
HAL Id: inria-00482363
https://inria.hal.science/inria-00482363

Submitted on 17 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Mechanism for Processing Top-k Queries in
DHTs

Reza Akbarinia, Esther Pacitti, Patrick Valduriez

To cite this version:
Reza Akbarinia, Esther Pacitti, Patrick Valduriez. An Efficient Mechanism for Processing Top-k
Queries in DHTs. BDA: Bases de Données Avancées, Oct 2006, Lille, France. �inria-00482363�

https://inria.hal.science/inria-00482363
https://hal.archives-ouvertes.fr

1

An Efficient Mechanism for Processing Top-k Queries in DHTs1

Reza Akbarinia Esther Pacitti Patrick Valduriez

Atlas team, INRIA and LINA
University of Nantes, France

{FirstName.LastName@univ-nantes.fr, Patrick.Valduriez@inria.fr}

1 Work partially funded by the ARA Massive Data of the Agence Nationale de la Recherche.

Abstract

We consider the problem of top-k query
processing in Distributed Hash Tables (DHTs).
The most efficient approaches for top-k query
processing in centralized and distributed systems
are based on the Threshold Algorithm (TA)
which is applicable for queries where the scoring
function is monotone. However, the specific
interface of DHTs, i.e. data storage and retrieval
based on keys, makes it hard to develop TA-style
top-k query processing algorithms. In this paper,
we propose an efficient mechanism for top-k
query processing in DHTs. It is widely
applicable to many different DHT
implementations. Although our algorithm is TA-
style, it is much more general since it supports a
large set of non monotone scoring functions
including linear functions. In fact, it is the first
TA-style algorithm that supports linear scoring
functions. We prove analytically the correctness
of our algorithm. We have validated our
algorithm through a combination of
implementation and simulation. The results show
very good performance, in terms of
communication cost and response time.
Keywords: DHT, Query processing, Top-k
queries.

1. Introduction
Distributed Hash Tables (DHTs), e.g. CAN �[26],
Chord �[31], Tapestry �[33] and Pastry �[28],
provide an efficient solution for data location and
lookup in large-scale P2P systems. While there
are significant implementation differences
between DHTs, they all map a given key onto a
peer p using a hash function and can lookup p
efficiently, usually in O(log n) routing hops
where n is the number of peers �[12]�[17]. DHTs
typically provide two basic operations �[17]�[27]:
put(key, data) stores a pair (key, data) in the
DHT using some hash function; get(key)
retrieves the data associated with key in the

DHT. These operations enable supporting exact-
match queries only. Recently, much work has
been devoted to supporting more complex
queries on top of DHTs such as range queries
�[15] �[17] and join queries�[20]. However,
efficient evaluation of more complex queries in
DHTs is still an open problem.

An important kind of complex queries is top-
k queries. A top-k query specifies a number k of
the most relevant answers desired together with a
scoring function that expresses the degree of
relevance (score) of the answers. Top-k queries
have attracted much interest in many different
areas such as network and system monitoring
�[2]�[21]�[9], information retrieval �[22]�[6]�[30]�[25],
multimedia databases �[10]�[24]�[13]�[16], spatial
data analysis �[7]�[11]�[18], etc. The main reason
for such interest is that they avoid overwhelming
the user with large numbers of uninteresting
answers which are resource-consuming. In a
large-scale P2P system, top-k queries can be
very useful �[6]. For example, consider a P2P
system with medical doctors who want to share
some (restricted) patient data for an
epidemiological study. Assume that all doctors
agreed on a common Patient description in
relational format. Then, one doctor may want to
submit the following query over the P2P system
to obtain the 10 top answers ranked by a scoring
function over height and weight:
 SELECT *

FROM Patient P
WHERE (P.disease = “diabetes”) AND
 (P.height < 170) AND (P.weight > 70)
ORDER BY scoring-function(height, weight)
STOP AFTER 10
The scoring function specifies how closely

each data item matches the conditions. For
instance, in the query above, the scoring function
could be (weight - (height -100)) which
computes the overweight.

The most efficient approaches for top-k query
processing in centralized and distributed systems

2

are based on the Threshold Algorithm (TA)
�[14]�[16]�[24]. TA is applicable for queries where
the scoring function is monotone, i.e., any
increase in the value of the input does not
decrease the value of the output. Many of the
popular aggregation functions, e.g. Min, Max,
Average, are monotone. However, there are
many useful functions that are not monotone
including most of linear functions, e.g. the
function of the above example. TA works as
follows. Given m lists of n objects such that each
object has a local score in each list and the lists
are sorted according to the local scores of their
objects, TA finds k objects whose overall scores
are the highest. The overall score of an object is
computed based on the local scores of the object
in all lists using the scoring function. TA goes
down the sorted lists in parallel, one position at a
time, and for each seen object, computes its
overall score. This process continues until
finding k objects whose overall scores are greater
than a threshold which is computed based on the
local score of the objects at current position.

TA-style algorithms, i.e. algorithms inspired
from TA, are fairly well developed for top-k
query processing in centralized data management
systems, but much less in distributed systems
such as P2P federations �[23]. In particular, the
specific interface of DHTs, i.e. data storage and
retrieval based on keys, makes it hard to develop
TA-style top-k query processing algorithms.

 In this paper, we propose an efficient
mechanism for top-k query processing in DHTs.
It is widely applicable to many different DHT
implementations such as CAN, Chord, Tapestry
and Pastry. To the best of our knowledge, this is
the first paper that addresses the problem of
efficient top-k query processing in DHTs.
Although our algorithm is TA-style, it is much
more general than TA since it supports a large
set of non monotone scoring functions including
linear functions. For instance, it can support the
function of the above example, i.e. (weight -
(height - 100)), which is not monotone and
cannot be processed by TA. In fact, our
algorithm is also the first TA-style algorithm that
supports linear scoring functions. We prove
analytically the correctness of our algorithm. We
have also validated our algorithm through a
combination of implementation and simulation
and the results show very good performance, in
terms of communication cost and response time.

This work is done in the context of APPA
(Atlas Peer-to-Peer Architecture) �[3]�[4], a P2P
data management system which we are building.
The main objectives of APPA are scalability,
availability and performance for advanced
applications.

The rest of this paper is organized as follows.
In Section 2, we give a precise definition of the
problem based on the definition of the set of
scoring functions which we support. In Section
3, we present our mechanism for storing the
shared data in a DHT. In Section 4, we present
our algorithm for processing top-k queries in
DHTs. Section 5 describes a performance
evaluation of our algorithm through
implementation over a 64-node cluster and
simulation using SimJava [18]. Section 6
discusses related work and Section 7 concludes.

2. Problem Definition
In this section, we first define the scoring
functions that our algorithm supports. Then, we
make precise our assumptions and state the
problem we address in this paper.

2.1 Supported Scoring Functions
Let f be a scoring function that given values x1,
x2, .., xm for its variables X1, X2 …, Xm returns
a real number as the score of the given values.
Monotonic scoring functions are defined as
follows �[14].
Definition 1 (Monotonic scoring function): f is
monotonic if f(x1, x2, …, xm) ≤ f(x'1, x'2, …, x'm)
whenever xj≤ x'j for every j. In other words,
increasing the value of variables does not
decrease the output of the scoring function.

Monotonic scoring functions are very useful
in practice. Aggregate functions such as MIN,
MAX and AVERAGE are monotonic. However,
there are many functions that are not monotonic,
for instance f(X1, X2) = X1 – X2 is not monotonic,
e.g. f(6, 6) > f(7, 8). In fact, no linear function is
monotonic unless the quotient of all variables is
positive.

Our solution supports a set of scoring
functions, which we denote as IOD-EV, and
which is a super set of monotonic scoring
functions. To define IOD-EV functions, we need
the two following definitions.
Definition 2 (Increasing wrt variable Xi): A
scoring function f is increasing wrt variable Xi if
f(x1, x2,…, xi-1, xi, xi+1,…, xm) � f(x1, x2,…, xi-1, x'i,
xi+1,…, xm) whenever xi≤ x'i. In other words,

3

increasing the value of variable Xi does not
decrease the output of the scoring function.
Definition 3 (Decreasing wrt variable Xi): A
scoring function f is decreasing wrt variable Xi,
if f(x1, x2,…, xi-1, xi, xi+1,…, xm) ≥ f(x1, x2,…, xi-1,
x'i, xi+1,…, xm) whenever xi≤ x'i. In other words,
increasing the value of variable Xi does not
increase the output of the scoring function.

For example the function f(X1, X2) = X1 – X2
is increasing wrt X1 and decreasing wrt X2. Now
we can define IOD-EV scoring functions.
Definition 4 (Increasing Or Decreasing wrt
Each Variable (IOD-EV)): A scoring function f
is IOD-EV if for each variable Xi, f is increasing
wrt Xi or decreasing wrt Xi.

For example, the functions f(X1, X2) = X1 – X2
and f(X1, X2) = (X1)3 – (X2)3 are IOD-EV. The set
of monotonic scoring functions is a subset of
IOD-EV functions as shown below.
Lemma 1: Every monotonic scoring function is
IOD-EV.
Proof: A monotonic scoring function is
increasing wrt every variable, thus it is IOD-EV.
�

The linear functions are also IOD-EV as
demonstrated below.
Lemma 2: Every linear function is IOD-EV.
Proof: A linear function can be written as f(X1,
X2, …, Xm) = a0 + a1X1 + a2X2 + …+ amXm where
a0, a1, …, am are constant values. For each
variable Xi if its quotient ai is positive then f is
increasing wrt Xi, otherwise it is decreasing wrt
Xi. Thus, all linear functions are IOD-EV. �

2.2 Problem Statement
In this paper, we assume relational data, i.e.
tuples. For simplicity, we assume top-k queries
with no join operation. We also assume that the
scoring function specified in the query is IOD-
EV. Our objective is to find the k highest scored
tuples from the tuples that are stored in the DHT
and satisfy Q’s conditions. Formally, let Q be a
top-k query issued at some peer, and T be the set
of tuples that are stored in the DHT and satisfy
the qualification of Q. Let sc(t) be the scoring
function that is specified in Q and determines the
score of a given tuple t∈T. Our goal is to find
efficiently the set Ttk⊆ T such that: �Ttk� = k and
∀ t1∈ Ttk,∀ t2 ∈ (T - Ttk) we have sc(t1) ≥ sc(t2).

3. Data Storage Mechanism
In this section, we propose our mechanism for
storing relational data in the DHT. This
mechanism not only provides good support for
exact-match queries, it also enables efficient
execution of our top-k query processing
algorithm.

Our data storage mechanism relies on a
Persistent Data Management service (PDM)
�[4]�[4] which provides high availability for (key,
data) pairs stored in the DHT. The PDM service
provides: a put(key, data) operation that
replicates a (key, data) pair at several peers using
several hash functions, and a get(key) operation
that retrieves one of the available replicas of a
data that is stored with key in the DHT. Using
PDM, even with high churn of peers, we have a
very high chance to retrieve data from the DHT.
In the rest of this paper, the key used for storing
a data in the DHT is called the storage key of
that data.

In our data storage mechanism, peers store
their relational data in the DHT with two
complementary methods: tuple storage and
attribute-value storage.

3.1 Tuple Storage
With the tuple storage method, each tuple of a
relation is entirely stored in the DHT using its
tuple identifier (e.g. its primary key) as the
storage key. This enables looking up a tuple by
its identifier. Let R be a relation name and A be
the set of its attributes. Let T be the set of tuples
of R and id(t) be a function that denotes the
identifier of a tuple t∈T. Let h be a hash function
that hashes its inputs into a DHT key, i.e. a
number which can be mapped by the DHT onto a
peer. For storing relation R, each tuple t∈T is
entirely stored in the DHT where the storage key
is h(R, id(t)), i.e. the hash of the relation name
and the tuple identifier. In other word, for storing
R, the following instructions are done (see Figure
1): ∀ t∈ T, put(h(R, id(t)), { t })

Hereafter, we denote h(R, id(t)) by ts_key(t)
and call it tuple storage key.

3.2 Attribute Value Storage
The attribute-value storage method enables
answering exact-match queries. In addition to
tuple storage, the attributes that may appear in a
query’s “where” clause, are stored individually
in the DHT, like in database secondary indexes.

4

Figure 1. Storing a relation in the DHT

 These attributes include those used in equality
predicates or passed as arguments to the scoring
function. Let Aav∈A be the set of R’s attributes
which are stored using attribute-value storage.
Let val(t, a) be a function that returns the value
of an attribute a in a tuple t. With attribute-value
storage, for every t∈T and for each a∈Aav we
store in the DHT a set containing val(t, a) and
ts_key(t) (see Figure 1). The reason, for which
upon attribute-value storage we store ts_key(t), is
that it enables us to retrieve the entire tuple after
retrieving one of its values which are stored
through attribute-value storage.

The storage key used for attribute-value
storage, denoted by avs_key and called attribute-
value storage key, is determined in such a way
that, for the values of an attribute that are
relatively “close”, avs_key is the same.

To determine avs_key, we use the concept of
domain partitioning. Consider an attribute a∈Aav
and let Da be its domain of values. Assume there
is a total order < on Da, e.g. Da is numeric,
string, date, etc. We partition Da into n nonempty
sub-domains d1, d2, …, dn such that their union is
equal to Da, the intersection of any two different
sub-domains is empty, and for each v1∈di and
v2∈dj, if i<j then we have v1<v2. For example,
attribute “weight”, whose domain is [0..200] in
kilograms, can be partitioned into 40 sub-

domains [0..5), [5..10), …, [190..195),
[195..200]. The lower bound of each sub-domain
d is denoted by lb(d). Given a value v, the sub-
domain to which v belongs is denoted by sd(a,
v). The number of sub-domains of an attribute
and the lower bound of each sub-domain are
known to all peers of the DHT. Therefore, given
an attribute a and a value v, any peer can locally
compute sd(a, v).

Using domain partitioning, the attribute-value
storage key, i.e. avs_key, can be computed as
follows. Let R be a relation name, a∈Aav be an
attribute, and v be a value of a, the attribute-
value storage key for storing v in the DHT is h(R,
a, lb(sd(a, v))), i.e. the hash of the relation name,
attribute name and the lower bound of the sub-
domain to which v belongs. Thus, for the values
of an attribute that belong to the same sub-
domain, avs_key is the same key, so those values
are stored at the same peer.

Partitioning the domain of an attribute allows
us to store the attribute values which belong to
the same sub-domain at the same peer. The
partitioning can be done by the designers of the
DHT application or by the owners of the
relations at schema mapping time.

However, the partitioning method used
should also avoid attribute storage skew, i.e.
skewed distribution of attribute values within

Function Relation_Storage(R, A, T, Aav)//stores the tuples of a relation in the DHT
 /* arguments description
 R : relation name
 A : set of R’s attributes
 T : set of R’s tupples
 Aav : set of R’s attributes which are stored by attribute-value storage
*/
Begin
 for each t∈T do
 begin
 ts_key := h(R, id(t));// id : function that returns the tuple’s identifier
 // h: hash function that hashes its inputs to a DHT key
 ts_value := t;
 PDM.put(ts_key, ts_value); // tuple storage

 for each a∈Aav do
 begin
 v := val(t, a); // val: returns the value of attribute a in tuple t
 d := sd(a, v); // sd: returns the sub-domain of
 // attribute a to which value v belongs.
 avs_key := h(R, a, lb(d));//lb: returns the lower bound of
 // a given sub-domain
 avs_value := {val(t, a)} ∪ {ts_key};
 PDM.put(avs_key, avs_value); // attribute-value storage
 end;
 end;
end;

5

sub-domains, which may yield load unbalancing
among peers. For instance, simply dividing the
domain into n equal-width sub-domains, as we
did for attribute “weight” above, may yield
attribute storage skew, e.g. with a much larger
partition for the weight sub-domains between 60
and 80.

If at partitioning time, we have histogram-
based information that describe the distribution
of the values of an attribute, we can do a better
partitioning such that the values be uniformly
distributed within the sub-domains. Formally, let
pa(v) be the probability density function that
describes the probability that attribute a takes a
value equal to v. To obtain a uniform
partitioning, we choose the lower bound of sub-
domains d1, d2, …, dn such that:

n

dvvp
i

i

dlb

dlb a

1
)(

)(

)(

1 =�
+

 for 1≤ i≤n-1 (1)

By these n-1 equations, the sub-domains are
constrained to have the same density of values.
We know that the lower bound of d1 is equal to
the lower bound of Da, so lb(d1) is determined.
Thus, we have n-1 equations with n-1 variables,
i.e. lb(d2),…, lb(dn), and by solving the equations
we can determine the value of lb(d2),…, lb(dn).

The partitioning of an attribute’s domain must
be done before storing any value of the attribute
in the DHT. After storing some attribute values
in the DHT, it is no longer allowed to modify the
number of sub-domains and their lower bounds
since any modification may result in losing the
ability to retrieve the stored attribute values, i.e.
it may result in a new storage key for an stored
attribute value which is different from the
storage key by which the attribute value has been
stored in the DHT.

4. Top-k Query Processing
In this section, we propose DHTop, an algorithm
for processing top-k queries in DHTs. We first
present an overview of the algorithm, and then
describe its phases in more details. Then, we
prove its correctness. Finally, we present two
optimizing strategies to further reduce the
response time and communication cost of
DHTop.

4.1 Algorithm Overview
DHTop works as follows. Let scoring attributes
be the attributes that are passed to the scoring
function as arguments. For each scoring

attribute, DHTop retrieves their values in
parallel, one by one in order of their positive
impact on the scoring function. Thus, the values
for which the scoring function is higher are
retrieved first. For each value retrieved, DHTop
retrieves the entire tuple and computes the score
of the tuple. The retrieval of attribute values
continues until retrieving k tuples whose scores
are greater than a threshold which is computed
based on the last retrieved values using the
scoring function. The threshold value is
computed as in the TA algorithm.

To retrieve the values of the scoring
attributes, DHTop proceeds as follows. For each
scoring attribute, it creates a list of the attribute’s
sub-domains, and orders them according to their
positive impact on the scoring function, i.e. the
sub-domains for which the scoring function is
higher are at the beginning of the list. Then,
starting from the head of the list, DHTop selects
a sub-domain and requests the peer responsible
for it to return the stored attribute values, one by
one, in order of their positive impact on the
scoring function. If the values which are stored at
the first sub-domain of the list are not sufficient
for finding the k top tuples, DHTop selects the
second sub-domain, and requests its responsible
to return its stored values. This process continues
until finding k tuples whose scores are greater
than the threshold.

Let Q be a given top-k query, f be its scoring
function, Asf be the set of scoring attributes, and
pint be the peer at which Q is issued. We assume
that f is IOD-EV. DHTop starts at pint and
proceeds in four phases: (1) Prepare lists of
candidate sub-domains; (2) Retrieve candidate
attribute values; (3) Retrieve candidate tuples;
and (4) Check the end condition.

4.2 Prepare Lists of Candidate Sub-
domains
In this phase, for each scoring attribute, pint
prepares a list of sub-domains and orders them
according to their positive impact on the scoring
function. These lists are used in the next phase
for retrieving the values of scoring attributes.
This phase proceeds as follows. For each
attribute α∈Asf, pint creates a Candidate sub-
Domain List, denoted by CDLα, and performs the
following steps:
Step 1: Initialization. pint initializes CDLα to
contain all α’s sub-domains.

6

Step 2: Removing useless sub-domains. In this
step, pint removes from CDLα the sub-domains of
which no member can satisfy Q’s conditions.
Without loss of generality, assume that Q is in
conjunctive normal form. Depending on Q’s
conditions, many of the sub-domains involved in
CDLα may be removed from it. In particular, this
is true when some of Q’s conditions are the
following:
• Bound Conditions. These are the conditions

that limit the attribute α to be lower or
greater than a constant value, e.g. the
condition α < u where u is a constant. For
each bound condition on α, pint removes
from CDLα the sub-domains that are
excluded by the bound condition. For
example, for the condition α < u, pint
removes from CDLα each sub-domain d such
that lb(d) > u.

• Point Conditions. These are the conditions
that enforce the attribute α to be equal to a
constant, e.g. α = u. For a point condition on
α, pint removes from CDLα all its sub-
domains except the sub-domain to which the
constant value belongs.

Step 3: Ordering candidate sub-domains. If
the scoring function f is increasing wrt α then pint
sorts CDLα in descending order of the lower
bound of its involved sub-domains. Otherwise, it
sorts CDLα in ascending order. Let CDLα[i]
denote the ith sub-domain of CDLα. At the end
of this step, CDLα is as follows. If f is increasing
wrt α then lb(CDLα[i-1]) ≥ lb(CDLα[i])
whenever i>1. And if f is decreasing wrt α then
lb(CDLα[i-1]) ≤ lb(CDLα[i]) whenever i>1.

4.3 Retrieve Candidate Attribute Values
The objective of this phase is to retrieve the
stored values of the scoring attributes, in order of
their positive impact on the scoring function.

In this phase, for each attribute α∈Asf in
parallel, pint performs as follows. It sends Q and
α to the peer, say p, that is responsible for
storing the values of the first sub-domain of
CDLα, and requests it to return the values of α
that are stored at p. The values are returned in
order of their positive impact on the scoring
function. If the values that p returns to pint are not
sufficient for determining the k top tuples, pint
sends Q and α to the responsible of the second
sub-domain of CDLα. This process continues
until the end condition holds and the algorithm
ends.

The details of the actions, which are done by
p after receiving the request of pint, are as
follows. Let Vα be the list of all values of the
attribute α that are stored at p, it creates a
Candidate Attribute Value List for α, denoted by
CAVLα, and performs the following steps:
Step 1: Initialization. p initializes CAVLα to
contain all values involved in Vα.
Step 2: Removing useless sub-domains. p
removes from CAVLα the values that are
excluded by Q’s conditions, in particular bound
and point conditions similar to Step 2 in the
previous phase.
Step 3: Ordering candidate values. If the
scoring function f is increasing wrt α then p sorts
CAVLα in descending order. Otherwise, it sorts it
in ascending order.
Step 4: Sending the candidate values to pint
sequentially. In this step, p starts sending the
values involved in CAVLα to pint, one by one, and
from the head of CAVLα to its end, until arriving
at the end of CAVLα or receiving the “end”
message from pint. Along with each value, its
tuple storage key (i.e. ts_key) which is stored
with the value upon attribute-value storage (see
Section �3.2), and its index in CAVLα are also sent
to pint.

It is needed that pint receives the values sent
by p in their sending sequence. For this, when
pint receives a value v, it compares its index, say
i, with the index of the last received value, say j.
If i=j+1 then it considers v as a retrieved
attribute value, otherwise it discards v and asks p
to send the values from the index j+1.

4.4 Retrieve Candidate Tuples
The objective of this phase is to retrieve the tuple
of each retrieved attribute value, compute the
tuple’s score, and keep it if its score is one of the
k highest scores yet computed.

After retrieving each attribute value v, pint
retrieves the tuple which v belongs to, say t,
using ts_key(t) which is received along with v. If
t does not satisfy Q’s conditions, pint discards it.
Otherwise it computes the score of t using the
scoring function f. If this score is one of the k
highest scores pint has yet computed, it adds t to
the set Y (which has been initialized to empty). If
�Y�> k then it removes from Y the tuple with the
lowest score.

7

4.5 Check the End Condition
The objective of this phase, which is done by pint
after retrieving each attribute value and its tuple,
is to check whether there are at least k tuples
(among the retrieved tuples) whose scores are
greater than the threshold. If yes, the algorithm
ends, otherwise it continues.

For each attribute ai∈Asf let vi be the last
value received for ai, we define the threshold δ to
be f(v1, v2, …, vm). After retrieving each attribute
value and its tuple, pint computes δ. If �Y�=k
and the score of all tuples involved in Y is at least
δ, then the end condition holds. In this case, for
each attribute ai∈Asf, pint sends an “end” message
to the peer that is sending the stored values of ai
to pint. Then, the algorithm ends and the output is
the set of tuples involved in Y.

4.6 Correctness
Let us now prove the correctness of the DHTop
algorithm. For this, we prove the following
lemma which will be used in the proof of
Theorem 1.

Lemma 3: Let f be an IOD-EV scoring
function, vi and v'i be two stored values for an
scoring attribute ai such that vi is retrieved by
DHTop, and v'i is retrieved after vi or it is not
retrieved by DHTop, then we have f(x1, x2,…, xi-1,
v'i, xi+1,…, xm) ≤ f(x1, x2,…, xi-1, vi, xi+1,…, xm) for
any value xj ,1≤j≤m and j≠i.

Proof: With respect to the possible values vi
and v'i , there are two cases to consider. In the
first case, vi and v'i belong to two different sub-
domains, e.g. d1 and d2 respectively. Thus, d1 is
before d2 in CDLai. If f is increasing wrt ai, then
considering Step 3 of the first phase of the
algorithm, we have lb(d1) ≥ lb(d2). Thus, we
have vi ≥ v'i and since f is increasing wrt ai, we
have f(x1, x2,…, xi-1, v'i, xi+1,…, xm) ≤ f(x1, x2,…,
xi-1, vi, xi+1,…, xm). Now, if f is decreasing wrt ai,
then considering Step 3 of the first phase of the
algorithm, we have lb(d1) ≤ lb(d2). Thus vi ≤ v'i
and since f is decreasing wrt ai, we have f(x1,
x2,…, xi-1, v'i, xi+1,…, xm) ≤ f(x1, x2,…, xi-1, vi,
xi+1,…, xm). The second case is when vi and v'i
belong to the same sub-domain. It is obvious that
vi is before v'i in CAVLai. If f is increasing wrt ai,
then considering Step 3 of the second phase of
the algorithm, we have vi ≥ v'i and thus f(x1, x2,…,
xi-1, v'i, xi+1,…, xm) ≤ f(x1, x2,…, xi-1, vi, xi+1,…,
xm). If f is decreasing wrt ai, we have vi ≤ v'i and
thus f(x1, x2,…, xi-1, v'i, xi+1,…, xm) ≤ f(x1, x2,…,
xi-1, vi, xi+1,…, xm). �

Now, the following theorem provides the
correctness of our algorithm.

Theorem 1: If f is an IOD-EV scoring
function, then DHTop finds the k top tuples
correctly.

Proof: the proof is done by contradiction. Let
Y be the set of k top tuples obtained by DHTop,
and t' be the tuple in Y whose score is the lowest.
We assume there is a tuple t''∉Y such that its
score is greater than t', and we show that this
assumption yields to a contradiction. Let a1, a2,
…, am be the scoring attributes. Let v1, v2, …, vm
be the last values, i.e. before ending the
algorithm, retrieved respectively for attributes a1,
a2, …, am. Let v'1, v'2, …, v'm be the values of the
attributes a1, a2, …, am in t', respectively. Let v''1,
v''2, …, v''m be the value of attributes a1, a2, …, am
in t'', respectively. Since t'' is not in Y, it was not
retrieved during the execution of our algorithm.
Thus, none of its values, i.e. v''1, v''2, …, v''m, was
retrieved by pint, because if the value of any
attribute of a tuple was retrieved, the entire tuple
would have been retrieved by the algorithm. By
applying Lemma 3 on attribute a1 we have f(v1,
v2, …, vm) ≥ f(v''1, v2, …, vm). By applying the
Lemma 3 on attribute a2, we have f(v''1, v2, v3,…,
vm) ≥ f(v''1, v''2, v3,…, vm). By continuing the
application of Lemma 3 on attributes a3,…, am,
we have f(v1, v2, …, vm) ≥ f(v''1, v2, …, vm) ≥ f(v''1,
v''2, …, vm) ≥… ≥ f(v''1, v''2, …, v''m-1, vm) ≥ f(v''1,
v''2, …, v''m-1, v''m). Therefore, we have f(v1, v2,
…, vm) ≥ f(v''1, v''2, …, v''m). According to the end
condition of the algorithm, we have f(v'1, v'2, …,
v'm)≥ f(v1, v2, …, vm), and by comparing this
inequality with the former one, we have f(v'1, v'2,
…, v'm)≥ f(v''1, v''2, …, v''m). In other words, the
score of tuple t' is greater than that of t'', which
yields to a contradiction. �

4.7 Optimizing Strategies
We can further reduce response time and
communication cost of DHTop. For this, we
propose two simple optimizing strategies: batch
retrieval of attribute values and retrieving each
tuple at most once.
Batch retrieval of attribute values (BRAV). In
Step 4 of Phase 2, the values of the scoring
attributes are returned to pint one by one, i.e. each
value in a message. Since each message has its
own overhead, e.g. latency, returning only one
value per message is very costly. To reduce such
overhead, we can modify Step 4 of Phase 2 so
that the peer p, which is responsible for storing

8

the values of a sub-domain, sends the attribute
values to pint in a batch fashion, e.g. k values per
message. In Section 5, we perform some
experiments to study the effect of the number of
values, which are sent per message, on response
time.
Retrieving each tuple at most once (RTO). In
the basic form of DHTop, after retrieving each
value of a scoring attribute, the entire tuple of
that value is retrieved. Since there may be
several scoring attributes, a tuple may be
retrieved several times. However, after the first
retrieval of the tuple and comparing its score
with the k highest scores, there is no need to
retrieve it again because either the tuple is in the
set Y or its score cannot be one of the k highest
scores. Thus, to optimize our algorithm, we can
change Phase 3 as follows. pint maintains a list of
ts_key of the tuples which have yet been
retrieved. Before retrieving a tuple t, pint checks
the existence of ts_key(t) in the list. If it is not in
the list then pint appends ts_key(t) to the list, and
Phase 3 proceeds as described before, i.e. pint
retrieves the tuple, computes its score, etc.
Otherwise, pint does nothing, i.e. it does not
retrieve the tuple.

5. Performance Evaluation
We evaluated the performance of DHTop
through implementation and simulation. The
implementation over a 64-node cluster was
useful to validate DHTop and calibrate our
simulator. The simulator allows us to study scale
up to high numbers of peers (up to 10,000 peers).

The rest of this section is organized as
follows. In Section 5.1, we describe our
experimental and simulation setup, and the
algorithms used for comparison. In Section 5.2,
we first report experimental results using the
implementation of four versions of our algorithm
on a 64-node cluster, and then we present
simulation results on performance by increasing
the number of peers up to 10,000. In Sections
5.3, we evaluate the effect of the number of
requested tuples, i.e. k, on performance. In
Section 5.4, we vary the number of sub-domains
to which an attributes domain is partitioned, and
we investigate its effect on performance. In
Section 5.5, we study the effect of data
distribution on performance. In Section 5.6, we
study the effect of the number of retrieved
attribute values per message on the performance
of the BRAV optimization.

5.1 Experimental and Simulation Setup
Our implementation is based on Chord �[31]
which is a simple and efficient DHT. Chord's
lookup mechanism is provably robust in the face
of frequent node failures and re-joins, and it can
answer queries even if the system is continuously
changing. We implemented PDM as a service on
top of Chord which we also implemented. We
also implemented our storage mechanism on top
of Chord using PDM.

We tested our algorithms over a cluster of 64
nodes connected by a 1-Gbps network, that of
the Paris team at IRISA2. Each node has 2 Intel
Xeon 2.4 GHz processors, and runs the Linux
operating system. We make each node act as a
peer in the DHT.

To study the scalability of our algorithm far
beyond 64 peers, we implemented a simulator
using SimJava �[19]. To simulate a peer, we use a
SimJava entity that performs all tasks that must
be done by a peer for executing DHTop. We
assign a delay to communication ports to
simulate the delay for sending a message
between two peers in a real P2P system. Since
the results gained from the simulator were
similar to those gained from the implementation
over the cluster, for most of our tests we only
report simulation results.

Our default settings for different experimental
parameters are shown in Table 1. Most of theses
settings are the same as in �[10]. In our tests, we
use a synthetically generated relation with six
attributes ai, 1≤i≤6 and the domain of the
attributes is numeric. The default number of
tuples of the relation is 10,000 and they are
randomly generated in two different ways: (1)
Uniform data set, and (2) Gaussian data set. With
(1), the values of attributes are independent of
each other, and the distribution of the values of
each attribute is uniform. This is our default
setting. With (2), the values of different
attributes are independent of each other, and the
values for each attribute are generated via
overlapping multidimensional Gaussian belles
�[32].

In our tests, the top-k query Q is delivered to
a randomly selected peer. The selectivity of Q
over the generated data is 10% and the scoring
function specified in Q is the linear function f(a1,
a2, a3, a4, a5, a6) = a1 – 2a2 + 3a3 – 4a4 + 5a5 –
6a6. Typically, users are interested in a small

2 http://www.irisa.fr/paris/General/cluster.htm.

9

number of top answers, thus we set k=10. In our
storage mechanism, the domain of each attribute
is uniformly partitioned into n sub-domains and
the default value for n is 100.

The network parameters of the simulator are
shown in Table 2. We use parameter values
which are typical of P2P systems �[29]. The
latency between any two peers is a normally
distributed random number with a mean of 200
(ms). The bandwidth between peers is also a
random number with normal distribution with a
mean of 56 (kbps). The simulator allows us to
perform tests up to 10,000 peers, after which the
simulation data no longer fit in RAM and makes
our tests difficult. This is quite sufficient for our
tests.

Table 1. Default setting of experimental parameters
Parameter Default values
Number of tuples 10,000
K 10
Number of attributes 6
Data set Uniform
Data selectivity 10 %
Number of attribute’s sub-domains 100

Table 2. Network parameters of the simulator

Parameter Default values
Bandwidth Normally distributed random,

Mean = 56 Kbps, Variance =
32

Latency Normally distributed random,
Mean = 200 ms, Variance = 50

Number of peers 10,000 peers

To evaluate the performance of our

algorithm, we measure the following metrics. 1)
Response time: the time elapsed between the
delivery of Q to pint and the end of the algorithm.
2) Communication cost: the total number of
bytes which are transferred over the network for
executing DHTop. The communication cost
includes the bytes transferred for retrieving
attribute values and tuples, and those used for
looking up the responsibles of the keys by the
DHT.

We tested and compared four versions of our
algorithm as follows. The first version, which we
denote by DHTop-Basic, is the basic form of
DHTop without our optimizations. The second
version, denoted by DHTop-RTO, uses the RTO
optimization, i.e. each tuple is retrieved at most
once. The third version, denoted by DHTop-
BRAV, uses the BRAV optimization, i.e.
retrieves the attribute values in a batch fashion.

The default number of values, which are
retrieved per message, is 10. The fourth version,
denoted by DHTop-RTO+BRAV, uses both ROT
and BRAV optimizations.

5.2 Scale up
In this section, we investigate the scalability of
our four algorithms. We use both our
implementation and our simulator to study the
response time and communication cost while
varying the number of peers.

Using our implementation over the cluster,
we ran experiments to study how response time
increases with the addition of peers. Figure 2
shows the response time of the four versions of
DHTop with the addition of peers up to 64. In all
four algorithms, the response time grows
logarithmically with the number of peers. Since
DHTop-RTO retrieves each tuple at most once,
its response time is better than that of DHTop-
Basic. However, the number of tuples, which
DHTop-Basic retrieves more than once, is not
high. Thus, there is not a significant difference
between the response time of DHTop-Basic and
DHTop-RTO. The response time of DHTop-
BRAV is much better than that of DHTop-Basic
because it retrieves the attribute values in a batch
fashion. This reduces the number of sequential
messages that are needed for retrieving attribute
values, yielding a significant reduction in
response time.

Experimental Results
k=10

0

0,5

1

1,5

2

2,5

3

3,5

4

10 20 30 40 50 60

Number of peers

R
es

po
ns

e
Ti

m
e

(s
)

DHTo p-bas ic

DHTo p-RTO

DHTo p-BRAV

DHTo p-RTO+BRAV

 Figure 2. Response time vs. number of peers

10

Simulation Results
k=10

0
3
6
9

12
15
18
21
24
27
30
33
36

2000 4000 6000 8000 10000

Number of peers

R
es

po
ns

e
T

im
e

(s
)

DHTo p-bas ic

DHTo p-RTO

DHTo p-BRAV

DHTo p-RTO+BRAV

 Figure 3. Response time vs. number of peers

Simulation Results
k=10

1800
1850
1900
1950
2000
2050
2100
2150
2200
2250
2300
2350
2400
2450
2500
2550
2600

2000 4000 6000 8000 10000

Number of peers

C
om

m
un

ic
at

io
n

C
os

t
(B

yt
es

)

DHTop-basic

DHTop-RTO

DHTop-BRAV

DHTop-RTO+BRAV

 Figure 4. Communication cost vs. number of peers

Using simulation, Figure 3 shows the
response times of the four algorithms with the
number of peers increasing up to 10000 and the
other parameters set as in Table 1 and Table 2.
Overall, the experimental results correspond
qualitatively with the simulation results.
However, we observed that the response time
gained from our experiments over the cluster is
slightly better than that of simulation, simply
because of faster communication in the cluster.

We also tested the communication cost of our
four algorithms. Using the simulator, Figure 4
depicts the number of bytes with increasing
numbers of peers up to 10,000, with the other
parameters set as in Table 1 and Table 2. The
communication cost increases logarithmically
with the number of peers. The communication
cost of DHTop-Basic is the same as DHTop-
BRAV, and thus not visible in Figure 4.

5.3 Effect of k
In this section, we study the effect of k, i.e. the
number of top tuples requested, on response
time. Figures 5 and 6 show how the response
time and communication cost respectively
increase with k, using our simulator with the
other parameters set as in Table 1 and Table 2.

As expected, the response time and
communication cost of our algorithm increases
with k because more tuples and attribute values
are needed to be retrieved in order to obtain k top
tuples. However, the increase is very small. For
instance, if we increase k from 5 to 50, i.e. by
900%, the response time of DHTop-
RTO+BRAV increases from 27s to 32s, i.e. by
only 18%.

10,000 peers

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40 45 50

k

R
es

po
ns

e
T

im
e

(s
)

DHTop-RTO+BRAV

Figure 5. Response time vs. k

10,000 peers

0

500

1000

1500

2000

2500

3000

5 10 15 20 25 30 35 40 45 50

k

C
om

m
un

ic
at

io
n

C
os

t (
B

yt
es

)

DHTop-RTO+BRAV

 Figure 6. Communication cost vs. k

5.4 Effect of the Number of Sub-domains
In our storage mechanism, the domain of each
attribute is partitioned into n sub-domains. Upon
attribute-value storage, the values that belong to
the same sub-domain are stored at the same peer

11

(see Section �3.2). In the previous tests, the value
of n was 100. In this section, we vary n and
investigate its effect on response time and
communication cost.

Figure 7 and 8 respectively show how
response time and communication cost evolve
while increasing the number of attribute’s sub-
domains, with the other parameters set as in
Table 1 and Table 2. The results show that n has
a very small impact on performance of our
algorithm. Increasing n increases the number of
peers that are responsible for maintaining the
values of an attribute, so the number of values
stored at each peer decreases. Consequently, in
Phase 2 of our algorithm, more peers are looked
up and contacted, and this increases slightly the
response time and communication cost of the
algorithms.

10,000 peers
k = 10

0

5

10

15

20

25

30

35

40

50 150 250 350 450 550 650 750

Number of attribute's sub-domains

R
es

po
ns

eT
im

e
(s

)

DHTop-RTO+BRAV

Figure 7. Response time vs. number of attribute’s
sub-domains

10,000 peers
k=10

0

500

1000

1500

2000

2500

3000

50 150 250 350 450 550 650 750

Number of attribute's sub-domains

C
om

m
un

ic
at

io
n

C
os

t (
B

yt
es

)

DHTop-RTO+BRAV

Figure 8. Communication cost vs. the number of
attribute’s sub-domains

5.5 Effect of Data Distribution
In this section, we investigate the response time
of our algorithm over two Uniform and Guassian
data sets that we have generated synthetically, as
described in Section �5.1.

Using our simulator, Figure 9 shows the
response time of our four algorithms over
Uniform and Guassian data sets, with the other
parameters set as in Table 1 and 2. The response
time of all four algorithms over the Guassian
data set is much better than their response time
over the Uniform data set. The reason stems
from that, in the Guassian distribution, a high
percentage of generated values are around the
mean value and a very small percentage of the
values are in the extremes, i.e. more than 95% of
generated values are between λ-2δ and λ+2δ
where λ is the mean value and δ is the standard
deviation. This characteristic of the Guassian
distribution makes the end condition of DHTop
hold sooner over the Guassian data set than over
the Uniform data set.

Figure 9. Response time over uniform and Guassian
data sets

5.6 Effect of Batch Retrieval of Attribute
Values

In this section, we study the effect of the number
of retrieved attribute values per message on the
BRAV optimization. In the previous tests, this
number was 10. In this section, we vary this
number and study its effect on response time.

Using our simulator, Figure 10 shows the
response time of DHTop-BRAV while
increasing the number of attribute values
retrieved per message, and the other parameters

10,000 peers
k = 10

0

5

10

15

20

25

30

35

Uniform Gaussian

Data distribution type

R
es

po
ns

e
T

im
e

(s
)

DHTop-basic

DHTop-RTO

DHTop-BRAV

DHTop-RTO+BRAV

12

set as in Table 1 and Table 2. The best response
time is for the case where peers send all their
stored values to pint. In our tests, the number of
attribute values, which are stored at each peer, is
not very high. Should this number be very high,
having each peer send all its attribute values to
pint would cause useless values to be sent, as the
algorithm would end before using them. In this
case, to avoid wasting network bandwidth, it is
better to send in each message only a part of the
attribute values, e.g. at most 10*k attribute
values per message.

10,000 peers
k = 10

25

26

27

28

29

30

31

32

33

34

1 5 9 13 17 all values

Number of attribute values per message

R
es

po
ns

e
T

im
e

(s
)

DHTop-BRAV

 Figure 10. Response time vs. number of attribute
values sent per message

6. Related Work
Efficient processing of top-k queries is both an
important and hard problem that has received
recently much attention. The most efficient
algorithms are based on the TA algorithm
�[14]�[16]�[24]. We have briefly introduced the TA
algorithm in Section �1, initially designed for
centralized systems.

Several TA-style algorithms have been
proposed for distributed systems. The first
distributed TA-style algorithm has been
proposed in �[8] with the objective of processing
top-k queries over Internet data sources for
recommendation services (e.g. restaurant
ratings). In �[9], the authors propose a TA-style
algorithm to answer top-k queries in distributed
systems. The algorithm reduces the
communication cost by pruning away ineligible
data items and restricting the number of round-
trip messages between the query initiator and the
other peers. In �[23], an approximate TA-style
algorithm is proposed for wide-area distributed
systems. It uses the concept of bloom filters for

reducing the data communicated over the
network upon processing top-k queries, and
yields significant performance benefits with
small penalties in result precision.

Overall, these TA-style algorithms have
focused on reducing data communication in
traditional distributed systems, not P2P systems.
Top-k query processing in P2P systems has
therefore started to attract attention. In �[6], the
authors address top-k query processing in
Edutella, a super-peer network in which a small
percentage of nodes are super-peers and are
assumed to be highly available with very good
computing capacity. The algorithm is not TA-
style. It proceeds by sending the query to the
super-peers and via them to ordinary peers, and
finally collecting top answers by the super-peers.
The authors also develop efficient routing
methods among super-peers in a hypercube
topology. However, the algorithm cannot apply
to DHTs where data storage is based on keys.

In �[1]�[2], we proposed a (non TA-style)
algorithm for top-k query processing in
unstructured P2P systems. The algorithm
proceeds by flooding the query to the peers that
are in a limited distance from the query initiator.
And the top-k answers are gathered in a tree-
based fashion by intermediate peers. We
proposed efficient methods for reducing the
communication cost of query execution in
unstructured P2P systems. However, in the
current paper our focus is on supporting top-k
query processing in DHTs where data storage
and retrieval is based on keys.

7. Conclusion
In this paper, we addressed the problem of top-k
query processing in Distributed Hash Tables
(DHTs). We first proposed a mechanism for data
storage in DHTs which provides good support
for exact-match queries and enables efficient
execution of our top-k query processing
algorithm. Then, we proposed an efficient TA-
style algorithm for top-k query processing in
DHTs. Although, our algorithm is TA-style, it is
much more general since it supports a large set
of non monotone scoring functions including
linear functions. In fact, it is the first TA-style
algorithm that supports linear scoring functions.
We proved analytically the correctness of our
algorithm.

We validated our algorithm through
implementation and experimentation over a 64-

13

node cluster and evaluated its scalability through
simulation up to 10,000 peers using SimJava. We
studied the effect of several parameters (e.g.
number of peers, k, number of attribute’s sub-
domains, etc.) on the performance of our base
algorithm and its optimizations. The results show
very good performance, in terms of
communication cost and response time. The
response time and communication cost of our
algorithm grow logarithmically with the number
of peers of the DHT. Increasing the number of
top tuples requested, i.e. k, increases very
slightly the response time of our algorithm. In
addition, increasing the number of attributes’
sub-domains (to increase load balancing) has
very little impact on the response time and
communication cost of individual queries.
Finally, our two simple optimizing strategies
(batch retrieval of attribute values and retrieving
each tuple at most once) can reduce response
time by up to 20%. In summary, this
demonstrates that top-k queries, an important
kind of complex queries, can now be efficiently
supported in DHTs.

References
[1] Akbarinia, R., Pacitti, E., and Valduriez, P.

Reducing Network Traffic in Unstructured
P2P Systems Using Top-k Queries. J.
Distributed and Parallel Databases, 2006 (to
appear).

[2] Akbarinia, R., Martins, V., Pacitti, E., and
Valduriez, P. Top-k Query Processing in the
APPA P2P System. Int. Conf. on High
Performance Computing for Computational
Science (VecPar), 2006.

[3] Akbarinia, R., Martins, V., Pacitti, E., and
Valduriez, P. Design and Implementation of
Atlas P2P Architecture. Global Data
Management (Eds. R. Baldoni, G. Cortese,
F. Davide), IOS Press, 2006.

[4] Akbarinia, R. and Martins, V. Data
Management in the APPA P2P System. Int.
Workshop on High-Performance Data
Management in Grid Environments
(HPDGrid), 2006.

[5] Babcock, B., and Olston, C. Distributed
Top-K Monitoring. SIGMOD Conf., 2003.

[6] Balke, W.-T., Nejdl, W., Siberski, W., and
Thaden, U. Progressive Distributed Top k
Retrieval in Peer-to-Peer Networks. ICDE
Conf., 2005.

[7] Böhm, C., Berchtold, S., and Keim, D.A.
Searching in high-dimensional spaces: Index
structures for improving the performance of
multimedia databases. ACM Computing
Surveys 33(3), 2001.

[8] Bruno, N., Gravano, L., and Marian, A.
Evaluating Top-k Queries over Web-
Accessible Databases. ICDE Conf., 2002.

[9] Cao, P., Wang, Z. Efficient Top-K Query
Calculation in Distributed Networks. PODC
Conf., 2004.

[10] Chaudhuri, S., Gravano, L., and Marian,
A. Optimizing Top-K Selection Queries over
Multimedia Repositories, J. IEEE
Transactions on Knowledge and Data
Engineering 16(8), 2004.

[11] Ciaccia, P., and Patella, M. Searching in
metric spaces with user-defined and
approximate distances. J. ACM Transactions
on Database Systems (TODS), 27(4), 2002.

[12] Dabek, F., Zhao, B.Y., Druschel, P.,
Kubiatowicz, J., and Stoica, I. Towards a
Common API for Structured Peer-to-Peer
Overlays. Proc. of Int. Workshop on Peer-to-
Peer Systems (IPTPS), 2003.

[13] DeVries, A.P., Mamoulis, N., Nes, N., and
Kersten, M.L. Efficient k-NN Search on
Vertically Decomposed Data. SIGMOD
Conf., 2002.

[14] Fagin, R., Lotem, J., and Naor, M. Optimal
aggregation algorithms for middleware. J. of
Computer and System Sciences 66(4), 2003.

[15] Gao, J., and Steenkiste, P. An Adaptive
Protocol for Efficient Support of Range
Queries in DHT-Based Systems. IEEE Int.
Conf. on Network Protocols (ICNP), 2004.

[16] Güntzer, U., Kießling, W., and Balke, W.-
T. Optimizing Multi-Feature Queries for
Image Databases. VLDB Conf., 2000.

[17] Harren, M. et al. Complex Queries in
DHT-based Peer-to-Peer Networks. Proc. of
Int. Workshop on Peer-to-Peer Systems
(IPTPS), 2002.

[18] Hjaltason, G.R., and Samet, H. Index-
driven similarity search in metric spaces. J.
ACM Transactions on Database Systems
(TODS), 28(4), 2003.

[19] Howell, F., and McNab, R. SimJava: a
Discrete Event Simulation Package for Java
with Applications in Computer Systems
Modeling. Proc. of Int. Conf. on Web-based
Modeling and Simulation, 1998.

14

[20] Huebsch, R., Hellerstein, J., Lanham, N.,
Thau Loo, B., Shenker, S., and Stoica, I.
Querying the Internet with PIER. VLDB
Conf., 2003.

[21] Koudas, N., Ooi, B.C., Tan, K.L., and
Zhang, R. Approximate NN queries on
Streams with Guaranteed Error/performance
Bounds. VLDB Conf., 2004.

[22] Long, X., and Suel, T. Optimized Query
Execution in Large Search Engines with
Global Page Ordering. VLDB Conf., 2003.

[23] Michel, S., Triantafillou, P., and Weikum,
G. KLEE: A Framework for Distributed
Top-k Query Algorithms. VLDB Conf.,
2005.

[24] Nepal, S., and Ramakrishna, M.V. Query
Processing Issues in Image (Multimedia)
Databases. ICDE Conf., 1999.

[25] Persin, M., Zobel, J., and Sacks-Davis, R.
Filtered Document Retrieval with
Frequency-Sorted Indexes, J. of the
American Society for Information Science
(JASIS), 47(10), 1996.

[26] Ratnasamy, S., Francis, P., Handley, M.,
Karp, R.M., and Shenker, S. A scalable
content-addressable network. Proc. of
SIGCOMM, 2001.

[27] Ratnasamy, S., Stoica, I., and Shenker, S.
Routing Algorithms for DHTs: Some Open
Questions. Proc. of Int. Workshop on Peer-
to-Peer Systems (IPTPS), 2002.

[28] Rowstron, A. I.T., and Druschel, P. Pastry:
Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer
Systems. Proc. of ACM Int. Conf. on
Distributed Systems Platforms (Middleware),
2001.

[29] Saroiu, S., Gummadi, P.K., and Gribble,
S.D. A Measurement Study of Peer-to-Peer
File Sharing Systems. Proc. of Multimedia
Computing and Networking (MMCN), 2002.

[30] Soffer, A., Carmel, D., Cohen, D., Fagin,
R., Farchi, E., Herscovici, M., and Maarek,
Y.S. Static Index Pruning for Information
Retrieval Systems. SIGIR Conf., 2001.

[31] Stoica, I., Morris, R., Karger, D.R.,
Kaashoek, M.F., and Balakrishnan, H.
Chord: A scalable peer-to-peer lookup
service for internet applications. Proc. of
SIGCOMM, 2001.

[32] Williams, S.A., Press, H., Flannery, B.P.,
and Vetterling, W.T. Numerical Recipes in

C: The Art of Scientific Computing.
Cambridge Univ. Press, 1993.

[33] Zhao, B.Y., Kubiatowicz, J., and Joseph,
A.D. Tapestry: a Fault-tolerant Wide-Area
Application Infrastructure. Computer
Communication Review 32(1), 2002.

