
HAL Id: inria-00484067
https://inria.hal.science/inria-00484067

Submitted on 17 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Tool Suite to Prototype Pervasive Computing
Applications (Demo)

Damien Cassou, Julien Bruneau, Charles Consel

To cite this version:
Damien Cassou, Julien Bruneau, Charles Consel. A Tool Suite to Prototype Pervasive Computing
Applications (Demo). Proceedings of the 8th IEEE Conference on Pervasive Computing and Commu-
nications (PERCOM’10), Mar 2010, Mannheim, Germany. pp.1–3. �inria-00484067�

https://inria.hal.science/inria-00484067
https://hal.archives-ouvertes.fr


A Tool Suite to Prototype

Pervasive Computing Applications

Damien Cassou

LaBRI/INRIA

Talence, France

damien.cassou@labri.fr

Julien Bruneau

Thales Airborne Systems

Pessac, France

julien.bruneau@inria.fr

Charles Consel

ENSEIRB/INRIA

Talence, France

charles.consel@inria.fr

Abstract—Despite much progress, developing a pervasive com-
puting application remains a challenge because of a lack of
conceptual frameworks and supporting tools. This challenge
involves coping with heterogeneous entities, overcoming the
intricacies of distributed systems technologies, working out an
architecture for the application, encoding it in a program, writing
specific code to test the application, and finally deploying it.

We present DiaSuite, a tool suite covering the development life-
cycle of a pervasive computing system. This tool suite comprises
a domain-specific design language, a compiler for this language,
which produces a Java programming framework, an editor
to define simulation scenarios, and a 2D-renderer to simulate
pervasive computing applications.

We have validated our tool suite on a variety of comprehensive
applications in areas including telecommunications, building
automation, and health-care.

Keywords-Toolkit, Programming support, Simulation, Perva-
sive computing architectures, Programming paradigms for per-
vasive systems.

I. INTRODUCTION

Pervasive computing systems are being deployed in a grow-

ing number of areas, including building automation, assisted

living, and supply chain management. These systems involve a

wide range of devices and software components, communicate

using a variety of protocols, and rely on intricate distributed

systems technologies. Developing pervasive computing appli-

cations is a difficult task because it requires to deal with a wide

range of issues: heterogeneous devices, entity distribution,

entity coordination, low-level hardware knowledge. . . Besides

requiring various areas of expertise, programming such appli-

cations involves writing a lot of administrative code to glue

technologies together and to interface with both hardware

and software components. A pervasive computing system thus

requires tool support during all stages of the development,

from design to deployment and test.

Our approach

We propose an approach that covers the development life-

cycle of a pervasive computing application in the form of

a suite of tools named DiaSuite. Specifically, we have de-

veloped a design language, named DiaSpec [1], dedicated

to describing pervasive computing systems. From a given

DiaSpec description, a compiler provides customized support

for each development stage of a pervasive computing system,

namely, implementation, testing, and deployment, as depicted

in Figure 1. A simulation editor and 2D-renderer are also

part of DiaSuite to simulate the resulting pervasive computing

application. Let us now give an overview of our tool-based

methodology and its main stages.

Distributed
back-end

Programming
framework

Simu-
lation Entities Compo-

nents

Area
Expert

Application
Architect

Tester Entity
Developer

Application
Developer

System
Administrator

DiaGen
code

generatorD
ia

Sp
ec

 d
es

cr
ip

ti
on

s

D
ia

Sp
ec

 a
pp

lic
at

io
n

3

546

7

1
Ar

ch
it

ec
tu

re
Ta

xo
no

m
y

2

Figure 1. Development life-cycle

A. A design language for pervasive computing systems

DiaSuite provides a language, DiaSpec, dedicated to ar-

chitecturing pervasive computing systems. DiaSpec allows an

area expert to define a taxonomy by declaring the required

entities of the system. DiaSpec also provides constructs to

declare the architecture of the system in the form of context

and controller components.

Taxonomy. Because of their heterogeneity, entities of pervasive

computing environments need to be specified in a high-

level manner to abstract over their variations. The number of

existing entities also require to characterizing the ones that are

relevant to a given area. To address these issues, we provide an

area expert with a declarative language to define a hierarchy of

entities (stage ➀). Each class of entity is characterized in terms

of the types of data that are gathered from the environment

and the actions that are supported. Attributes are also used to



characterize properties of device instances (e.g., location and

ownership).

Architecture. A taxonomy definition is used as a basis to

declare the architecture of pervasive computing applications.

DiaSpec offers constructs to declare the architecture of an

application following an architectural pattern commonly used

in the pervasive computing domain [2]. Data gathered from the

environment by the entities are refined by context components

to match the application needs. Context data are then passed to

controller components to make decisions by triggering entity

actions, declared in the taxonomy (stage ➁).

Pervasive
Computing
Environment

act on

sensed by

context
data

raw data

Contexts

Controllers

Sources

Actions

Entities

Architecture Taxonomy
orders

Figure 2. Architecture of a pervasive computing system

B. A generated Java programming framework

The programmer is then required to implement the entities

and components (contexts and controllers). This development

is supported by a Java programming framework generated by

the DiaSpec compiler from the taxonomy and architecture dec-

larations (stage ➂). The compiler produces an abstract class

for each entity or component declaration, providing abstract

methods to allow the developer to program the application

logic (e.g., triggering entity actions) and concrete methods to

support the development (discovery and interactions).

The generated programming framework has been devised

to closely guide the development of the application. Imple-

menting a DiaSpec-declared entity or component is done

by subclassing the corresponding generated abstract class

and by implementing each abstract method of the super

class (stages ➃ and ➄).

C. A graphical editor to define simulation scenarios

Deploying a pervasive computing system for testing pur-

poses can be expensive and time-consuming because it re-

quires to have acquired, tested and configured all equipments

and software components. Furthermore, some scenarios are

difficult to test because they involve exceptional situations

such as fire. To cope with these issues, DiaSuite includes

a simulator for pervasive computing systems, named Dia-

Sim [3], [4]. This tool leverages declarations provided at

earlier development stages. It provides support to simulate

the physical environment and execute pervasive computing

applications developed in DiaSuite (stage ➅). This is achieved

without requiring any changes to the application code

1) Modeling the environment: The first step to simulate

a pervasive computing application is to model the physical

environment. This model can be used to test multiple pervasive

computing applications. The modeling of the physical environ-

ment is realized in an editor illustrated in Figure 3. The layout

of a physical environment is defined by an editor, including

structural characteristics (i.e., walls and areas). Then, the tester

places entity instances in the environment model, using a

DiaSpec taxonomy.

Figure 3. DiaSim editor

2) Defining the simulation scenarios: DiaSim provides

support to define simulation scenarios to test pervasive com-

puting applications. A simulation scenario consists of a series

of evolutions of a physical environment and simulated entity

instances. In a pervasive computing application, data sources

sense stimuli from the physical environment; the collected data

are used for context processing. Simulating the environment

stimuli allows to test an application in a simulated envi-

ronment. Defining the evolution of the physical environment

consists of defining these simulated environment stimuli. For

each stimulus needed in a simulation scenario, the tester

defines how its values evolve. To ease stimulus configuration,

a library of commonly used stimuli is provided. For instance,

this library enables simulated persons to move around the

simulated environment. Another library is provided to the

developer with commonly used behaviors for entities. Yet, new

stimuli and behaviors can be introduced; this development is

facilitated by generated programming support.

D. A 2D renderer to simulate pervasive computing systems

Simulation scenarios are executed in the DiaSim renderer.

This platform includes a 2D-graphical renderer, based on

Siafu1, to simulate pervasive computing applications. The

1http://siafusimulator.sourceforge.net



simulation renderer is illustrated in Figure 4. The simulated

entities are displayed in the environment representation and

messages appear above the entities when sensing or actuating

is performed.

Fine-grained simulation can be achieved by manually in-

jecting stimuli during the simulation and plotting trajectories

to move simulated persons.

Finally, a tested application can be executed in hybrid

environments, combining simulated and real entities. Hybrid

simulation is a key feature to successfully transition to a real

environment: it allows real entities to be added incrementally

in the simulation, as the implementation and deployment

progress.

Figure 4. DiaSim renderer

II. DEMONSTRATION

The goal of this demonstration is to illustrate each step of

the development cycle of a pervasive computing application

using the DiaSuite tool suite. During this demonstration,

we will design, implement, simulate and partially deploy a

security system in a home environment.

A. Demonstrated Application

The demonstrated application is a security system respon-

sible for securing an apartment. The security system can be

activated or deactivated using a locker protected by a pass-

word. When the system is secured, it detects intrusion using

motion detectors installed in the apartment. If an intrusion

is detected (i.e., the system is secured and a motion has

been detected), the alarms of the apartment are turned on.

Moreover, a supervisor is alerted by the security system when

an intrusion occurs. To alert the supervisor, the security system

displays a warning message on his supervision screen and

turns on the alarm in his office. Finally, the system sends

him an email with a picture taken by a camera covering the

intrusion area.

B. Demonstration Steps

Specifying the application architecture: The first step of

our demonstration shows how to specify a pervasive com-

puting application using our dedicated language DiaSpec. We

describe all required entities along with the context and con-

troller components of the architecture. We also demonstrate

the features of the Eclipse plugin we have developed to ease

this step.

Implementing the application: From the previously spec-

ified architecture, we use our compiler to generate a dedicated

programming framework. On top of this dedicated program-

ming framework we develop Java implementations of the

entities and components of the application.

Defining simulation scenarios: The next step of our

demonstration is the definition of simulation scenarios. Sce-

narios will be defined using our scenario editor (Figure 3). In

this step, we first define the simulated physical environment.

Then, from a DiaSpec specification, simulated entities are ei-

ther graphically defined using a wizard, or developed using the

generated simulation programming framework. Both strategies

are illustrated by the demonstration. Simulation scenarios are

composed of stimulus producers. These stimulus producers are

defined using the generated simulation programming frame-

work, as well as libraries of generic stimulus producers. Our

demonstration shows examples of such stimulus producers

used by our security system (e.g., production of motion stimuli

to simulate an intrusion).

Testing the application: In the final step of our demon-

stration, our security system is tested against the previously

defined simulation scenarios. To follow the evolution of the

simulated environments, DiaSim extends an existing visual-

ization tool: the Siafu open source context simulator. Siafu

provides a 2D rendering and time-control functionalities. To

illustrate the testing of applications in hybrid environments, we

use both real entities (e.g., a locker on an iPodtouch and real

motion detectors) and simulated entities to test our security

system.

REFERENCES

[1] D. Cassou, B. Bertran, N. Loriant, and C. Consel, “A genera-
tive programming approach to developing pervasive computing
systems,” in Proceedings of GPCE ’09, 2009.

[2] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual
framework and a toolkit for supporting the rapid prototyping
of context-aware applications,” Human-Computer Interaction,
vol. 16, no. 2, pp. 97–166, 2001.

[3] J. Bruneau, W. Jouve, and C. Consel, “Diasim: A parameterized
simulator for pervasive computing applications,” in Proceedings
of Mobiquitous’09, 2009.

[4] W. Jouve, J. Bruneau, and C. Consel, “Diasim: A parameterized
simulator for pervasive computing applications,” in Proceedings
of PERCOM ’09 (Demo Session), 2009.


