more [8, �2℄. In R3, an exa
t implementation of the Voronoi diagram ofadditively-weighted points was analyzed in [7℄, but we are not aware of any ex-a
t, 
omplete, and implemented algorithm that 
omputes Voronoi diagrams oflines, line segments, or polyhedra. Nevertheless, progress has been made towardthe exa
t 
omputation of the arrangement of quadri
s [5, 13℄. Ea
h Voronoi 
ellof the diagram of lines in spa
e 
an be represented as the union of 
ells of su
han arrangement. Other approa
hes expli
itly aim for an exa
t or robust 
om-putation of the Voronoi diagram (or the medial axis) [10, 26℄. However, thoseapproa
hes are not 
omplete. For example, Culver's algorithm [10℄ does nothandle singular trise
tor-
urves.Finally, Hanniel and Elber [20℄ provided an algorithm to 
onstru
t theVoronoi 
ell of bounded planes, spheres, and 
ylinders in R3. Though it isin some aspe
ts similar to ours, the approa
h is approximate, does not dealwith degenera
ies, and leaves robustness issues aside.We present an exa
t and 
omplete (and thus robust) algorithm for 
omputingthe Voronoi diagram of arbitrary lines in three dimensions with respe
t to theEu
lidean metri
. The algorithm requires O(n3+ε) time and spa
e, where n isthe number of input lines. The data stru
ture admits answering of point-lo
ationqueries in O(log2 n) time. We anti
ipate that the nature of the algorithm and1A bound of the form O(f(n) · nε) means that the a
tual upper bound is Cεf(n) · nε, forany ε > 0, where Cε is a 
onstant that depends on ε, and generally tends to in�nity as ε goesto 0.RR n° 7273



The Exa
t Voronoi Diagram of Arbitrary Lines 4the general approa
h of its implementation 
onstitute a major milestone towardsan exa
t and robust 
onstru
tion of the Voronoi diagram of polyhedra in R3.We utilize the fa
t that in Eu
lidean spa
e the Voronoi 
ell 
an be 
onsid-ered as a lower envelope sin
e the 
ell essentially has a 
ertain �star shapedness�property: For any point p inside the Voronoi 
ell of a spe
i�
 line site ℓ, the linesegment 
onne
ting p to its proje
tion pℓ onto ℓ, is fully 
ontained in the 
ell.This observation enables us to represent the Voronoi 
ell of ℓ as a minimizationdiagram, whi
h is (
on
eptually) embedded on an in�nitesimally small 
ylinderaround ℓ. This observation is similar to (but not the same as) the well-known
onne
tion between Voronoi diagrams and lower envelopes [14℄. Lower dimen-sional 
ells are represented several times, namely as part of the boundary of the
VC of ea
h line they are asso
iated with. The implementation is developed inand based on Cgal, Computational Geometry Algorithms Library.2The paper is organized as follows. Se
tion 2 dis
usses preliminary subje
ts,su
h as properties of bise
tors and trise
tors of lines in spa
e and the lowerenvelope algorithm. Se
tion 3 des
ribes the details of the 
onstru
tion of aVoronoi 
ell. Se
tion 4 dis
usses the point lo
ation algorithm and its analysis.Se
tion 5 gives implementation details and presents preliminary experimentalresults that were obtained with our software.2 PreliminariesLet O = {s1, s2, . . . , sn} be a set of obje
ts in Rd, also referred to as sites.We follow the Voronoi diagram de�nition by Everett et al. [18℄: The Voronoidiagram VD(O) is the subdivision of Rd into 
ells, where ea
h 
ell VC(S) isasso
iated with a subset S ⊆ O, su
h that every point in VC(S) is stri
tly
loser to all sites in S than to all other sites in O and is equidistant from allsites in S. The formal de�nition is:

VC(S) =

{

p ∈ Rd

∣

∣

∣

∣

∀s ∈ S, t ∈ O \ S : d(p, s) < d(p, t)
∀s, t ∈ S : d(p, s) = d(p, t)

}In the 
ontext of this paper, O denotes a set of arbitrary rational lines in R3and d(·, ·) denotes the Eu
lidean distan
e fun
tion. The set of points that is ofequal distan
e to two or three sites is 
alled a bise
tor or trise
tor, respe
tively.where d(·, ·) denotes the Eu
lidean distan
e fun
tion. When the 
ardinallyof S is two or three it is 
alled bise
tor or trise
tor, respe
tively.2.1 Properties of Bise
tors and Trise
torsWe next state some properties of bise
tors and trise
tors of the Voronoi diagramof lines in R3 that are used throughout this paper. Proposition 1 gives propertiesof bise
tors; see Figure 1 for illustrations.Proposition 1 The bise
tor of two lines ℓ1 and ℓ2 in three-dimensional spa
eis either (a) a hyperboli
 paraboloid (a surfa
e of algebrai
 degree 2), if ℓ1 and ℓ2are skew, (b) a plane, if ℓ1 and ℓ2 are parallel, or (
) a pair of orthogonal planes,if ℓ1 and ℓ2 are 
on
urrent. In the latter 
ase, the singular lo
us of the bise
tor2www.
gal.orgRR n° 7273
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The Exa
t Voronoi Diagram of Arbitrary Lines 5
(a) (b) (
)Figure 1: Bise
tor of: (a) two generi
 lines; (b) two parallel lines; (
) two interse
ting lines.The diagrams were 
reated with our implementation (see Se
tion 5), and were 
lipped by asphere for 
onvenien
e.is a line that is perpendi
ular to ℓ1 and ℓ2 and passes through their interse
tionpoint.The main theorem of Everett et al. [17, 18℄ provides a good overview of thedi�erent 
ases of the trise
tor:Theorem 2 (Everett et al.) The trise
tor of three lines is either (i) a non-singular quarti
, if the three lines are pairwise skew but not all parallel to a
ommon plane nor on the surfa
e of a hyperboloid of revolution, (ii) a 
ubi
 anda line that do not interse
t, if the three lines are pairwise skew and lie on thesurfa
e of a hyperboloid of revolution, (iii) a nodal quarti
, if the three lines arepairwise skew and all parallel to a 
ommon plane, (iv) one parabola or hyperbola,if there is exa
tly one pair of 
oplanar lines whi
h are parallel, (v) two parabolasor hyperbolas that interse
t, if there is exa
tly one pair of 
oplanar lines thatinterse
t, (vi) between 0 and 4 lines, if there are two pairs of 
oplanar lines,or (vii) one line, in the 
ase of three 
oplanar 
on
urrent lines, the 
ommonsingular lo
us of the bise
tors.We use a 
orollary of the above theorem in Se
tion 3, where we des
ribe the
onstru
tion of a Voronoi 
ell in the diagram of lines.2.2 Lower Envelope AlgorithmAgain, we regard ea
h three-dimensional VC as a lower envelope with respe
tto its line site ℓ0. This lover envelope is represented as a minimization diagramwhi
h is 
on
eptually embedded in in the uv-parameter spa
e of the surfa
e ofan in�nitesimally small 
ylinder around ℓ0.3 We utilize the divide-and-
onqueralgorithm for 
onstru
ting lower envelopes [1℄ as it is implemented inCgal [32,�8.5℄, whi
h we brie�y des
ribe next.Sin
e the algorithm proje
ts bise
tors into the parameter spa
e, all bise
torsare initially split up into uv-monotone surfa
es. The algorithm then splits theresulting set G into two subsets G1 and G2 of roughly equal size, and re
ursively
omputes their minimization diagrams M1 and M2. In the 
onquer step, thetwo diagrams are merged into one. First, the overlay of M1 and M2 is 
om-puted, where ea
h feature is labeled with up to two sets of labels L1 and L2 of
andidate surfa
es from both diagrams. Thereafter, the arrangement is furtherre�ned su
h that ea
h feature 
an either be labeled with L1, L2, or L1 ∪L2. In3See Se
tion 3 for details on the uv-parameter spa
e setting.RR n° 7273



The Exa
t Voronoi Diagram of Arbitrary Lines 6parti
ular, ea
h fa
e that is labeled with two bise
tors is re�ned by the 
orre-sponding proje
ted trise
tor 
urve. Note that this step 
an also split up edges.After the 
omparison of bise
tors the algorithm removes redundant edges andverti
es, whi
h yields the �nal diagram. The 
omplexity of the above algorithmis O(n2+ε), with the 
ondition that the bise
tor surfa
es are �well-behaved�.Note that the algorithm heavily relies on arrangement operations su
h asoverlay, whi
h are provided by [32, �8.1℄ and [4℄. Though we treat this as a bla
kbox throughout most of the paper, some more details 
an be found in Se
tion 5.The additional 
onstru
tions and predi
ates required by the lower envelope algo-rithm are: the 
onstru
tion of the proje
ted boundary of uv-monotone surfa
es,the 
onstru
tion of the proje
ted interse
tion of two uv-monotone surfa
es, andthe 
omparison of two bise
tors above a fa
e, edge, or vertex.3 Computing a Voronoi CellThis se
tion dis
usses the 
omputation of the VC of one line, referred to as thebase line and denoted by ℓ0.The two-dimensional pa
kage of Cgal has the infrastru
ture to 
omputeenvelopes over 
ylinders. However, for the e�
ien
y of the implementation it isimportant to keep the algebrai
 degree of the proje
ted 
urves as low as possible.Therefore, we proje
t the 
urves on two parallel planes that �sandwi
h� the baseline, while keeping the proje
tion dire
tion normal to the 
ylinder. This redu
esthe maximum degree of a proje
ted trise
tor 
urve from sixteen down to eight.3.1 Parametrization and Proje
tionLet F = {−→b1 ,
−→
b2 ,

−→
b3} be an orthogonal basis of R3 whi
h is 
hosen su
h that −→b1 isthe dire
tion of the base line ℓ0. Moreover, let p0 be some rational point on ℓ0.Now, 
onsider the parametrization X (u, v, r) = p0 + u · −→b1 + v · r · −→b2 + r · −→b3 .Note that X (u, v,±1) de�nes two parallel planes (uv-planes) that sandwi
h ℓ0,whi
h we 
all the positive and the negative plane, respe
tively. Thus a point

X (u0, v0,±1) represents a ray that originates from point p0 + u0 ·
−→
b1 on ℓ0 withdire
tion ±(v0 ·

−→
b2 +

−→
b3).Note that the plane H∗ = {x ∈ R3|(x − p0)

T · −→b3 = 0} is not 
overed by theparametrization. However, one 
an simply glue the arrangements together aslong as the 
hosen frame is generi
, that is, 
urves are not allowed to tou
h H∗,interse
t in H∗, or even be 
ontained in H∗. However, 
urves are allowed totransversely interse
t H∗, where ea
h interse
tion gives rise to a simple verti
alasymptote in the proje
tion.In order to avoid these 
riti
al 
ases, we generate the lo
al frame by setting−→b2to some random ve
tor that is orthogonal to −→
b1 . Though this frame is generi
with high probability, we also 
he
k in all relevant predi
ates that the frameis indeed generi
. If ne
essary, we restart the 
omputation 
hoosing anotherrandom frame. We 
hose the standard strategy that in
reases the number ofrandom bits used for ea
h iteration. This way we guarantee termination and asmall number of additional bits due to the randomization.We highlight below several major issues in the proje
tion of a trise
tor. Theproje
tion of a bise
tors' boundary and a detailed 
ase analysis is deferred toRR n° 7273



The Exa
t Voronoi Diagram of Arbitrary Lines 7Appendix A. We rely merely on the generi
 frame and on the following 
orollarythat dire
tly follows from Theorem 2:Corollary 3 The set of points where the trise
tor does not represent a transver-sal interse
tion of the bise
tors is a 0-dimensional set, namely, the singularpoints of the trise
tor. The only ex
eption is the 
ase of three 
oplanar 
on
ur-rent lines; in this 
ase the trise
tor is the 
ommon singular lo
us (line) of thethree bise
tors.For a trise
tor T0ij let B0i, B0j , Bij ∈ Q[x1, x2, x3] be the three trivariatepolynomials of the relevant bise
tors. Now let B1 and B2 be the two bise
torsof minimal degree, d1 and d2, respe
tively. The proje
tion is 
arried out by aresultant 
omputation [33℄. However, sin
e we wish to proje
t towards ℓ0 we�rst substitute X (u, v, r) into B1 and B2 and 
ompute the resultant with respe
tto r.
res(u, v) := resultant(B1(X (u, v, r), B2(X (u, v, r)), r) ∈ Q[u, v] .

−→v2

−→v3

−→v1

B0i

B0j

X (u, v,+1)

X (u, v,−1)

v →

← v
ℓ0

T0ij

T0ij

cross-section
perpendicular to ℓ0

This is at most a bivariate polynomial ofdegree 2d1d2. Thus, in the worst 
ase (thegeneri
 
ase) this is an irredu
ible polyno-mial of degree4 only 8. However, due to itsalgebrai
 nature the approa
h 
an not im-mediately distinguish between the positiveand the negative parameter spa
e. The Fig-ure to the right illustrates how the resultantproje
ts T0ij into the positive and negativeplane. We �rst split up the proje
ted 
urve into u-monotone segments using [4℄.In parti
ular, 
urves are split up at verti
al asymptotes.In order to de
ide that an ar
 α is on a 
ertain plain we utilize Corollary 3,namely the observation that in all but one ex
eption (whi
h is handled expli
itly)two bise
tors must interse
t transversely along the trise
tor 
urve, whi
h impliesthat they must inter
hange their order while passing the proje
ted trise
tor.This is dete
ted by two ray shoots at rational points right above and below α.Let p and p be these two points, respe
tively. To ensure that both points are
hosen su�
iently 
lose, we 
onstru
t a rational verti
al line L that interse
ts αin its interior, say at point pα. We 
hoose the points on L su
h that they isolatethe ar
 from all other interse
tions of L with res. Now 
onsider the path on Lfrom p (or p) to pα. p is su�
iently 
lose to α sin
e this path does not interse
t
res until it rea
hes α. In 
ase α is verti
al, we 
hoose L to be horizontal.Further details and in parti
ular how to guarantee that the 
hosen frame isgeneri
, 
an be found in Appendix A.3.2 Lower Envelope Predi
atesA 
ore part of the envelope algorithm is the representation of minimizationdiagrams as labeled arrangements and the overlay of su
h arrangements. Therequired predi
ates for these operations relate to planar algebrai
 
urves only,4More pre
isely, it is a bivariate polynomial of bi-degree at most (4, 4). For a standardrational parametrization of the 
ylinder, we would obtain a polynomial of bi-degree (8, 8) or
16 in total.RR n° 7273



The Exa
t Voronoi Diagram of Arbitrary Lines 8whi
h are provided by [4℄. However, it remains to ensure that no interse
tiontakes pla
e in H∗. This boils down to testing that the leading 
oe�
ients withrespe
t to v of two non overlapping (
o-prime) 
urves have no 
ommon root.Thus, we provide a slightly modi�ed set of predi
ates that additionally ensurethis 
ondition.The predi
ates that are additionally required by the envelope algorithm arethe 
omparison of two bise
tors above a fa
e, an edge, or a vertex, respe
tively;see also Se
tion 2.2. For a fa
e, it is su�
ient to sele
t a rational point inside itand 
ompare the surfa
es along the 
orresponding ray. The point is 
hosen ina similar way to the approa
h used when sorting the trise
tors to the positiveand negative planes. For an edge we 
onstru
t a vertex in its interior and
ompare along the 
orresponding ray. For a vertex, whi
h may not have rational
oordinates, we �rst 
he
k whether the point is on the proje
ted interse
tionof the two bise
tors, and report equality if it is indeed the 
ase. Otherwisewe 
ompare bise
tors at a rational point su�
iently 
lose to the vertex, where�su�
iently 
lose� is again determined by a similar strategy as in sorting trise
tor
urves.3.3 ComplexityFor the time 
omplexity and spa
e 
omplexity analysis we ignore additional 
oststhat may arise due to variable bit-length of various implementations adheringto the exa
t 
omputation paradigm [36℄. We also ignore the additional run-timethat 
an result from a poor 
hoi
e of a generi
 frame (Se
tion 3.1), as it is notthe general 
ase, and has no impa
t on performan
e in expe
tation.The bise
tor surfa
es are algebrai
 surfa
es of maximum degree of 8 there-fore, the time-
omplexity of the lower envelope algorithm is O(n2+ε) (whi
h isalso the best known upper bound). Thus the run-time 
omplexity of 
omputingthe 
ells for all n lines is O(n3+ε), whi
h also bounds the spa
e 
omplexity.4 Fast Point Lo
ationGiven a query point p we wish to �nd the 
losest line to it. Consider thefollowing point-lo
ation strategy: We start with a random line site ℓ. First weproje
t p on ℓ and lo
ate its image in the minimization diagram of ℓ. The imageis lo
ated on a feature of the minimization diagram whi
h is labeled with a (ingeneral not empty) set of line sites S. We then 
ompare the distan
e d(ℓ, p) to
d(ℓ′, p) for one line ℓ′ ∈ S. If d(ℓ, p) is less than or equal to d(ℓ′, p) we report ℓor S ∪ℓ, respe
tively. Otherwise we 
ontinue in the 
ell of ℓ′. This walk throughthe Voronoi diagram terminates sin
e there is only a �nite number of 
ells andthe distan
e of p to the 
urrent line always de
reases. We 
an lo
ate the imageof p inside the minimization diagram in expe
ted O(log n) time by using point-lo
ation based on trapezoidal de
omposition [27℄. Combining this algorithmwith the idea of landmarks [21℄ may already have good performan
e in pra
ti
e.However, the algorithm has a worst-time time 
omplexity O(n log n).We turn it into an algorithm with a time-
omplexity O(log2 n) by 
ombiningit with a strategy that is similar to skip lists. We build a hierar
hy of Voronoidiagrams. The lowest layer 
ontains the VD of the full set of lines, while ea
hother layers 
ontain the VD of only 1/k (random) lines of the pre
eding layer,RR n° 7273



The Exa
t Voronoi Diagram of Arbitrary Lines 9where k > 1 is some 
onstant. The highest layer (the root layer) 
ontains only a
onstant number of lines, and the number of layers is O(log n). In order to lo
atea point p we �rst lo
ate it in the root layer using the walk strategy des
ribedabove. We then pro
eed to the next layer starting at the line that was found inthe pre
eding layer.The following theorem summarizes the performan
e of the point-lo
ationstru
ture (see [11, 23℄ for similar analysis in 2D):Theorem 4 The expe
ted running time of the point-lo
ation query in the hier-ar
hi
al VD stru
ture is O(log2 n).Proof: The number of 
ells visited at the root layer is obviously at most
k. For all other layers, 
onsider the the path ba
kward, from its target to thesour
e: for every 
ell the probability that it is already the sour
e is 1/k. Thus,the expe
ted length of a path is ∑n

i=1
i
k
(k−1

k
)i−1 ≤ k. That is, the expe
tedrunning-time is k

∑log
k

n

i=1 T (ki), where T (m) is the expe
ted time spent on thepoint lo
ation in the minimization diagram of m lines. Thus we obtain an ex-pe
ted running-time of O(log2 n) in total. 2We remark that some spe
ial 
ases are left out in this dis
ussion for brevity(e.g., points that are 
ontained in H∗), but they are 
ompletely handled in oursoftware.5 Implementation DetailsOur implementation is based on Cgal, whi
h follows the generi
-programmingparadigm [3℄. Algorithms are formulated and implemented su
h that they areabstra
t from the a
tual types, 
onstru
tions, and predi
ates. Thus, the imple-mentation of every algorithm and data stru
ture in Cgal is parametrized bya so-
alled traits 
lass [28℄, in whi
h these fun
tionalities are de�ned. In par-ti
ular, a user 
an employ an algorithm with his own types, 
onstru
tions, andpredi
ates by providing his own traits 
lass. This way it is possible to a
hievea great amount of �exibility. At the extreme, it is possible to even partially
hange the nature of an algorithm, as we do here for the three-dimensionallower envelope 
lass [32, �8.5℄.The 
ore of our implementation is the traits 
lass for the lower envelopealgorithm, whi
h also needs to be a valid traits 
lass for CGAL's arrangementpa
kage. The required fun
tionalities by the arrangement pa
kage are providedby the traits 
lass presented in [4℄. The approa
h redu
es all 
onstru
tion andpredi
ates to 
ylindri
al algebrai
 de
ompositions of the plane for one or two
urves. The approa
h uses additional resultant 
omputation that proje
ts inter-se
tion points onto the u-axis, that is, u-
oordinates of interse
tion points arerepresented as real roots of this univariate resultant polynomial. Thereafter,the �bers above the roots are investigated in order to determine the ar
 of the
urve on whi
h the interse
tion takes pla
e.We essentially wrap the above traits 
lass and add the required fun
tional-ities by the envelope algorithm; see also Se
tion 3. In 
ase we dete
t that the
urrent frame is not generi
 an ex
eption is thrown, whi
h is then 
aught byour primary 
lass that 
omputes a new frame and restarts the 
omputation ofRR n° 7273
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(a) (b) (
)Figure 2: Diagrams are 
lipped by a sphere for 
onvenien
e. (a) VD of 4 lines, obtainedby rotating one line around the z-axis. All bise
tors meet in that axis. (b) VD of 4 linesinterse
ting in one point. (
) VD of 4 lines, two lines interse
t and the others are parallel toea
h of them, respe
tively.the 
ell. For ea
h Voronoi 
ell we keep a separate instan
e of the traits 
lass,whi
h is used for both planes. This allows 
a
hing of relevant results.Approximation of the three-dimensional 
oordinates of a vertex, is based onmulti-pre
ision �oating-point interval arithmeti
 (MPFI) [8, �8℄. Sin
e this isa 
erti�ed approximation, we obtain a bounding box that 
ontains the vertex.This 
ould be used to easily establish the adja
en
y among lower dimensional
ells. For instan
e, let v denote a vertex in a minimization diagram M. Thelabel of v points to all other minimization diagrams that 
ontain a representationof it. Let M′ be one of these diagrams and v′ be the representation that wewish to �nd therein. We 
ould use a similar approa
h to the one used in [13℄:By using the labels, we identify all possible 
andidates in M′. This set 
ontainsonly up to 8 representations and 
ontains at least v′. We 
ompute progressivelymore pre
ise bounding boxes for all 
andidates until only one (the one of v′)overlaps the bounding box of v.Our implementation 
an handle arbitrary rational lines, in parti
ular, it
an handle all possible degenerate 
ases. Figure 2 depi
ts degenerate Voronoidiagrams. Ea
h mesh was generated using CGAL's pa
kage for labeled meshdomains [30℄. The ora
le, whi
h is required by the mesh generation, was writtensu
h that it only utilizes (and thereby tests) our point lo
ation stru
ture. Lowerdimensional features were approximated using the approa
h dis
ussed above.In order to a
hieve sharp edges the prote
ting balls te
hnique introdu
ed byBolt
heva et al. [9℄ was applied. medit [29℄ was used for the �nal visualization.Sin
e we aim to eventually in
orporate our 
ode into a Cgal pa
kage thesoftware is developed within the revision 
ontrol system of the proje
t. Allexperiments within this se
tion where 
arried out on an internal Cgal releaseCGAL-3.7-I
-27, whi
h already 
omprises all the ne
essary algebrai
 tools [4℄.However, the trapezoidal map is 
urrently not available for minimization di-agrams due to ongoing 
hanges in the arrangement pa
kage (it is anti
ipatedsoon), whi
h for
es us to resort to a simpler point lo
ation strategies for now.Finally, we present preliminary results obtained with our software. The pointlo
ation stru
ture as it is dis
ussed in Se
tion 4 leaves the ratio k among levelsRR n° 7273
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N\k 2 4 8 16 20 24 28 +∞16 6.48 4.30 4.34 N/A N/A N/A N/A 3.9436 8.09 6.33 5.33 5.67 N/A N/A N/A 5.6264 9.77 6.42 5.73 6.07 6.00 6.12 6.83 6.63100 9.87 7.22 6.18 6.45 6.97 6.83 7.13 7.43Table 1: Average number of visited 
ells per query, where k denotes the ratio of the hierar
hyand N the number of lines. Entries for n < 2k are repesented by the last 
olumn. To theright is depi
ted a Voronoi diagram of 5 parallel lines.undetermined. In order to show the impa
t of k we 
reated random instan
eof parallel lines with 
oe�
ients in the range [0, 210].5 For ea
h instan
e, we
reated 10 Voronoi diagram hierar
hies, whi
h where queried with 1000 randompoints in [0, 210]3 ea
h.Table 1 shows the average number of visited 
ells per query depending onthe number of lines and the 
hosen value for k. The last 
olumn shows the purewalk without a hierar
hy, whi
h suggests an average query time in O(

√
n), asone may also expe
t due to results in [12℄. For larger instan
es, it seems that
hoosing k equal to 8 is appropriate.6 Con
lusionsWe have presented an exa
t, 
omplete, and thus robust, algorithm that 
om-putes the Voronoi diagram of arbitrary rational lines in R3. The algorithmrequires O(n3+ε) time and spa
e, where n is the number of lines. The in-trodu
ed data stru
ture permits to answer point lo
ation queries in O(log2 n)expe
ted time. The implemented prototype is exa
t and 
an handle all de-generate 
ases. We refer to http://a
g.
s.tau.a
.il/proje
ts/internal-proje
ts/3d-lines-vor/proje
t-page for the most re
ent version and sup-plemental material.The algorithm is intentionally designed su
h that it avoids tedious 
ase dis-tin
tions, whi
h makes it implementable, maintainable and, in parti
ular, ex-tensible to other primitives su
h as points, line segments, and triangles. Thus,we 
onsider our approa
h as a major milestone towards the 
omputation of theVoronoi diagram of polyhedra in three dimensions.Moreover, we expe
t that it will pave the way to devising a three-dimensionalvariant of the visibility-Voronoi 
omplex [34℄, a stru
ture that enables to trade-o� 
learan
e and path length in robot motion planning, and has proved to beespe
ially useful in the plane.Our approa
h may also be generalized to spheres (see also [20℄) whi
h wouldopen the door for innovative solutions to 
entral problems in Stru
tural Biol-ogy [24, 35℄.A
knowledgments: The authors thank S. Lazard and M. Yvine
 for fruitfuldis
ussions and Monique Teillaud for her translation of the abstra
t to Fren
h.5Sin
e the trapezoidal map is not yet available for envelopes, we had to resort to instan
esthat keep the 
omplexity of a 
ell small.RR n° 7273
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tion of Bise
tors and Trise
torsRe
all, from the dis
ussion in Se
tion 3 that the parametrization X (u, v, r) isde�ned with respe
t to a lo
al frame F = {−→b1 ,
−→
b2 ,

−→
b3} and that the plain H∗,whi
h is orthogonal to −→

b3 , is not 
ontained in X .In general this is not a problem sin
e a 
urve (trise
tor) that transverselyinterse
ts H∗ appears as a simple verti
al asymptote in the uv-parameter spa
e.For instan
e, if a proje
ted 
urve leaves one plane as a verti
al asymptote at plusin�nity, then it reappears at minus in�nity on the other plane. If this is the only
ase that happens it is 
lear that there is a one-to-on 
orresponden
e among theverti
al asymptote (and thus edges) in the two minimization diagrams, whi
hmakes it possible to glue them together.We 
all a frame for whi
h this is possible a �generi
 frame�, more pre
isely:De�nition 5 (Generi
 Frame) We de�ne the frame F to be generi
 if (i) no1-dimensional 
omponents of the trise
tor (a 
oni
 or a line)6 are 
ontainedin H∗, (ii) every interse
tion of a trise
tor with H∗ is a transversal interse
tion,(iii) no two 
urves (trise
tors) interse
t in H∗, and (iv) the interse
tions of H∗with all bise
tors B0i are regular.In this se
tion we analyze the 
ases that we en
ounter while proje
ting bi-se
tor boundaries and trise
tor 
urves. In parti
ular, we dis
uss how we dete
ta non-generi
 frame.A.1 Proje
tion of Bise
tors BoundaryThe 
ases here 
orrespond to the 
ase distin
tion in Proposition 1.Generi
 Case Let B0i ∈ Q[x1, x2, x3] be the polynomial representing thebise
tor between ℓ0 (the base line) and some other line ℓi. In the generi
 
ase B0irepresents a hyperboli
 paraboloid that is de�ne in almost all dire
tions of theproje
tion. The only ex
eption are rays that are perpendi
ular to ℓi and pointaway from ℓi. These dire
tions are represented by a horizontal (representing raysin the same dire
tion) line. The line is 
hara
terized by the leading 
oe�
ientof B0i(X (u, v, r)) with respe
t to r. On ea
h of the uv-plane we interpret thissurfa
e as one or two uv-monotone surfa
es. On the plane that 
ontains theabove line, we split the bise
tor into two uv-monotone surfa
es; on the otherplane there is exa
tly one uv-monotone surfa
e.Parallel Lines In 
ase ℓ0 and ℓi are parallel, B0i is of degree 1 sin
e it rep-resents a plane. The leading 
oe�
ient of B0i(X (u, v, r)) with respe
t to r isa horizontal line that represents all rays that do not interse
t B0i. That is,on ea
h of the uv-planes we obtain one uv-monotone surfa
e, whose proje
tedboundary is this line. The proper halfspa
e 
an be determined by a simple rayshoot.6Note that a 
ubi
 
an not be 
ontained in H∗.
RR n° 7273
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ting Lines In 
ase ℓ0 and ℓi interse
t, the bise
tor B0i degeneratesto two planes that interse
t along a singular rational line ℓs, whi
h is perpen-di
ular to ℓ0 and ℓi. Let (u0, v0) ∈ Q2 be the parameter values for that line.All lines X (u0, v, r), v 6= v0 have a double interse
tion with B0i. The lines
X (u, v0, r), u 6= u0 do not interse
t B0i, sin
e they are parallel to it. The pa-rameter spa
e is split up along v = v0 and u = u0, whi
h results in uv-monotonesurfa
es, 4 one the positive and 4 on the negative side.Ensuring a Generi
 Frame For all 
ases it holds that the 
onstru
tion maytrigger a restart of the 
omputation if one of the horizontal lines is not seen,that is, if the leading 
oe�
ient of B0i(X (u, v, r)) with respe
t to r has degree 0.A.2 Proje
tion of Trise
torsBesides the exa
tness of the method des
ribed in Se
tion 3.1, it has the ad-vantage that it is general and forgoes a huge 
ase distin
tion. In parti
ular,we do not fa
torize the polynomial into its fa
tors that represent the di�erent
omponents mentioned in Theorem 2.Two bise
tors are 
ompared above (below) a u-monotone ar
 cu,7 on the pos-itive (negative) plane as follows. For a su�
iently 
lose rational point p(u0, v0)above (below) cu, the 
orresponding line is substituted into the two bise
tors.This is at most two quadrati
 polynomials in r, ea
h having at most one positiveand one negative root. If present, the positive (negative) roots from the twobise
tors are 
ompared. In 
ase that no root is present, there is no bise
torabove p and the 
omparison is not required.8A spe
ial treatment is given for the 
ase of three 
oplanar 
on
urrent lines.The trise
tor in this 
ase is a single perpendi
ular line to ℓ0. Hen
e, its proje
-tion is just a rational point that is valid for both sides.Ensuring a Generi
 Frame First, it is 
he
ked that no 1-dimensional 
om-ponent is 
ontained in H∗, in that 
ase degree(res) is ne
essarily less than 2d1d2but the degree may also drop in few other 
ases. Thus if the degree is �suspi-
ious�, we simply interse
t B1 and B2 with H∗. There is no 1-dimensional
omponent if the degree of the gcd of the two resulting bivariate polynomialsis 
onstant. Moreover, we 
he
k that the proje
tion has only simple verti
alasymptote by 
he
king that the leading 
oe�
ient of the square free part of resis square free. This ensures that the trise
tor interse
ts H∗ transversely always.

7�Above� is the area to the left of the 
urve when going from its lexi
ographi
ally smallerto its lexi
ographi
ally larger end.8This happens in 
ase the bise
tor is just a simple plane.RR n° 7273
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