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Abstract

Shape evolutions, as well as shape matchings or im-

age segmentation with shape prior, involve the preliminary

choice of a suitable metric in the space of shapes. Instead of

choosing a particular one, we propose a framework to learn

shape metrics from a set of examples of shapes, designed to

be able to handle sparse sets of highly varying shapes, since

typical shape datasets, like human silhouettes, are intrinsi-

cally high-dimensional and non-dense. We formulate the

task of finding the optimal metrics on an empirical mani-

fold of shapes as a classical minimization problem ensuring

smoothness, and compute its global optimum fast.

First, we design a criterion to compute point-to-point

matching between shapes which deals with topological

changes. Then, given a training set of shapes, we use these

matchings to transport deformations observed on any shape

to any other one. Finally, we estimate the metric in the

tangent space of any shape, based on transported deforma-

tions, weighted by their reliability. Experiments on difficult

sets are shown, and applications are proposed.

Introduction

The notion of shape is important in many fields of com-

puter vision, from tracking to scene understanding. As for

usual object features, it can be used as a prior, as in im-

age segmentation, or as a source of information, as in ges-

ture classification. When image classification or segmen-

tation tasks require high discriminative power or precision,

the shape of objects naturally appear relevant to our human

minds. However, shape is a complex notion which cannot

be dealt with directly like a simple parameter in R
n. Mod-

eling shape manually is tedious, and one arising question is

the one of learning shapes automatically.

Various statistical models of shapes exist in the literature.

Most of them consist in estimating a mean pattern and char-

acteristic deformations of a given set of shapes, under the

assumption that the shape variability in the training set is

not too high, in order to be able to consider sensible defor-

mations from one shape to another one, and to compute sen-

sible statistics on these deformations (usually with princi-

pal component analysis). Deformations can be given by the

user, fully or with a few landmarks [17], or can be computed

via a search for best diffeomorphisms [5, 19] or matchings

[8, 7] for hand-designed metrics or criteria. They can also

be computed by algorithms suited to particular shape rep-

resentations [11, 4] or just be distance gradients [3]. In all

cases, the statistics computed on deformations can be turned

into a new metric in the tangent space of the mean pattern,

acting as a deformation prior on one particular shape.

When the shape variability is too high, this paradigm

fails because the automatic computation of deformations

between very different shapes is not reliable, and because

linear approximations of the space of shapes are not mean-

ingful anymore. Distance-based algorithms, such as ker-

nel methods, were proposed [12, 6] to handle high variabil-

ity, but at the price of considering only distances between

shapes, instead of deformations, thus losing the crucial in-

formation they carry. These methods consider training sets

as graphs, whose nodes are shapes and whose edges are dis-

tances (for a particular metric chosen). They assume the

neighborhood of any shape to be representative of the in-

trinsic dimensionality of the space of shapes, and require

consequently relatively high sampling densities, which are

not affordable in the case of datasets with high intrinsic di-

mension, like human silhouettes with at least 30 degrees

of freedom. Some other interesting methods are based on

shape patches or parts [10, 2], but they sacrifice the notion

of continuous, global shape. Another approach consists in

searching the training set for the closest shapes to the one

of interest, based on shape distances [13] or, for videos, on

time order [16], and then in applying classical approaches

to this neighborhood only. Again, the neighborhood repre-

sentativeness issue arises. Moreover, the local metrics thus

computed are not guaranteed to be globally coherent as a

function of the shape of interest.

This paper aims at extending the approaches based on

continuous deformations, to the case of high shape variabil-

ity, where the notion of mean shape is not relevant anymore,

or where deformations cannot be estimated throughout the

whole training set even if they still can be computed be-

tween close enough samples. In our approach, we com-

pute point-to-point matchings between close shapes, and

use them as a way to propagate information within the train-

ing set. Thus, we can transport a deformation of a shape
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to any other shape, with an associated reliability weight.

Metrics, i.e. inner products on deformation spaces, are then

estimated on the tangent space of any shape, while taking

into account deformations observed at other locations, thus

decreasing dramatically the sample density required and en-

suring the global coherence of the manifold.

The paper is organized as follows: First, we propose

a shape matching algorithm which handles topological

changes. Second, we use pairwise matchings to define

transport and to build a manifold-like structure. Third, we

transport deformations and propose a method to estimate

metrics. We show results on video datasets and, finally, in a

theoretical section, we study different tracks for metric esti-

mation, and prove that the method presented in the previous

part computes the optimal metrics for a natural criterion.

1. Shape matching

In order to compare quantities defined on different

shapes, like deformations, we need a way to transport them

from shape to shape, and to do this we need point-to-point

correspondences between close shapes. Since in typical

shape datasets, like walking human silhouettes, topological

changes are very frequent (fig.1, left), we need a match-

ing algorithm able to consider pairs of shapes with different

topologies. The only one we found in the literature relies

on successive bipartite graph matchings and spline estima-

tions [1]. It imposes similar sampling rates on both shapes,

which limits the precision and the regularity of the match-

ing (fig.1, right). Better regularity and precision (for a given

time cost) will be ensured here by oversampling the target.

In the case of contours in images, a shape is a union

of 1D curves. If shapes have only one connected compo-

nent, i.e. if they are topologically equivalent to a circle or a

segment, then dynamic time warping helps find quickly the

global optima of simple matching energies [9, 18, 14]. In re-

cent works, graph-cuts or minimum cycle search in graphs

have also been used [15]. We will adapt here dynamic time

warping to minimize an energy which favors smooth match-

ings and deals with several connected components, topolog-

ical changes, and optionally with vanishing parts. Such an

algorithm is needed in the sequel, but our work is not spe-

cific to the particular matching algorithm presented here.

1.1. Matching criterion

Let us start with the case of simple, closed curves A and

B, seen as functions from the circle S1 to R
2, parameterized

by their arc length s. We search for the best matching from

A to B, i.e. for the best function m from S1 to S1 so that

A ≃ B ◦ m. Let us note f = B ◦ m − A so that f(s)

stands for the vector
−−−−−−−−→
A(s)B(m(s)) linking a point of A to its

correspondent on B. The deformation f should be as small

and as smooth as possible (see figure 1 for explanation),

A

B

B B

AA

ff

A

B

(s+ds)(s)

(s)

m(s+ds)m(s)

(s+ds)

Figure 1. (Left) Example of topological change: hand in the

pocket. (Middle) Matching energy explanation. We search for

small linking vectors f(s), and for small difference between the

two green vectors, or between the red ones, to ensure spatial coher-

ence. These two differences have same norm: ‖∂f/∂s‖. (Right)

Imposing similar sampling rates limits precision and regularity.

so we minimize the following criterion over deformations f

that can be written as f = B ◦ m − A for some m:

‖f‖2
H1

α
:=

∫

S1

‖f(s)‖2 + α

∥

∥

∥

∥

∂f

∂s

∥

∥

∥

∥

2

ds.

When shapes have thin parts, more information is re-

quired in order to distinguish nearby parallel sides. We in-

clude in the criterion the relative angle between outgoing

normals at corresponding points ∠(nA(s),nB◦m(s)) :

Ematch(m) = ‖B ◦ m − A‖2
H1

α
+ γ‖∠(nA,nB◦m)‖2

L2

Note that we require the deformation f to be smooth, and

not the parameterization correspondence m itself. Now if

B as several connected components, say B = ∪i Bi, then

we can still search for an optimal matching m between A

and B, with m : S1 →
∐

i S1 possibly pointing to any

of the parameterization supports of connected components

Bi. The matching cannot be guaranteed to be one-to-one

anymore, since some parts of B may have no antecedent

through m. In order to reciprocally account for points on A

that cannot be matched to B (disappearing parts), we may

allow a match to nothing, i.e. m(s) may have the value ∅.

1.2. Optimization with dynamic time warping

In practice, shapes are unions of polygons, and the en-

ergy can be discretized accordingly. In the case where A

has only one connected component, Ematch can be mini-

mized efficiently. For each vertex A(s) of A, we define the

set N(s) = {∅} ∪ {s′ s.t. ‖B(s′) − A(s)‖ 6 dmax} of

its possible matches, i.e. the set of possible values of m(s),
as points of B relatively close and ∅. The consideration

of a maximum distance dmax speeds up the process signif-

icantly. Choosing any initial point A(s0 = 1), and consid-

ering the set of ordered vertices along A, the problem re-

duces to finding an optimal function from {1, . . . ,#A} to

N(1)×N(2) · · · ×N(#A), which can be seen as a search

for an optimal path in a graph, with costs on graph edges
(

(s, m(s)), (s + 1, m(s + 1))
)

derived from the energy

Ematch . A constant high cost is assigned to edges involv-

ing two ∅, and an even higher one if involving only one ∅.

This problem is solved by dynamic time warping.



If A has several components, each of them is treated in-

dependently. This process is not symmetric in the sense that

the matching obtained from A to B can differ from the one

from B to A. The quality and the precision of the results

increase when the discretization of the target B is finer than

the template A, so we oversample targets. This is corrobo-

rated by a convergence study when discretizations get finer,

included in the supplementary materials.

The computational cost is low, only a fraction of a second

to match shapes with hundreds of points on a standard PC.

The value of Ematch(m) reflects the quality of the match-

ing computed: the lower the energy is, the more similar the

two shapes are, and the more reliable the matching found

is. We noticed that allowing matchings to ∅ gives more

accurate correspondence fields, but unluckily also less sig-

nificant values Ematch(m) (because ∅ induces a saturation

cost). Because of the importance of these reliability values

in the sequel, we remove the possibility of matching to ∅.

2. Transport and information propagation

We now use the matching tool to define transport in train-

ing sets of shapes, and to propagate information with relia-

bility weights. Points on shapes will now be confused with

their parameterizations, so that functions can be defined on

shapes rather than on the parameterizations thereof.

2.1. Local transport

Let A and B be two shapes, and mA�B the matching

from A to B (so that A ≃ B ◦ mA�B). Any function h

defined along B, with values in any space X , can be trans-

ported to A, or more exactly to the points of A linked with

points of B, since mA�B may be not one-to-one. More

generally, all quantities in the sequel will be computed over

matching domains. The local transport TL
B�A is defined by:

∀ h : B → X , TL
B�A(h) : A → X

(

TL
B�A(h)

)

(s) = h (mA�B(s))

We can compare any two functions hA, hB defined on dif-

ferent shapes, by hA − TL
B�A(hB) or TL

A�B(hA)− hB .

When the functions to be transported are deformations,

other transports may be defined. For example, in the case

of rotations, one may prefer the angle between the normal

to the shape nB(s) and the vector h(s) to be kept constant

during transport. However it is not obvious whether such a

transport would be sensible for all deformations h and all

pairs (A, B). In the sequel we keep the former transport.

2.2. Global transport

Given a training set of shapes S = (Si), we compute all

possible pairwise matchings mi�j and associate to each of

them the matching cost Cm
ij = Ematch(mi�j). A low cost

Cm
ij means that the shapes Si and Sj were close and that the

matching mi�j is reliable, whereas a high cost reveals an

unsatisfying matching. For any pair (i0, j0) we search for

the best path from Si0 to Sj0 in the graph whose nodes are

shapes and whose edges are matching costs Cm
ij . We then

denote by CG
i0j0

the cost of this path (i0, i1, . . . , ik = j0)

and by TG
i0�j0

the composition of local transports along it:

TG
i0�j0 = TL

ik−1�j0 ◦ · · · ◦ TL
i1�i2 ◦ TL

i0�i1 .

This gives the optimal transport from Si0 to Sj0 . Since

Ematch is a quadratic energy, the optimal path will prefer

series of small, reliable steps to big, uncertain jumps.

The computation of all best paths is affordable with stan-

dard shortest path algorithms. In the sequel, Ti�j will stand

for the global transport TG
i�j , and wG

ij = e−αT CG
ij for the

associated transport reliability, for a fixed positive αT . We

will also denote by wL
ij = e−αT Cm

ij the confidence in the

direct matching between shapes Si and Sj .

2.3. Individualized transport

One could also consider individualized transports, in the

sense that the best path may depend on the transported

quantity. Indeed the cost of a local transport TL
i�j is a sum

over vertices of Si : Ematch(mi�j) =
∫

Si
Ev(mi�j)(s)ds

so it would make sense to consider the following individual

cost, for any deformation h to be transported:

C
m,ind.
ij (h) =

∫

Si

Ev(mi�j)(s) ‖h(s)‖ ds

so that bad matchings along a shape are not significant if

they occur where there is no information to transmit.

2.4. Propagating information

This structure (Ti�j , w
G
ij) is useful to propagate informa-

tion along the training set. A local matching mi�j between

two close shapes can be seen as a deformation from Si to

Sj . Because training sets are relatively small and reliable

deformations are scarce, it makes sense to complete the set

of observed deformations on one shape Sk by deformations

observed at other locations Si for which the transport Ti�k

is reliable. In the ideal case of a rigid object with d artic-

ulations and perfect local matchings, only one observation

of each articulation moving, at any position, is sufficient to

realize the full complexity of all possible movements at all

positions, by transports and linear combinations.

Usual articulated human models have about d = 30
degrees of freedom, and consequently the intrinsic dimen-

sion of typical shape datasets is potentially high. This im-

plies that there is no hope in obtaining a dense training set,

even with a loose grid (say N bins for each degree of free-

dom, which makes Nd bins), even with billions of exam-

ples. Consequently, methods involving only distances [12]

or nearest neighbors [6, 13, 16] are not likely to be success-

ful for high d, whereas our approach based on transport of
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Figure 2. Colors on one shape, propagated via transports to other shapes from a same video sequence (see text for details).

deformations reduces the number of required samples from

Nd to Nd in the ideal case.

2.5. Suitability for video analysis

In video sequences, each frame is relatively similar to

the next one, so that any temporal succession of observed

shapes is a natural good path to transport through. In par-

ticular it is not possible to find a shape without close neigh-

bors, and consequently information can be shared.

We present an example for a sequence of walking human

silhouettes, from the ViHASi dataset1. We compute auto-

matically pairwise matchings, and from them the best trans-

port paths (without temporal order information). The paths

obtained are strongly correlated to temporal ordering (for-

wards or backwards). We pick one shape, add colors ran-

domly along it, and propagate color (as a function with val-

ues (r, g, b) in R
3) through transports to all training shapes,

in order to visualize correspondences. The result, in figure

2 (see the supplementary materials for the whole video),

is correct, validating the method. Of course a few match-

ing mistakes are sometimes observed when auto-occultation

happens, but these errors are few, and they are not propa-

gated because these mismatchings cost more. Considering

individualized transports (part 2.3) would allow the trans-

mission of information not related to the precise location

where difficulties occur. For instance a hand gesture could

be transmitted to another silhouette with similar arm posi-

tions even if the legs have been crossed in the meanwhile.

2.6. Learning with shapes and transport

With such a structure, one can learn functions from a

space of shapes S to any vector space X , in particular to

spaces of functions defined on shapes. For example, let us

consider a training set of shapes with appearance (Si, Ai) ∈
S × F(Si � R

n). The appearance Ai(s) could be, for any

point s of any shape Si, an image patch centered on s taken

from the image from which Si was segmented. The trans-

port structure transmits examples of patches Aj(mi�j(s))
observed at similar locations on other shapes, and thus local

statistics on patches can be performed, leading to a prior of

the image given the shape. Thus, in a Bayesian framework,

this structure allows the learning of segmentation/detection

criteria with shape and appearance priors.

For scene understanding purposes, given videos where

a few objects interact, one could also learn which parts of

1http://dipersec.king.ac.uk/VIHASI/

objects interact (by propagating contact locations through

the set of shapes), and how (by propagating gestures). The

perspectives opened by this kind of framework are wide.

3. Learning metrics

Using previous sections, we now learn metrics, show how

to use them as priors, and how to learn the whole structure.

3.1. Metric estimation with weighted H1
α PCA

Given a training set of shapes S = (Si), we are now able

to compute matchings mi�j between close shapes, which

can be seen as deformations

fi�j = Sj ◦ mi�j − Si.

We are also able to transport these deformations to any other

shape Sk :
f
k
i�j = Ti�k(fi�j)

with a weight combining reliability about deformation and

transport computation (section 2.2):

wk
i�j = wL

ij wG
ik.

We now estimate the metric in the tangent space of the shape

Sk, i.e. we search for a relevant inner product in the space of

deformations that can be applied to Sk, based on the set of

weighted deformations (fk
i�j , w

k
i�j). Principal Component

Analysis (PCA) seems a reasonable way to compute statis-

tics but we need to adapt it to probability weights and to the

H1
α product, which favors smoothness and is more coher-

ent with the matching energy Ematch than the standard L2

product. PCA is derived from an energy minimization prob-

lem: the search for the best orthonormal axes en to project

data. Here, the projection error to be minimized is:

inf
〈en|en′ 〉H1

α
=δn=n′

∑

i,j

wk
i�j

∥

∥

∥

∥

∥

f
k
i�j −

∑

n

〈

f
k
i�j |en

〉

H1
α

en

∥

∥

∥

∥

∥

2

H1
α

This is equivalent to the maximization problem:

sup
〈en|en′ 〉H1

α
=δn=n′

∑

n

∑

i,j

wk
i�j

〈

f
k
i�j |en

〉2

H1
α

and to: sup
〈en|en′ 〉H1

α
=δn=n′

∑

n

en HFH en

where F =
∑

i,j wk
i�j f

k
i�j ⊗ f

k
i�j is the weighted covari-

ance matrix, and where H = Id − α∆ is the symmetric

definite operator such that 〈a |b 〉H1
α

= 〈H a |b 〉L2 . If we

note dn = H1/2
en then the problem becomes:

sup
〈dn|dn′ 〉L2=δn=n′

∑

n

dn H1/2FH1/2
dn



so that the optimal dn are the eigenvectors of H1/2FH1/2

with highest eigenvalues. As with usual PCA, we diago-

nalize the weighted correlation matrix M instead, given by:

M(i,j),(i′,j′) =
〈
√

wk
i�j f

k
i�j

∣

∣

∣

√

wk
i′�j′ f

k
i′�j′

〉

H1
α

.

Let γn be the eigenvectors of M , and λn the eigenvalues.

One can prove that dn =
∑

ij γ
(i,j)
n H1/2

√

wk
i�jf

k
i�j so that

en =
∑

ij

γ(i,j)
n

√

wk
i�j f

k
i�j

Thus, PCA of the set of weighted deformations (fk
i�j , w

k
i�j)

in the tangent space of a shape Sk leads to modes of defor-

mation en, with eigenvalues λn, computed easily from the

correlation matrix M . Based on the associated Mahalanobis

distance, we set the natural inner product P between any

two deformations f1 and f2 of Sk:

〈 f1 | f2 〉P =
∑

n

1

λ2
n

〈 f1 |en 〉H1
α
〈 en | f2 〉H1

α
.

In practice we replace λn by max(λn, λnoise) for a cho-

sen level of noise. In case the distributions obtained along

significant eigenmodes would not be Gaussian, we build

histograms along eigenmodes, i.e. of
〈

f
k
i�j | en

〉

H1
α

. The

probability distribution rebuilt from histograms, as if eigen-

modes were independent, was found to be relatively close to

the real one in many cases, but biases between eigenmodes

may also be observed, especially for small training sets.

In figure 3 we consider a complex dancing silhouette

sequence2 with high variability and fast moves, and show

first eigenmodes and histograms computed for a few shapes.

Since linear combinations of first eigenmodes are most

probable deformations, they can be seen as deformation pri-

ors. The priors obtained here are sensible, intuitively related

to articulations and cloth moves, while the usual mean-and-

modes model performs poorly and kernel methods do not

lead to explicit deformation priors. The advantages over

neighborhood-based methods are explained in figure 4.

3.2. An example of how to use the learned metric

The metric learned can be used as a prior on shape

matching. Let A be a shape from the training set, to be

matched, and B the new target. Any possible matching

f = B◦m−A is the sum of its projection p(f) =
∑

n anen

on modes estimated in the tangent space of shape A, and of

the remaining part noise(f). From the metric P estimated

before, we can derive a prior in H1
α, which associates to f

its cost ‖p(f)‖2
P + 1

λ2

noise

‖noise(f)‖2
H1

α
.

Histograms along first eigenmodes can also be used,

their negative log-likelihood be turned into a cost, and a

similar noise term be added. In both cases we want to mini-

mize an energy of the form C((an)) + 1
λ2

noise

‖noise(f)‖2
H1

α
,

which can be expressed as:

2From Grimage platform, https://charibdis.inrialpes.fr

inf
m,−→a

C(−→a ) +
1

λ2
noise

∥

∥

∥

∥

∥

B ◦ m − A −
∑

n

anen

∥

∥

∥

∥

∥

2

H1
α

Given any −→a , the optimal m can be found by the method

described in section 1. A classical gradient descent can then

be performed on −→a . A few steps only are needed, the pro-

cess consists mainly in cutting the part of B ◦m−A which

belongs to the span of the eigenmodes to add it to p(f).

3.3. Learning the whole structure: second pass

The process to estimate metrics from a training set of

shapes consists in three steps: computation of matchings

between close shapes (section 1), transport of deformations

(section 2), and turning statistics on deformations with re-

liability weights into metrics (section 3). If we re-run the

whole process a second time, we can replace the shape

matching algorithm of section 1 by the matching prior de-

riving from the learned metric (section 3.2). In the same

spirit, in section 2, we could choose the geodesic transport

associated to the learned metric. These geodesics would be

easy to obtain, with a path-straightening method, since we

already know point-to-point matchings as well as the met-

ric. Thus, the choices made in these two sections can be

seen as reasonable initializations aimed to be replaced with

learned quantities in a second pass. Concerning the third

section, one could wonder whether there could be other

ways to estimate metrics, given matchings and transports.

This is the subject of next part, where we will show that the

method we presented already computes the optimal metrics.

4. Criteria on shape metrics and optima

Given a training set of shapes S = (Si), and, for any

shape Sk, an empirical distribution Demp of transported de-

formations weighted by their reliability, one can wonder

what the possible ways to estimate metrics are, whether

there would be an objective criterion to assess how much

a metric is suited to the set of shapes, and whether it is pos-

sible to find the optimal metrics.

4.1. Criterion in one tangent space

Let us consider first the case of the tangent space to one

shape only. We are given a set of deformations fj in this

tangent space T , with probability weights wj whose total

sum is 1, i.e. we are given the empirical distribution:

Demp =
∑

j

wj δ fj

where δ· are Dirac peaks, and we would like to find a suit-

able inner product P for T . To any inner product P can be

associated a probability distribution over deformations f :

DP (f) ∝ e−‖f‖2

P



Figure 3. Dancing sequence (9s, 24Hz). Top & middle: first modes of deformation for various postures of the dancing sequence. Each

mode is drawn twice, with amplitude ±λn, and associated histogram is shown. Note how the modes are sensible, related to articulations

(arms, legs, elbows, ...) or dress moves. Full resolution images can be found in the supplementary materials. Bottom left: some frames of

the video sequence; right: mean and first modes with the classical PCA approach on level-sets[11, 4] : limbs are not correctly treated.

up to a normalizing constant. Let us restrict P to be con-

tinuous with respect to an inner product P0 proposed by de-

fault, for instance H1. The class of all such P is still huge,

and, thanks to Riesz representation theorem, for any such P

there exists a linear symmetric continuous operator A s.t.:

∀ f1, f2 ∈ T, 〈 f1 | f2 〉P = 〈A f1 | f2 〉P0
.

Since such an operator can be diagonalized, there exists

an orthonormal basis (en) for P0, and real, positive coef-

ficients (αn) such that A =
∑

n αn en ⊗ en, and conse-

quently:

∀ f1, f2 ∈ T, 〈 f1 | f2 〉P =
∑

n

αn 〈 f1 |en 〉P0
〈en | f2 〉P0

which implies ∀ f ∈ T, ‖f‖2
P =

∑

n

αn 〈 f | en 〉
2
P0

so that the associated distribution

DP (f) :=
∏

n

(αn

π

)
1

2

e
−αn〈f |en 〉2P0

is Gaussian. Reciprocally, any Gaussian distribution relates

to a definite positive quadratic form, i.e. an inner product

on T . Thus, a search over probability distributions derived

from inner products is a search over Gaussian distributions.

We would like the inner product P to be relevant to the

set of deformations fj . One possible way is to pick the one

whose associated distribution DP is the closest to Demp .

Proposition 1. The inner product P which leads to the

probability distribution DP the closest to the empirical dis-

tribution Demp =
∑

j wj δ fj
for the Kullback-Leibler di-

vergence, is the one obtained by weighted PCA on (fj , wj).

Proof. The Kullback-Leibler divergence between any two

probability distributions p1 and p2 is defined by:

KL(p2|p1) =

∫

p1 ln
p1

p2
.

Minimizing the Kullback-Leibler divergence between p1

and p2 with respect to p2 consequently leads to the mini-

mization of E(p2|p1) = −
∫

p1 ln p2. In our case this gives:

E(DP |Demp) = −
∑

j

wj lnDP (fj) (1)

=
∑

j

∑

n

wj

(

αn 〈 fj | en 〉
2
P0

−
1

2
lnαn +

1

2
lnπ

)

.

If we denote by F the covariance matrix
∑

j wj fj ⊗ fj , the

energy becomes, up to a constant:

∑

n

(

αn 〈 en |F | en 〉P0
−

1

2
lnαn

)

(2)

The minimization with respect to αn gives:

∂αn
E = 〈 en |F | en 〉P0

−
1

2αn
= 0. (3)

At the minimum, the derivative with respect to the unit-

normed deformation en is 0 in all directions except for pure

norm variation:

∂ en
E = 2 αn F en ∝ en (4)

which implies that en is an eigenvector of F , say with

eigenvalue λn. Together with (3) it gives: αn = 1
2λ2

n

and consequently the optimal inner product that induces the

closest distribution to Demp is the one related to the norm:

‖f‖2
P =

1

2

∑

n

〈 f | en 〉
2
P0

λ2
n

.



Figure 4. Waving and changing posture: set of 30 hand-segmented

shapes from a video. (Left) Transport path between two shapes,

(middle) correspondence flow to another shape. A waving sign

can be transported to a different posture. (Right) Mean (in black)

of the direct matchings from a shape (in red) towards its 5 and 10

nearest neighbors, respectively. Despite small neighborhood size,

the mean is irrelevant. Neighborhoods made of reliable matchings

are small and cannot include gestures observed at other postures.

This is, up to a constant factor, the Mahalanobis distance

associated to weighted PCA on (fj , wj), which is precisely

the algorithm developed in section 3.1 with P0 = H1
α.

One might however wonder whether minimizing the

Kullback-Leibler distance to a sum of Dirac peaks makes

sense. Luckily, the previous proposition can be extended to

the case of symmetric translation-invariant unit-mass ker-

nels K(· − ·) defined on the space T of deformations. We

replace Demp by the kernel-smoothed empirical distribution

DK
emp(f) =

∑

j

wj K(fj − f).

Note : The family (fj) is finite, so we work in a finite-

dimensioned subspace of the tangent space T , and K can be

understood, in the simple case, as a real function multiplied

by the usual Lebesgue measure df . In the infinite dimension

case, K cannot be isotropic (because it has finite mass).

Proposition 2. The inner product P which leads to the

probability distribution DP the closest to the empirical dis-

tribution DK
emp =

∑

j wjK(fj −·) for the Kullback-Leibler

divergence, is obtained by diagonalization of the sum of the

correlation matrix F and the second moment of K.

Proof. Full details in the supplementary materials. After

computations, we find a similar expression to (2) except that

F is replaced by F + MK where MK =
∫

T
f ⊗ f K(f).

Note that when the kernel K gets closer to a Dirac peak, MK

gets closer to 0, and we obtain proposition 1 again.

We have defined a criterion, based on the Kullback-

Leibler divergence, to quantify how suitable an inner prod-

uct is for a tangent space given with an empirical distribu-

tion of deformations, and we have shown how to compute

the optimal one. Next sections face coherency issues.

4.2. No best smooth direction field

We would like to compute a suitable inner product Pi for

each tangent space Ti as previously, but in a coherent way:

we would like Pi to be close to Pk if shapes Si and Sk are

close. One approach would be to compute a joint PCA in

the tangent spaces Ti of all shapes Si simultaneously, with a

regularity criterion imposing that, after transport, the eigen-

modes e
i
n in Ti should not differ too much from the ones e

k
n

in Tk (with a weight wG
ik). In the continuous case, this prob-

lem can be stated as searching for smooth vector fields en

over a manifold S. But the hairy ball theorem tells us that

even in the simple case where the manifold is a sphere, there

exists no non-vanishing continuous tangent vector field on

the sphere. Which means that there are manifolds for which

we cannot find smooth fields en whose norm is never 0, so

that global modes of deformation do not always exist.

4.3. Criterion for a smooth metric

In fact we do not need the eigenmodes e
k
n to be smooth

with respect to the shape Sk, we only need the probabil-

ity distributions DPk
related to them to be smooth. One

way to ensure this consists in requiring the distribution DPk

to be close not only to the empirical distribution Dempk
in

the tangent space of Sk, but also to the transported empiri-

cal distributions Ti�k(Dempi
) from neighboring shapes Si,

with a weight wG
ik depending on transport reliability.

Proposition 3. The metric computed in part 3.1 is the opti-

mal metric deriving from an inner product, for the criterion:

∑

i,k

wG
ik KL

(

DPk

∣

∣ Ti�k(Dempi
)
)

where Dempi
=

∑

j wL
ij δ fi�j

and Ti�k(δ f ) = δTi�k(f).

Proof. This criterion rewrites
∑

ijk wL
ij wG

ik lnDPk
(fk

i�j)

which is
∑

k KL(DPk
|DT

empk
), a sum of independent

terms, where DT
empk

=
∑

i,j wk
i�j δ fk

i�j
is the empirical

distribution of transported deformations considered in sec-

tion 3.1. The optimal Pk are given by proposition 1 applied

independently to each tangent space Tk with the distribution

DT
empk

. Which is precisely the content of section 3.1.

4.4. Criterion for smooth probability distributions

We could also ask for smooth distributions with an ex-

plicit regularizer term. For the sake of simplicity, let us

assume that the tangent spaces Ti are finite-dimensioned,

so that probability distributions DPi
are just functions gi

defined over Ti (times the Lebesgue measure). Similarly

we denote by g0
i the density functions related to the empir-

ical distributions DK
empi

(smoothed by a kernel in order to

avoid Dirac peaks). Let us consider the usual L2 norm be-

tween these density functions over Ti, and denote by Ti�j



any choice of transport of functions defined over Ti, to Tj .

A natural criterion to minimize would be:

E′(g) =
∑

i

‖gi−g0
i ‖

2
L2(Ti)

+
∑

ij

wij ‖Ti�j(gi)−gj‖
2
L2(Tj)

so that the desired distributions gi are close to the empirical

ones g0
i observed in the same tangent space Ti, but also so

that they do not vary much when transported to close shapes

Sj . At the minimum of E′, we have: ∀i, ∂gi
E′ = 0 =

gi −g0
i +

∑

j

wij(Ti�j(gi)−gj)T
∗
i�j +wji(gi −Tj�i(gj))

where T ∗
i�j is the adjoint of the linear application Ti�j .

This linear system in g can be rewritten as Ag = g0, where

A is a matrix of linear operators:
{

Aii = 1 +
∑

j wij T ∗
i�j Ti�j + wji

Aij = −wij T ∗
i�j − wji Tj�i for i 6= j

In fact A = Id + ε∆ where ∆ is the usual graph Laplacian,

but with transports since one cannot compare directly quan-

tities defined on different tangent spaces, and ε is related to

the norm of w. Thus, A is symmetric positive definite and

g = A−1g0 = (Id+ε∆)−1g0 ≃ (Id−ε∆)g0 ≃ Nε∗g
0.

Thus, the optimal distribution is, in first order approxima-

tion, the empirical one smoothed over the set of shapes with

a Gaussian kernel Nε . Moreover, up to renormalization,

g = (Id − ε∆) g0 coincides with the DT
emp of the previ-

ous paragraph. The inner products (Pi) which suit g = (gi)
the best in the sense of proposition 1 are precisely the ones

obtained in proposition 3 and thus the ones in section 3.1.

This is consequently another validation of our approach.

5. Conclusion

We proposed an approach to learn shape metrics from

small training sets of highly-varying shapes, particularly

suited to video analysis. The structure we build on sets

of shapes relies on deformations and transport, on the con-

trary to distance-based methods, and allows the considera-

tion of non-dense sample sets. We compute pairwise match-

ings between close shapes with possibly different topolo-

gies, transport deformations with reliability weights, and es-

timate smooth shape metrics in the whole training set. Thus,

we generalize statistical approaches based on deformations,

to the case of shape datasets with high variability, where the

notion of mean pattern is not relevant anymore.

We studied several ways to estimate metrics, to propose

criteria on metrics. We showed that the metric computed in

our approach is the optimal one for these criteria, because

of a link between Kullback-Leibler divergence and PCA.

We emphasized the new perspectives in segmentation or

learning based on shapes, offered by such a transport-based

structure. We showed how the metric learned can be turned

into a shape matching prior. We also pointed out how to

learn all notions (matching, transport) with a second pass,

whose completed implementation remains future work.
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