
HAL Id: inria-00484092
https://inria.hal.science/inria-00484092

Submitted on 18 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental study of the HUM control operator for
waves

Maëlle Nodet, Gilles Lebeau

To cite this version:
Maëlle Nodet, Gilles Lebeau. Experimental study of the HUM control operator for waves. PICOF’10
- V International Conference on Inverse Problems, Control and Shape Optimization, Apr 2010, Carta-
gena, Spain. �inria-00484092�

https://inria.hal.science/inria-00484092
https://hal.archives-ouvertes.fr


V International Conference on Inverse
Problems, Control and Shape Optimization
Cartagena (Spain)
April 7-9, 2010

Experimental Study of the HUM Control Operator for

Linear Waves

Gilles Lebeau1, Maëlle Nodet2
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Abstract

We consider the problem of the numerical approximation of the linear

controllability of waves. All our experiments are done in a bounded domain Ω

of the plane, with Dirichlet boundary conditions and internal control. We use a

Galerkin approximation of the optimal control operator of the continuous model,

based on the spectral theory of the Laplace operator in Ω. This allows us to

obtain surprisingly good illustrations of the main theoretical results available on

the controllability of waves, and to formulate some questions for the future analysis

of optimal control theory of waves.
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1 HUM control operator

1.1 Controllability of linear waves

For a given f = (u0, u1) ∈ H1
0 (Ω) × L2(Ω), the problem is to find a source

v(t, x)∈ L2(0, T ;L2(Ω)) such that the solution u = S(v) of the linear wave
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equation






�u = χv in ]0,+∞[×Ω
u|∂Ω = 0, t > 0

(u|t=0, ∂u|t=0) = (0, 0)
(1)

reaches the state f = (u0, u1) = (u(T, .), ∂tu(T, .)) at time T , where:

• Ω is a bounded open subset of R
d,

• the “control domain” U is a non empty open subset of Ω,

• χ(t, x) = ψ(t)χ0(x) where χ0 is a real L∞ function on Ω, such that
support(χ0) = U and χ0(x) is continuous and positive for x ∈ U ,
ψ ∈ C∞([0, T ]) and ψ(t) > 0 on ]0, T [.

The reachable set at time T is the subspace of H = H1
0 (Ω) × L2(Ω):

RT = {f = (u0, u1) ∈ H,∃v, (S(v)(T, .), ∂tS(v)(T, .)) = (u0, u1)}.

Then we have approximate controllability if RT is dense in H and exact
controllability if RT = H.

1.2 The HUM method

The Hilbert Uniqueness Method (HUM) of J.-L. Lions [?] consists in
choosing the function v with L2-minimal norm. Then v is necessarily of
the form χ∂tw where w is a solution of the dual control problem:







�w = 0 in ]0,+∞[×Ω
w|∂Ω = 0, t > 0

(w|t=T , ∂tw|t=T ) = (w0, w1) = h ∈ H = H1
0 (Ω) × L2(Ω)

The HUM control operator is then defined by

Λ :
H → H

f = (u0, u1) 7→ h = (w0, w1)

Let A = A∗ be the operator on H = H1
0 (Ω) × L2(Ω) defined by

iA =

(

0 Id
∆ 0

)

Let λ =
√
−∆D. Then (??) becomes (∂t − iA)u = B(t)v with

B(t) =

(

0 0
χ(t, .)λ 0

)

, B∗(t) =

(

0 λ−1χ(t, .)
0 0

)

Then we have exact controlability iff

∃C > 0,MT =

∫ T

0
eitAB(T − t)B∗(T − t)e−itA∗

dt ≥ C Id

And in that case we have
Λ = M−1

T
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1.3 Geometric control condition

We recall that the source v in (??) is multiplied by χ(t, x) = ψ(t)χ0(x),
where χ0 ∈ L∞(Ω), such that support(χ0) = U and χ0(x) is continuous and
positive for x ∈ U , ψ ∈ C∞([0, T ]) and ψ(t) > 0 on ]0, T [. We also assume
that there is no contact of infinite order between ∂Ω and the optical rays
of the wave operator in the free space. Let us recall the Geometric Control
Condition of C. Bardos, G. Lebeau and J. Rauch [?]:

GCC Every geodesic ray of Ω traveling with speed 1 and starting at t = 0
enters the open set U = {x ∈ Ω, χ0(x) 6= 0} in time t < T .

Theorem 1 If χ and T are such that the GCC condition holds true, then
MT is an isomorphism, i.e. one has exact controlability (RT = H).

2 Numerical method

2.1 Previous numerical approach

R. Glowinski et al. [?] first discretize the continuous wave equation, then
compute the control of the discrete system. As observed by R. Glowinski
et al. and precisely studied by E. Zuazua [?, ?], the discrete model
is not uniformly exactly controllable when the mesh size goes to zero,
and the interaction of waves with the numerical mesh produces spurious
high frequency oscillations. In other words, the processes of numerical
discretization and control do not commute for the wave equation. Thus,
some multi-grid methods were developed to overcome this problem, see e.g.
[?, ?].

2.2 Spectral Galerkin method

Let (ω2
j ) be the sequence of −∆D eigenvalues, and (ej) the associated

orthonormal basis of L2(Ω):

−∆ej = ω2
j ej , ej |∂Ω = 0

For a given cutoff frequency ω, we define

L2
ω = Span{ej , ωj ≤ ω}

and we denote by Πω the orthogonal projector on L2
ω, which obviously acts

also on H = H1
0 × L2:

Hω = Πω(H1
0 × L2)

and we define the matrix MT,ω:

MT,ω = ΠωMT Πω, MT,ω,n,m = (MTφn|φm)H

where (φn) is an orthonormal basis of Hω.
Let us recall that Λ = M−1

T and MT,ω = ΠωMT Πω.
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log abs (trunc(inv JMJ) ! inv(trunc JMJ))
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Figure 1: View of the logarithm of the coefficients of the matrix
J

[

((MT )−1)ω − ((MT )ω)−1
]

J−1 = J
[

Λω − ((MT )ω)−1
]

J−1, for the square
geometry, with smooth control. The MT matrix is computed with 2000
eigenvalues, the cutoff frequency ω is equal to the 500th eigenvalue.

Then we can show that MT,ω is invertible on Hω and ‖M−1
T,ω‖ is bounded

uniformly in ω (because of exact controlability).

Lemma 2 Assume GCC. Then there exists c > 0 such that for all f ∈ H:

‖Λ(f) −M−1
T,ω(fω)‖H ≤ c‖f − fω‖H + ‖Λ(fω) −M−1

T,ω(fω)‖H

with fω = Πωf and limω→∞ ‖Λ(fω) −M−1
T,ω(fω)‖H = 0.

In other words, the processes of Galerkin approximation and inversion
“almost” commute for MT . This can be seen in Figure ??, which represents
the operator ((MT )−1)ω − ((MT )ω)−1. See [?] for details.

3 Experimental study of HUM operator proper-

ties

3.1 Numerical setup

Our algorithm was implemented for various 2D domains. We present three
geometries: a square, a disc and a trapezoid, acting as general domain. For
each geometry, we chose one “standard” control domain satisfying GCC. For
the square it can be the neighbourhood of two non parallel sides, for the disc
the neighbourhood of a radius, and for the trapezoid the neighbourhood of
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control domain control domain control domain

smooth control domain smooth control domain smooth control domain

Figure 2: Geometries, control domains without (top) and with (bottom)
smoothing.

the larger parallel side is suitable (see Figure ??). As it has been shown
by B. Dehman and G. Lebeau [?], the HUM control operator Λ has good
properties when the control function χ(t, x) is smooth. So we considered two
cases: non-smooth control: χ(t, x) = 1[0,T ]1U (which is the classical case, as
implemented in the previous approach); smooth control: χ(t, x) = ψ(t)χ0(x)

with ψ(t) = 4t(T−t)
T 2 1[0,T ] and χ0(x) similarly smoothed.

3.2 Frequency localization

As an example of the experimental studies we have done, we show here one
property of the HUM operator: the frequency localization, and the impact
of smoothing on this property. We refer to G. Lebeau and M. Nodet [?] for
an extended study of the HUM control operator.
The theoretical result states as follows. We refer to B. Dehman and G.
Lebeau [?, ?] for the details. Let ψk(D), k ∈ N, be the spectral localization
operators associated to the Littlewood-Paley decomposition:

ψk(D)(
∑

j

ajej) =
∑

j

ψk(ωj)ajej , Sk(D) =
k

∑

j=0

ψj(D), k ≥ 0

Theorem 3 (Dehman-Lebeau) Assume that the geometric control
condition GCC holds true, and that the control function χ(t, x) is smooth.
There exists C > 0 such that for every k ∈ N, the following inequality holds
true

‖ψk(D)Λ − Λψk(D)‖H ≤ C2−k

‖Sk(D)Λ − ΛSk(D)‖H ≤ C2−k

Figure ?? shows the consequence of this result on the one-mode experiment,
ie when the target data f = (u0, u1) (to be reached) is equal to an
eigenvector. We can see that the control (w0, w1) is almost equal to the
same eigenvector, illustrating the above property.
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Figure 3: Frequency localization experiment in the square: localization of
the Fourier frequences of (w0, w1) (left, right) for a given time T and a given
domain U without smoothing (left) and with time- and space-smoothing
(right). The x-coordinate represents the eigenvalues. The target data u0 is
equal to the 50-th eigenvector (eigenvalue of about 26.8), and u1 = 0.

References

[1] Asch, M. and Lebeau, G., Geometrical aspects of exact boundary controllability of
the wave equation. A numerical study, ESAIM:COCV, volume 3, 1998.

[2] Bardos, C. and Lebeau, G. and Rauch, J., Sharp sufficient conditions for the
observation, control and stabilisation of waves from the boundary, SIAM J.Control
Optim., volume 305, 1992.

[3] Dehman, B. and Lebeau, G., Analysis of the HUM Control Operator and Exact
Controllability for Semilinear Waves in Uniform Time, SIAM J.Control Optim., Vol
48, 2009.

[4] Glowinski, R. and He, J. W. and Lions, J.-L., Exact and Approximate Controllability
for Distributed Parameter Systems: A Numerical Approach, Cambridge University
Press, 2008.

[5] Glowinski, R. and Li, C.H. and Lions, J.L., A numerical approach to the exact
boundary controllability of the wave equation (I). Dirichlet controls : description of
the numerical methods, Japan J. Appl. Math., volume 7, 1990.

[6] Lebeau, G., Contrôle analytique I : Estimations a priori, Duke Math. J., volume 68,
1992.

[7] Lebeau G. and Nodet M., Experimental study of the HUM control operator for linear
waves, Experimental mathematics, in press.
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