Reliable A posteriori Signal-to-Noise Ratio features selection

Cyril Plapous 1 Claude Marro 1 Pascal Scalart 2
2 R2D2 - Reconfigurable and Retargetable Digital Devices
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, INRIA Rennes, ENSSAT - École Nationale Supérieure des Sciences Appliquées et de Technologie
Abstract : This paper adresses the problem of single microphone speech enhancement in noisy environments. State of the art short-time noise reduction techniques are most often expressed as a spectral gain depending on the Signal-to-Noise Ratio (SNR). The well-known decision-directed (DD) approcah drastically limits the level of musical noise but the estimated a priori SNR is biased since it depends on the speech spectrum estimated in the previous frame. The consequence of this biais is an annoying reverberation effect. We propose a new method, called Reliable Features Selection Noise Reduction (RFSNR) technique, that is able to classify the a posteriori SNR estimates into two categories: the reliable features leading to speech components and the unrealiable ones corresponding to musical noise only. Then it is possible to directly enhance speech using a posteriori SNR leading to an unbiased estimator.
Type de document :
Communication dans un congrès
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Oct 2005, Mohonc Mountain House, New Paltz, New York, United States. 2005
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00482648
Contributeur : Pascal Scalart <>
Soumis le : mardi 11 mai 2010 - 10:25:56
Dernière modification le : mercredi 11 avril 2018 - 01:53:48
Document(s) archivé(s) le : jeudi 16 septembre 2010 - 13:56:57

Fichiers

WASPAA-version_finale.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00482648, version 1

Citation

Cyril Plapous, Claude Marro, Pascal Scalart. Reliable A posteriori Signal-to-Noise Ratio features selection. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Oct 2005, Mohonc Mountain House, New Paltz, New York, United States. 2005. 〈inria-00482648〉

Partager

Métriques

Consultations de la notice

539

Téléchargements de fichiers

419