N
N

N

HAL

open science

A Principled Method for Exploiting Opening Books

Romaric Gaudel, Jean-Baptiste Hoock, Julien Pérez, Nataliya Sokolovska,

Olivier Teytaud

» To cite this version:

Romaric Gaudel, Jean-Baptiste Hoock, Julien Pérez, Nataliya Sokolovska, Olivier Teytaud. A Princi-
pled Method for Exploiting Opening Books. International Conference on Computers and Games, Sep

2010, Kanazawa, Japan. inria-00484043

HAL 1d: inria-00484043
https://inria.hal.science/inria-00484043
Submitted on 17 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00484043
https://hal.archives-ouvertes.fr

A Principled Method for Exploiting Opening
Books

Romaric Gaudel, Jean-Baptiste Hoock, Julien Pérez,
Nataliya Sokolovska, Olivier Teytaud

LRI, CNRS UMR 8623 & INRIA-Saclay,
bat. 490, Univ. Paris-Sud, F-91405 Orsay Cedex, France

firstname.name@lri.fr

Abstract. We used in the past a lot of computational power and human
expertise for having a very big dataset of good 9x9 Go games, in order
to build an opening book. We improved a lot the algorithm used for gen-
erating these games. Unfortunately, the results were not very robust, as
(i) opening books are definitely not transitive, making the non-regression
testing extremely difficult and (ii) different time settings lead to opposite
conclusions, because a good opening for a game with 10s per move on
a single core is very different from a good opening for a game with 30s
per move on a 32-cores machine (iii) some very bad moves sometimes
occur. In this paper, we formalize the optimization of an opening book
as a matrix game, compute the Nash equilibrium, and conclude that a
naturally randomized opening book provides optimal performance (in
the sense of Nash equilibria); surprisingly, from a finite set of opening
books, we can choose a distribution on these opening books so that this
random solution has a significantly better performance than each of the
deterministic opening book.

1 Introduction

It is widely known that opening books (OB) are crucial in many games [4, 11, 9,
12]. Incidentally, it can be crucial also for other applications: carefully choosing
the first decision in a planning problem is often very important. For example, in
power plant management, taking care of strategical decisions (in particular, the
quantity of hydroelectric stocks preserved) before the winter is very important
a long time before the moment at which the situation is visibly critical.

The representation of the opening book is not so easy. Usually, opening books
are built from sets of games (see e.g. [11]), and possibly (for games in which al-
phabeta works) extended by alpha-beta techniques, usually with iterative deep-
ening or related methods [7, 9]. Then, several solutions are as follows:

— Rote-learning. Just keep all the archive, and when a sequence of moves is
equal to the prefix of a game g in the archive, play the same move as in g. If
several moves are available, select the one which most frequently leads to a
win. Don’t follow a move with success rate below a threshold; [11] suggests to

avoid moves below 50 %. There are implementations in which moves played
less than a fixed number of times are canceled; this reminds the classical
confidence/support thresholds when rules are extracted from databases.

— @-functions. An improvement consists in replacing the archive of games by
a set of pairs (situation,move). This is quite reasonable as in some games,
permutations of games are also good games, and if a move is good in a
situation, it is good whatever may be the sequence of moves leading to this
situation.

— V-functions. We might want to generalize the permutation approach above:
instead of keeping pairs, just keep situations, and play a move if it leads to
a situation with a success rate above 50 %. This is advocated in e.g. [2], and
empirically strongly increases the average number of moves in the opening
book.

~

P
10

J

fé@?

~

— 2 26

/

Fig. 1. Here MoGoTW was white. The human, a very strong professional player but
with little experience in 9x9, was in very bad situation at move 7 - at this point it was
easy for white to keep two groups alive, one around stones 2 and 8, and one around
stones 4 and 6. But MoGoTW did not reply to move 7, and played the useless move
8 which strengthens the group at the bottom whereas it was safe, and did not protect
the group in the top which was under attack. MoGoTW was just selecting moves
leading to situations which were in its opening book! This shows that representing an
opening book by V-functions (i.e. functions mapping values to situations) can lead to
big troubles - when the situation is rare due to mistakes by the opponent, V is known
only for moves which equilibrate the situation and therefore using the V function might
destroy the advantage. This leads to extremely long sequences in the opening book,
but it would be much better to exit the opening book earlier (here after move 7).
Interestingly, MoGoTW played all the stones in this figure in the opening - showing
the success of the approach based on V from the point of view of the length of the
opening sequence - but not in terms of quality of moves.

Unfortunately, building an opening book is far from an easy task. For games
in which alpha-beta is efficient, there are natural tools for this (typically, iterative
deepening [9]). But for difficult games, such as Go, in which only Monte-Carlo

Tree Search provides good results, there is not a lot of results yet. [2] proposed
algorithms for this, including experiments on grids, with good results against
the baseline; however, when the algorithm is applied against humans, several
very bad moves appeared, suggesting that the performance against humans does
not follow the performance against computers. A typical example is [2] in which
it is shown that adding human expertise provides a huge speed-up. A particu-
larly impressive example of bad behavior is the game shown in Fig. 1, in which
MoGoTW played some very bad moves and lost against a 8P player, whereas
the human had made big mistakes in the early stages of the opening. As pointed
out in [5], taking care of avoiding bad moves is indeed much more important
than taking care of adding good moves.

We here show that indeed, V-functions are quite dangerous, in spite of the
fact that they strongly increase the length of the opening sequence, and that a
simple modification of V algorithms make them much more reliable. Section 2
presents our modified algorithms. Section 3 will show how to combine several
deterministic strategies into an optimal randomized strategy. Section 4 presents
our experimental results.

Notations

In all the paper, nb games(s) is the number of games in the archive including sit-
uation s, and nb wins(s) is the number of won games in the archive including sit-
uation s. parent(s) is the parent situation of situation s; in some cases there are
several such parent situations, and in this case parent(s) is the situation which
was met before situation s in the context. grandParent(s) = parent(parent(s)).

2 Simple modifications for V—algorithms

The baseline algorithm (termed “default” in the sequel) is shown in Alg. 1.
The situation we want to avoid is depicted in Fig. 2.

Algorithm 1 The “default” algorithm for opening book. This is the baseline in
our experiments

Goal: Select a move by opening from the situation s.

Define: V(situation) < percentage of won games in archive containing situation.
Define: transition(s,s’) means that playing a move can lead to s’ from s.

if There is s’ such that transition(s,s’) and V(s') > 0.5 then

Return argmax V(s).
s’;transition(s,s’)

end if

A first natural modification is to choose moves with good statistical guaran-
tees, taking into account the sample size by confidence bounds. This is proposed
in the Lower Confidence Bound algorithm (Alg. 2).

Equilibrated initial situation

(good se-
bad sequence
]E) humgn) N \(quence by
Y human)

Very good situation for com-

puter (unseen in archive) Equilibrated situation

(good move
by computer)

(stupid move
by computer)

p v

Equilibrated situation

Fig. 2. A bad case we want to avoid. The arrow “stupid move by computer” is the
move that is selected in the baseline and that we want to remove. The situation that
“attracts” the opening book is not necessarily very good in the default algorithm: it is
just the statistically best situation already stored in the archive that can be reached
from this situation, and this situation is not necessarily good.

Algorithm 2 The “Lower Confidence Bound” (LCB) version of the algorithm.

Goal: Select a move by opening from the situation s.
Define: V(situation) < percentage of won games in archive containing situation,
minus 2/+/nb games(situation).
Define: transition(s,s’) means that playing a move can lead to s’ from s.
if There is s’ such that transition(s,s’) and V(s') > 0.5 then
Return argmax V/(s').

s’;transition(s,s’)

end if

We will see also another simple modification: if you leave the opening book,
then never consider it again. This is proposed in Alg. 3.

Algorithm 3 The “non-reentrant” (NR) version of the algorithm.

Goal: Select a move by opening from the situation s.
if s is not in the archive then
Return no move
end if
Define: V(situation) < percentage of won games in archive containing situation.
Define: transition(s,s’) means that playing a move can lead to s’ from s.
if There is s’ such that transition(s,s’) and V(s') > 0.5 then

Return argmax V(s).
s’stransition(s,s’)

end if

The fourth proposed modification consists to accept an opening move only if
the success rate is higher than the previously seen success rate. This is detailed
in Alg. 4.

Algorithm 4 The “progress” algorithm for opening book.
Goal: Select a move by opening from the situation s.
Define: V(situation) < percentage of won games in archive containing situation.
Define: s” = grandParent(s).
Define: transition(s,s’) means that playing a move can lead to s’ from s.
if There is s’ such that transition(s,s’) and V(s') > 0.5 and V(s') > V(s”) then

Return argmax V(s).
s’stransition(s,s’)

end if

Finally, it has been suggested in [8, 3] to use a regularized form of the winning
rate; we propose this in the “regularized” algorithm! (Alg. 5).

Algorithm 5 The “regularized” (Reg) algorithm for opening book; this is the so-
called ”even-game” prior[6]. A second regularized version (Reg2) is considered,
using (nb wins+100)/(nb games+200); this increases the strength of the ”even-
game” prior.

Goal: Select a move by opening from the situation s.

Define: V (situation) < (nb wins(situation) + 1)/(nb games(situation) + 1).

Define: s” = grandParent(s).

Define: transition(s,s’) means that playing a move can lead to s’ from s.

if There is s’ such that transition(s,s’) and V(s') > 0.5 and V(s') > V(s") then

Return argmax V(s).
s’;transition(s,s’)

end if

Please note that this is not equivalent to coming back to Q—representations.

3 Mixing deterministic opening books: fictitious play and
matrix games

Fictitious play is an algorithm for solving zero-sum matrix games. Consider M
a matrix with p rows and ¢ columns; player 1 chooses a row %, player 2 chooses
a column j, and player 2 pays M; ; to player 1; this means that the reward for
player 1 is M; ; and the reward for player 2 is —M, ;.

! Please note that ranking moves by (nb wins)/(nb games) or by (nb wins +
1)/(nb games + 1) are two different things (consider e.g. a move with nb wins = 2,
nb games = 3 and a move with nb wins = 19,999, nb games = 30, 000; the first

move is preferred in the first case but not in the second).

Pure strategies. A pure strategy for player 1 (resp. player 2) is a deter-
ministic policy for playing the game: it is the index of a row (resp. the index of
a column).

Mixed strategy. A mixed strategy for player 1 (resp. player 2) is a distribu-
tion of probability on pure strategies of player 1 (resp. player 2). The support
of a mixed strategy is the number of pure strategies with non-zero probability
in it.

A Nash equilibrium of the game is a pair (z,y) € R? x R? with 2,y > 0
and ||z||1 = ||y||]1 = 1 such that

Vy' €R%yY 20,y |l =1: 2" My < 2" My;
Vo' € RP 2’ >0, |||y = 1: 2' My > 2/ My.

A best response for player 1 (resp. 2) to a strategy s of player 2 (resp.
1) is a pure strategy which maximizes the expected reward against s. s is not
necessarily a pure strategy, but a best response is a pure strategy.

Define e; = (1,0,0,...,0) € RP, e; = (0,1,0,...,0) € RP...e, =
(0,0,...,0,1) € RP. Define ¢y = (1,0,0,...,0) € R?, ¢/ = (0,1,0,...,0) €
RY,....¢/y = (0,0,...,0,1) € RY9. Consider z; = (x;,y;) for i € N, with
x; € [0,1], y; € [0,1]4. 2 is a fictitious play for M if

=Nzl =1, lpl = 1

. 1T +€er, .
— For all ¢ even, y;+1 = y; and x4 = e where r; is a best response to
Yi- ,
. 1yi+e . .
— For all ¢ odd, ;11 = x; and y;411 = yi+1 L where r; is a best response to
ZTi.

Fictitious play is known to converge since [10], in the sense that for all zero-sum
games, its accumulation contains only Nash equilibria.

4 Experiments

Opening books are not transitive; one can have an opening book very strong
against a given opponent, and not against another. Also, the comparison between
two opening books might depend on the considered hardware and the computa-
tional power. How to build an opening book, from various opening books with
no clear ranking ? We propose an answer based on matrix games. The following
elements are crucial:

— Randomized opening books. It is known that even when there is a de-
terministic perfect player (what is the case for Go), it is often much better
(from a complexity perspective) to use a randomized solution. Therefore,
randomized opening books should be considered. This is often done in order
to introduce diversity in games, but the new thing in our work is that we will
do this for improved performance, even against opponents with no memory
of the past or met only once, and not (only) for diversity and for the pleasure
of human opponents.

— Matrix solving. Given strategies numbered 1,2,..., K for playing the
opening with a book of games, we can build the matrix M where M; ; is
the success rate of strategy i as black against strategy j as white. This is a
matrix game. When there is no transitivity, as in the case of opening books,
optimal strategies may be mixed strategies (i.e. randomized): they consist in
a distribution of probability on pure (i.e. deterministic) strategies. Whenever
optimal players in Go can (provably) be deterministic, the optimal combi-
nation of opening book strategies is randomized.

— Automatization. It is known (and recalled in experiments above) that
opening books provide plenty of surprises like non-transitivity and depen-
dency on the precise conditions of the game. Therefore, all the process of
choosing the opening strategy should be made automatic, for each game
conditions.

We propose the following solution:

— Build the matrix M discussed above.

— Apply fictitious play for solving this matrix game (see section 3); this pro-
vides a distribution of probability p; for black and a distribution of proba-
bility p,, for white.

— The resulting stochastic opening book is then as follows:

e As black, play strategy ¢ with probability py(%).
e As white, play strategy ¢ with probability p,, (7).

We tested our algorithms and get results presented in Table 1.

Comparing the various deterministic strategies is difficult: in some cases,
Reg2 (in which statistics are very regularized) is very bad (e.g. for white), but
in other cases it performs very well (e.g. for black with 1,500 simulations per
move). Also, the use of lower bounds (LCB) is sometimes very good (in partic-
ular for black at 15,000 simulations per move). This is somehow related to [1]:
for difficult problems, it might be better to optimize the parameter of a strat-
egy (in particular a randomized strategy), than applying sophisticated tools for
approximating value functions.

The results can be summarized as follows for the use of mixed strategies:

— With 15,000 simulations per move, the mixed strategy for black reaches
success rate 28.0 % at least against all opponents; whereas each pure strategy
reaches success rate 26.9 % at most. As white, the mixed strategy can reach
72.0 % against any opponent, whereas the pure strategies can not perform
better than 71.5%.

— With 150,000 simulations per move, the best strategy is deterministic - it is
“Reg”, both for black and white. Reg2 was not included in the test.

— With 1,500 simulations per move, the best strategy is deterministic - it is
“Reg” for black, and LCB for white.

We emphasize different advantages of randomized strategies:

— First, in some cases, the mixed strategies are better; the advantage is however
minor in our experiments.

Black \ White||Default| LCB|LCB|NR | Reg |Reg2| Probas
+NR (NR)|(NR) for black
1,500 simulations per move
Default 29.3 |28.8|55.5(55.6|25.9 | 57.7 0
LCB 28.9 |26.8|54.5(52.8]28.5| 50.8 0
LCB+NR 28.2 |30.2|53.6 |53.8] 23.5 | 52.5 0
NR 30.7 |30.8|56.4 |54.8| 26.9 | 55.7 0
Reg 25.8 |31.9|55.7| 53 | 23.8|52.5 0
Reg2 36.1 |36.1|50.844.3| 37.7| 59 100
Probas 0 100 O 0 0 0
for white
15,000 simulations per move
Default 29.3 |28.8|55.5(55.6|25.9 | 55.7 0
LCB 28.9 |26.8|54.5(52.8/28.5|50.8| 69.6
LCB+NR 28.2 |30.2|53.6 |53.8] 23.5 | 52.5 0
NR 30.7 |30.8|56.4|54.8/26.9 | 51.6 | 30.4
Reg 25.8 [31.9|55.7| 53 | 23.8 | 67.7 0
Reg2 35.5 |22.6|48.4151.6]22.6 | 61.3 0
Probas 0 28.6| 0 0 (714 O
for white
150,000 simulations per move
Default 29.3 |28.8|55.5 [55.6] 21.2 | NA 0
LCB 28.9 [26.8|54.5 (52.8 19.2 | NA 0
LCB+NR 28.2 [30.2]53.6 |53.8/ 15.4 | NA 0
NR 30.7 |30.8|56.4 |54.8| 18.5 | NA 0
Reg 24.6 [26.2|48.8 [56.2| 24 | NA 100
Probas 0 0 0 0 | 100
for white

Table 1. Scores of the various opening books as black against the various opening
books as white; following the tradition in game theory, the success rates are those of
the “row” player (i.e. black). The probabilities are the Nash equilibrium: the optimal
strategy is deterministic except for 15,000 simulations per move. The Nash equilibrium
is found by fictitious play, with 10,000 iterations; each number in matrices above is
found by averaging 5,000 games.

— Second, fictitious play provides a principled tool for optimizing mixed strate-
gies; it is anytime (it is an iterative method), simple and proved.

It is interesting to consider what humans would choose if trying to choose be-
tween the pure (deterministic) strategies from the tables of results. It is likely
that a human would choose, for 150,000 simulations per move, NR for black,
whereas it performs extremely bad against some white opponents; the princi-
pled solution (REG) reaches 24% whereas NR reaches 18.5%.

5 Conclusion

First, we discussed the various techniques for constructing an opening book from
a finite set of games. We clearly see that some details, such as our “NR” modifi-
cation or the regularization, have a huge unsuspected impact on the results; also,
the results of a given technique are very different depending on the considered
problem; just changing the number of simulations, or, more importantly, con-
sidering white or black, makes “NR” or “LCB” or regularization very good or
very bad. This suggests the use of automatic choice between several techniques.
LCB and NR usually perform well for white, and for black the situation highly
depends on the number of simulations. An immediate further work consists in
adding some other parameters; after all, this looks like a direct policy search
applied to the building of opening book, and this might be the best approach
for complex problems. A related work emphasizing such an approach (including
randomization) is [1], in a different framework.

Second, we considered fictitious play as a tool for simultaneously randomizing
and optimizing opening books. The resulting procedure can be automatized for
a given technical setting (time per move, hardware), and provides results that
would not be guessed by handcrafting. The results are provably Nash equilibria.

1]
2]

Bibliography

C. Amato, D. Bernstein, and S. Zilberstein. Optimizing fixed-size stochastic
controllers for POMDPs and decentralized POMDPs. In AAMAS, 2009.
P. Audouard, G. Chaslot, J.-B. Hoock, J. Perez, A. Rimmel, and O. Tey-
taud. Grid coevolution for adaptive simulations; application to the building
of opening books in the game of Go. In Proceedings of EvoGames, pages
323-332. Springer, 2009.

V. Berthier, H. Doghmen, and O. Teytaud. Consistency Modifications for
Automatically Tuned Monte-Carlo Tree Search. In Proceedings of Lion4,
page 14, 2010.

M. Buro. Toward opening book learning. ICCA Journal, 22:98-102, 1999.
C. Donninger and U. Lorenz. Innovative opening-book handling. In H. J.
van den Herik, S.-C. Hsu, T.-S. Hsu, and H. H. L. M. Donkers, editors, ACG,
volume 4250 of Lecture Notes in Computer Science, pages 1-10. Springer,
2006.

S. Gelly and D. Silver. Combining online and offline knowledge in UCT.
In ICML °07: Proceedings of the 24th international conference on Machine
learning, pages 273280, New York, NY, USA, 2007. ACM Press.

R. E. Korf. Depth-first iterative-deepening: an optimal admissible tree
search. Artif. Intell., 27(1):97-109, 1985.

C.-S. Lee, M.-H. Wang, G. Chaslot, J.-B. Hoock, A. Rimmel, O. Teytaud,
S.-R. Tsai, S.-C. Hsu, and T.-P. Hong. The Computational Intelligence of
MoGo Revealed in Taiwan’s Computer Go Tournaments. IEEE Transac-
tions on Computational Intelligence and Al in games, 2009.

J. Nagashima, T. Hashimoto, and H. Tida. Self-playing-based opening book
tuning. New Mathematics and Natural Computation (NMNC), 02(02):183—
194, 2006.

J. Robinson. An iterative method for solving a game. Annals of mathemat-
ics, 54:296-301, 1951.

A. Tay. A Beginner’s Guide to Building a Opening Book, HorizonChess
FAQ. 2001.

S. Walczak. Improving opening book performance through modeling of
chess opponents. In CSC ’96: Proceedings of the 1996 ACM 24th annual
conference on Computer science, pages 5357, New York, NY, USA, 1996.
ACM.

