Feature Selection as a One-Player Game

Romaric Gaudel 1 Michèle Sebag 1, 2
2 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : This paper formalizes Feature Selection as a Reinforcement Learning problem, leading to a provably optimal though intractable selection policy. As a second contribution, this paper presents an approximation thereof, based on a one-player game approach and relying on the Monte-Carlo tree search UCT (Upper Confidence Tree) proposed by Kocsis and Szepesvari (2006). The Feature Uct SElection (FUSE) algorithm extends UCT to deal with i) a finite unknown horizon (the target number of relevant features); ii) the huge branching factor of the search tree, reflecting the size of the feature set. Finally, a frugal reward function is proposed as a rough but unbiased estimate of the relevance of a feature subset. A proof of concept of FUSE is shown on benchmark data sets.
Type de document :
Communication dans un congrès
International Conference on Machine Learning, Jun 2010, Haifa, Israel. pp.359--366, 2010, ICML 2010 Conference Proceedings Book
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00484049
Contributeur : Romaric Gaudel <>
Soumis le : lundi 17 mai 2010 - 17:03:21
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : jeudi 30 juin 2011 - 12:47:24

Fichiers

fuse_icml10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00484049, version 1

Collections

Citation

Romaric Gaudel, Michèle Sebag. Feature Selection as a One-Player Game. International Conference on Machine Learning, Jun 2010, Haifa, Israel. pp.359--366, 2010, ICML 2010 Conference Proceedings Book. 〈inria-00484049〉

Partager

Métriques

Consultations de la notice

1822

Téléchargements de fichiers

745