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We propose a novel approach to the view update problem for t ree-st ructured data: a domain-
speciÞc programming language in which all expressions denote bi-dir ect ional t ransformat ions on
t rees. In one dir ect ion, t hese t ransformat ionsÑ dubbed lensesÑ map a ÒconcreteÓ t ree into a
simpliÞed Òabst ract viewÓ; in the other, t hey map a modiÞed abst ract view, t ogether wit h the
original concrete t ree, t o a correspondingly modiÞed concrete t ree. Our design emphasizes both
robustness and ease of use, guaranteeing st rong well- behavedness and totalit y propert ies for well-
typed lenses.

We begin by ident if ying a natural mathemat ical space of well- behaved bi-dir ect ional t ransfor-
mat ions over arbit rary st ructures, studying deÞnedness and cont inuit y in t his set t ing. We then
instant iat e this semant ic framework in the form of a collect ion of lens combinators that can be
assembled to describe bi-dir ect ional t ransformat ions on t rees. T hese combinators include familia r
const ruct s from funct ional programming (composit ion, mapping, project ion, condit ionals, recur-
sion) t ogether wit h some novel prim it ives for manipulat ing t rees (split t ing, pruning, copying,
merging, et c.) . We illu st rate the expressiveness of t hese combinat ors by developing a number of
bi-dir ect ional list -processing t ransformat ions as derived forms. An extended example shows how
our combinators can be used to deÞne a lens that t ranslates between a nat ive HT M L representat ion
of browser bookmarks and a generic abst ract bookmark format .

Categories and Subject Descript ors: D.3.2 [P r ogr am m ing La ng ua ges]: Language ClassiÞca-
t ionsÑ Specialized application languages

General Terms: Languages
Addit ional K ey Words and Phrases: Bi-dir ect ional programming, Harmony, XM L, lenses, view
update problem
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1. INTRODUCTION

Comput ing is full of situat ionswheresomestructuremust beconverted to a di! erent
formÑ a viewÑ in such a way that changes made to the view can be reßected as
updates to the original st ructure. This view update problem is a classical topic in
the database literature, but has so far been lit t le studied by programming language
researchers.

This paper addresses a speciÞc instance of the view update problem that arises
in a larger project called Harmony [Foster et al. 2006]. Harmony is a generic
framework for synchronizing t ree-st ructured dataÑ a tool for propagat ing updates
between di! erent copies of t ree-shaped data st ructures, possibly stored in di! erent
formats. For example, Harmony can be used to synchronize the bookmark Þles
of several di! erent web browsers, allowing bookmarks and bookmark folders to be
added, deleted, edited, and reorganized in any browser and propagated to the oth-
ers. The ult imate aim of the project is to provide a plat form on which a Harmony
programmer can quickly assemble a high-quality synchronizer for a new type of
t ree-st ructured data stored in a standard low-level format such as XML. Other
Harmony instances current ly in daily use or under development include synchro-
nizers for calendars (Palm DateBook, ical, and iCalendar formats), address books,
slide presentat ions, st ructured documents, and generic XML and HTML.

Views play a key role in Harmony: to synchronize st ructures that may be stored
in disparate concrete formats, we deÞne a single common abst ract format and a
collect ion of lenses that t ransform each concrete format into this abst ract one. For
example, we can synchronize a Mozilla bookmark Þle with an Internet Explorer
bookmark Þle by t ransforming each into an abstract bookmark structure and propa-
gat ing changed informat ion between these. Afterwards, weneed to taketheupdated
abst ract st ructures and reßect the corresponding updates back into the original
concrete st ructures. Thus, each lens must include not one but two funct ionsÑ one
for ext ract ing an abst ract view from a concrete one and another for put t ing an
updated abst ract view back into the original concrete view to yield an updated
concrete view. We call these the get and putback components, respect ively. The
intuit ion is that the mapping from concrete to abst ract is commonly some sort of
project ion, so the get direct ion involves get t ing the abst ract part out of a larger
concrete st ructure, while the putback direct ion amounts to put t ing a new abst ract
part into an old concrete st ructure. We show a concrete example of this process in
Sect ion 2.

The di" culty of the view update problem springs from a fundamental tension
between expressiveness and robustness. The richer we make the set of possible
t ransformat ions in the get direct ion, the more di" cult it becomes to deÞne corre-
sponding funct ions in the putback direct ion in such as way that each lens is both
well behavedÑ its get and putback behaviors Þt together in a sensible wayÑ and
totalÑ its get and putback funct ions are deÞned on all the inputs to which they may
be applied.

To reconcile this tension, a successful approach to the view update problem must
be carefully designed with a part icular applicat ion domain in mind. The approach
described here is tuned to the kinds of project ion-and-rearrangement t ransforma-
t ions on t rees and lists that we have found useful for implement ing Harmony in-
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stances. It does not direct ly address some well-known di" cult ies with view update
in the classical set t ing of relat ional databasesÑ such as the di" culty of Òinvert ingÓ
queries involving joins. (We do hope that our work will suggest new at tacks on
these problems, however; a Þrst step in this direct ion is described in [Bohannon
et al. 2006].)

A second di" culty concerns ease of use. In general, there are many ways to equip
a given get funct ion with a putback funct ion to form a well-behaved and total lens;
we need some means of specifying which putback is intended that is natural for the
applicat ion domain and that does not involve onerous proof obligat ions or checking
of side condit ions. We adopt a linguist ic approach to this issue, proposing a set
of lens combinatorsÑ a small domain-speciÞc languageÑ in which every expression
simultaneously speciÞes both a get funct ion and the corresponding putback. More-
over, each combinator is accompanied by a type declaration, designed so that the
well-behavedness and (for non-recursive lenses) totality of composite lens expres-
sions can be veriÞed by st raight forward, composit ional checks. Proving totality of
recursive lenses, like ordinary recursive programs, requires global reasoning that
goes beyond types.

The Þrst step in our formal development (Sect ion 3) is ident ifying a natural
mathemat ical space of well-behaved lenses over arbit rary data st ructures. There is
a good deal of territory to be explored at this semant ic level. First , we must phrase
our basic deÞnit ions to allow the underlying funct ions in lenses to be part ial, since
there will in general be st ructures to which a given lens cannot sensibly be applied.
The sets of st ructures to which we do intend to apply a given lens are speciÞed
by associat ing it with a type of the form C ! A, where C is a set of concrete
Òsource st ructuresÓ and A is a set of abst ract Òtarget st ructures.Ó Second, we
deÞne a not ion of well-behavedness that captures our intuit ions about how the get
and putback parts of a lens should behave in concert . For example, if we use the get
part of a lens to ext ract an abst ract view a from a concrete view c and then use the
putback part to push the very same a back into c, we should get c back. Third, we
deploy standard tools from domain theory to deÞne monotonicity and cont inuity
for lens combinators parameterized on other lenses, establishing a foundat ion for
deÞning lenses by recursion. (Recursion is needed because the t rees that our lenses
manipulate may in general have arbit rarily deep nested st ructureÑ e.g., when they
represent directory hierarchies, bookmark folders, etc.) Finally, to allow lenses to
be used to create new concrete st ructures rather than just updat ing exist ing ones
(needed, for example, when new records are added to a database in the abst ract
view), weadjoin a special ÒmissingÓelement to thest ructuresmanipulated by lenses
and establish suitable convent ions for how it is t reated.

With these semant ic foundat ions in hand, we proceed to syntax. In Sect ion 4,
we present a group of generic lens combinators (ident it ies, composit ion, and con-
stants), which can work with any kind of data. In Sect ion 5, we focus at tent ion
on t ree-st ructured data and present several more combinators that perform various
manipulat ions on t rees (hoist ing, split t ing, mapping, etc.); we also show how to
assemble these primit ives, along with the generic combinators from before, to yield
some useful derived forms. Sect ion 6 int roduces another set of generic combinators
implement ing various sorts of bi-direct ional condit ionals. Sect ion 7 gives a more
ambit ious illust rat ion of the expressiveness of these combinators by implement ing
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a number of bi-direct ional list -processing t ransformat ions as derived forms, includ-
ing lenses for project ing the head and tail of a list , mapping over a list , grouping
the elements of a list , concatenat ing two lists, andÑ our most complex exampleÑ
implement ing a bi-direct ional Þlter lens whose putback funct ion performs a rather
int ricate ÒweavingÓoperat ion to recombine an updated abstract list with the con-
crete list elements that were Þltered away by the get. This example also demon-
st rates the use of the reasoning techniques developed in Sect ion 3 for establishing
totality of recursive lenses. Sect ion 8 further illust rates the use of our combinators
in real-world lens programming by walking through a substant ial example derived
from the Harmony bookmark synchronizer.

Sect ion 9 presents some Þrst steps into a somewhat di! erent region of the lens
design space: lenses for dealing with relat ional data encoded as t rees. We deÞne
three more primit ivesÑ a Òßat teningÓcombinator that t ransforms a list of (keyed)
records into a bush, a Òpivot ingÓcombinator that can be used to promote a key
Þeld to a higher posit ion in the t ree, and a ÒtransposingÓcombinator related to the
outer join operat ion on databases. The Þrst two combinators play an important
role in Harmony instances for relat ional data such as address books encoded as
XML trees.

Sect ion 10 surveys related work and Sect ion 11 sketches direct ions for future
research.

To keep things moving, we defer all proofs to an elect ronic appendix, which is
available on both the Harmony and TOPLAS web pages.

2. A SMALL EXAMPLE

Suppose our concrete t ree c is a simple address book:

c =

!
""#

""$

%
%
%
%
%
%
%
%

Pat !"
&%
%
%
%
Phone !" 333- 4444
URL !" ht t p: / / pat . com

%
%
%
%

'

Chr i s !"
&%
%
%
%
Phone !" 888- 9999
URL !" ht t p: / / chr i s. or g

%
%
%
%

'

%
%
%
%
%
%
%
%

(
"")

""*

We draw trees sideways to save space. Each set of hollow curly braces corresponds
to a t ree node, and each ÒX !" ...Ódenotes a child labeled with the st ring X. The
children of a node are unordered. To avoid clut ter, when an edge leads to an empty
t ree, we usually omit the braces, the !" symbol, and the Þnal childless nodeÑ
e.g., Ò333- 4444Óabove actually stands for Ò

+%%333- 4444 !" {||}
%
%, .Ó When trees are

linearized in running text , we separate children with commas for easier reading.
Now, suppose that we want to edit the data from this concrete t ree in a yet

simpler format where each name is associated direct ly with a phone number.

a =
&%
%
%
%
Pat !" 333- 4444
Chr i s !" 888- 9999

%
%
%
%

'

Why would we want this? Perhaps because the edits are going to be generated
by synchronizing this abst ract t ree with another replica of the same address book
in which no URL informat ion is recorded. Or perhaps there is no synchronizer
involved and the edits are going to be performed by a human who is only interested
in phone informat ion and doesnÕt want to see URLs. Whatever the reason, we are
going to make our changes to the abst ract t ree a, yielding a new abst ract t ree a! of
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the same form but with modiÞed content .1 For example, let us change Pat Õs phone
number, drop Chr i s, and add a new friend, Jo.

a! =
&%
%
%
%
Pat !" 333- 4321
Jo !" 555- 6666

%
%
%
%

'

Last ly, we want to compute a new concrete t ree c! reßect ing the new abst ract
t ree a!. That is, we want the parts of c! that were kept when calculat ing a (e.g.,
Pat Õs phone number) to be overwrit ten with the corresponding informat ion from
a!, while the parts of c that were Þltered out (e.g., Pat Õs URL) have their values
carried over from c.

c! =

!
""#

""$

%
%
%
%
%
%
%
%

Pat !"
&%
%
%
%
Phone !" 333- 4321
URL !" ht t p: / / pat . com

%
%
%
%

'

Jo !"
&%
%
%
%
Phone !" 555- 6666
URL !" ht t p: / / googl e. com

%
%
%
%

'

%
%
%
%
%
%
%
%

(
"")

""*

We also need to ÒÞll inÓappropriate values for the parts of c! (in part icular, JoÕs
URL) that were created in a! and for which c therefore contains no informat ion.
Here, we simply set the URL to a constant default , though in general we might want
to compute it from other informat ion.

Together, the t ransformat ions from c to a and from a! plus c to c! form a lens.
Our goal is to Þnd a set of combinators that can be assembled to describe a wide
variety of lenses in a concise, natural, and mathemat ically coherent manner. To
whet the readerÕs appet ite, the lens expression that implements the t ransformat ions
above is map (f ocus Phone

+%%URL !" ht t p: / / googl e. com
%
%, ).

3. SEMANTIC FOUNDATIONS

Although many of our combinators work on t rees, their semant ic underpinnings can
be presented in an abst ract set t ing parameterized by the data st ructures (which we
call ÒviewsÓ) manipulated by lenses.2 In this sect ionÑ and in Sect ion 4, where we
discuss generic combinatorsÑ we simply assume some Þxed set V of views; from
Sect ion 5 on, we will choose V to be the set of t rees.

Basic Structures

When f is a part ial funct ion, we write f (a) # if f is deÞned on argument a and
f (a) = $ otherwise. We write f (a) % b for f (a) = $ & f (a) = b. We write dom(f )
for { s | f (s) #} , the set of arguments on which f is deÞned. When S ' V, we write

1Note that we are interested here in the Þnal t ree a! , not t he part icular sequence of edit operat ions
that was used to t ransform a into a! . T his is important in t he context of Harmony, which is
designed to support synchronizat ion of o! -t he-shelf applicat ions, where in general we only have
access to the current states of t he replicas, rather t han a t race of modiÞcat ions; t he t radeo! s
between state-based and t race-based synchronizers are discussed in detail elsewhere [Pierce and
Vouillo n 2004; Foster et al. 2006].
2We use the word ÒviewÓhere in a slight ly di! erent sense than some of t he database papers that
we cit e, where a view is a query that maps concrete to abst ract st atesÑ i.e., it is a funct ion that ,
for each concrete database state, picks out a view in our sense. A lso, note that we use ÒviewÓto
refer uniformly to both concrete and abst ract st ructuresÑ when we come to programming wit h
lenses, t he dist inct ion will be merely a mat ter of perspect ive anyway, since the output of one lens
is oft en the input t o another.
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f (S) for { r | s ( S ) f (s) # ) f (s) = r } and ran(f ) for f (V). We take funct ion
applicat ion to be st rict : f (g(x)) # implies g(x) #.

3.1 D eÞnit ion [Lenses]: A lens l comprises a part ial funct ion l* from V to V,
called the get function of l , and a part ial funct ion l+ from V , V to V, called the
putback function.

The intuit ion behind the notat ions l* and l+ is that the get part of a lens ÒliftsÓ
an abst ract view out of a concrete one, while the putback part Òpushes downÓa new
abst ract view into an exist ing concrete view. We often say Òput a into c (using l)Ó
instead of Òapply the putback funct ion (of l ) to (a, c).Ó

3.2 D eÞnit ion [W ell-behaved lenses]: Let l be a lens and let C and A be sub-
sets of V. We say that l is a well behaved lens from C to A, writ ten l ( C ! A, if
it maps arguments in C to results in A and vice versa

l* (C) ' A (Get )
l+ (A , C) ' C (Put )

and its get and putback funct ions obey the following laws:

l + (l* c, c) % c for all c ( C (Get Put )
l* (l + (a, c)) % a for all (a, c) ( A , C (Put Get )

We call C the source and A the target in C ! A. Note that a given l may be a
well-behaved lens from C to A for many di! erent Cs and As; in part icular, every
l is t rivially a well-behaved lens from - to - , while the everywhere-undeÞned lens
belongs to C ! A for every C and A.

Intuit ively, the Get Put law states that , if we get some abst ract view a from a
concrete view c and immediately putback a (with no modiÞcat ions) into c, we must
get back exact ly c if both operat ions are deÞned. Put Get , on the other hand,
demands that the putback funct ion must capture all of the informat ion contained
in the abst ract view: if put t ing a view a into a concrete view c yields a view c!,
then the abst ract view obtained from c! is exact ly a.

An example of a lens sat isfying Put Get but not Get Put is the following.
Suppose C = st r i ng , i nt and A = st r i ng, and deÞne l by:

l* (s, n) = s l + (s!, (s, n)) = (s!, 0)

Then l + (l* (s, 1), (s, 1)) = (s, 0) .%(s, 1). Intuit ively, the law fails because the
putback funct ion has Òside e! ectsÓ: it modiÞes informat ion in the concrete view
that is not reßected in the abst ract view.

An example of a lens sat isfying Get Put but not Put Get is the following. Let
C = st r i ng and A = st r i ng , i nt , and deÞne l by :

l* s = (s, 0) l + ((s!, n), s) = s!

Put Get fails here because some informat ion contained in the abst ract view does
not get propagated to the new concrete view. For example, l* (l + ((s! , 1), s)) =
l* s! = (s!, 0) .%(s!, 1).

The Get Put and Put Get laws reßect fundamental expectat ions about the be-
havior of lenses; removing either law signiÞcant ly weakens the semant ic foundat ion.
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We may also consider an opt ional third law, called Put Put :

l + (a!, l + (a, c)) % l + (a!, c) for all a, a! ( A and c ( C.

This law states that the e! ect of a sequence of two putbacks is (modulo deÞnedness)
just the e! ect of the second: the Þrst gets completely overwrit ten. Alternat ively,
a series of changes to an abst ract view may be applied either incrementally or all
at once, result ing in the same Þnal concrete view. We say that a well-behaved
lens that also sat isÞes Put Put is very well behaved. Both well-behaved and very
well behaved lenses correspond to familiar classes of Òupdate t ranslatorsÓfrom the
classical database literature; see Sect ion 10.

The foundat ional development in this sect ion is valid for both well-behaved and
very well behaved lenses. However, when we come to deÞning our lens combinators
for t ree t ransformat ions, we will not require Put Put because some of our lens
combinatorsÑ in part icular, map, f l at t en, mer ge, and condit ionalsÑ fail to sat isfy
it for reasons that seem pragmat ically unavoidable (see Sect ions 5 and 9).

For now, a simple example of a lens that is well behaved but not very well
behaved is as follows. Consider the following lens, where C = st r i ng , i nt and
A = st r i ng. The second component of each concrete view intuit ively represents a
version number.

l* (s, n) = s l + (s, (s!, n)) =
&

(s, n) if s = s!

(s, n+ 1) if s .= s!

The get funct ion of l projects away the version number and yields just the Òdata
part .Ó The putback funct ion overwrites the data part , checks whether the new
data part is the same as the old one, and, if not , increments the version num-
ber. This lens sat isÞes both Get Put and Put Get but not Put Put , as we have
l + (s, l + (s! , (c, n))) = (s, n + 2) .%(s, n + 1) = l + (s, (c, n)).

Another crit ical property of lenses is totali ty with respect to a given source and
target .

3.3 D eÞnit ion [Tot al i t y ]: A lens l ( C ! A is said to be total, writ ten l (
C / 0 A, if C ' dom(l* ) and A , C ' dom(l+ ).

The reasons for considering both part ial and total lenses instead of building totality
into the deÞnit ion of well-behavedness are much the same as the reasons for consid-
ering part ial funct ions in convent ional funct ional languages. In pract ice, we want
lenses to be total:3 to guarantee that Harmony synchronizers will work predictably,
lenses must be deÞned on the whole of the domains where they are used; the get
direct ion should be deÞned for any st ructure in the concrete set , and the putback
direct ion should be capable of put t ing back any possible updated version from the
abst ract set .4 All of our primit ive lenses are designed to be total, and all of our lens

3Indeed, well- behavedness is rather t riv ial in t he absence of t otalit y: for any funct ion l " from C
to A, we can obtain a well- behaved lens by taking l# to be undeÞned on all input sÑ or, slight ly
less t riv ially , t o be deÞned only on input s of t he form (l " c, c).
4Since we intend to use lenses to build synchronizers, t he updated st ructures here will be result s
of synchronizat ion. A fundamental property of t he core synchronizat ion algorit hm in Harmony is
t hat , if all of t he updates between synchronizat ions occur in just one of t he replicas, t hen the e! ect
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combinators map total lenses to total lensesÑ with the sole, but important , excep-
t ion of lenses deÞned by recursion; as usual, recursive lenses must be const ructed in
the semant ics as limits of chains of increasingly deÞned part ial lenses. The sound-
ness of the type annotat ions we give for our syntact ic lens combinators guarantees
that every well-typed lens expression is well-behaved, but only recursion-free ex-
pressions can be shown total by completely composit ional reasoning with types; for
recursive lenses, more global arguments are required, as we shall see.

Basic Properties

We now explore some simple but useful consequences of the lens laws. All the
proofs can be found in the elect ronic appendix.

3.4 D eÞnit ion: Let f be a part ial funct ion from A , C to C and P ' A , C.
We say that f is semi-injective on P if it is inject ive (in the standard sense) in the
Þrst component of arguments drawn from PÑ i.e., if, for all views a, a!, c, and c!

with (a, c) ( P and (a!, c!) ( P, if f (a, c) # and f (a!, c!) #, then a .= a! implies
f (a, c) .= f (a!, c!).

3.5 Lemma: If l ( C ! A, then l+ is semi-inject ive on { (a, c) | (a, c) (
A , C ) l* (l + (a, c)) #} .

The main applicat ion of this lemma is the following corollary, which provides an
easy way to show that a lens is not well behaved. We used it many t imes while
designing our combinators, to quickly generate and test candidates.

3.6 Cor ol lar y: If l ( C / 0 A, then l+ is semi-inject ive on A , C.

An important special case arises when the putback funct ion of a lens is completely
insensit ive to its concrete argument .

3.7 D eÞnit ion: A lens l is said to be oblivious if l + (a, c) = l + (a, c!) for all
a, c, c! ( V.

Oblivious lenses have some special propert ies that make them simpler to reason
about than lenses in general. For example:

3.8 Lemma: If l is oblivious and l ( C1 ! A1 and l ( C2 ! A2, then l (
(C1 1 C2) ! (A1 1 A2).

3.9 Lemma: If l ( C / 0 A is oblivious, then l* is a biject ion from C to A.

Conversely, every biject ion between C and A induces a total oblivious lens from
C to AÑ that is, the set of biject ions between subsets of V forms a subcategory of
the category of total lenses. Many of the combinators deÞned below actually live in
this simpler subcategory, as does much of the related work surveyed in Sect ion 10.

of synchronizat ion will be to propagate all t hese changes to the ot her replica. T his implies that
t he putback funct ion in the lens associated wit h the other replica must be prepared to accept any
value from the abst ract domain. In other set t ings, di! erent not ions of t otalit y may be appropriat e.
For example, Hu, M u, and Takeichi [Hu et al. 2004] have argued that , in t he context of int eract ive
edit ors, a reasonable deÞnit ion of t otalit y is t hat l # (a, c) should be deÞned whenever a di! ers
by at most one edit operat ion from l" c.
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Recursion

Since we will be interested in lenses over t rees, and since t rees in many applicat ion
domains may have unbounded depth (e.g., a bookmark can be either a link or
a folder containing a list of bookmarks), we will often want to deÞne lenses by
recursion. Our next task is to set up the necessary st ructure for interpret ing such
deÞnit ions.

The development follows familiar lines. We int roduce an informat ion ordering
on lenses and show that the set of lenses equipped with this ordering is a complete
part ial order (CPO). We then apply standard tools from domain theory to interpret
a variety of common syntact ic forms from programming languagesÑ in part icular,
funct ional abst ract ion and applicat ion (Òhigher-order lensesÓ) and lenses deÞned
by single or mutual recursion.

We say that a lens l ! is more informative than a lens l, writ ten l 2 l ! , if both the
get and putback funct ions of l ! have domains that are at least as large as those of l
and their results agree on their common domains:

3.10 D eÞnit ion: l 2 l ! i! dom(l* ) ' dom(l !* ), dom(l+ ) ' dom(l !+ ), l* c =
l !* c for all c ( dom(l* ), and l + (a, c) = l ! + (a, c) for all (a, c) ( dom(l+ ).

3.11 Lemma: 2 is a part ial order on lenses.

A cpo is a part ially ordered set in which every increasing chain of elements has
a least upper bound in the set . If l0 2 l1 2 . . . 2 ln 2 . . . is an increasing chain,
we write

-
n " ! ln (often shortened to

-
n ln ) for its least upper bound. A cpo with

bottom is a cpo with an element $ that is smaller than every other element . In
our set t ing, the bot tom element $ l is the lens whose get and putback funct ions
are everywhere undeÞned. It is obviously the smallest lens according to 2 and is
well-behaved at any lens type (it t rivially sat isÞes all equat ions).

3.12 Lemma: Let l0 2 l1 2 . . . 2 ln 2 . . . be an increasing chain of lenses. The
lens l deÞned by

l + (a, c) = l i + (a, c) if l i + (a, c) # for some i

l* c = li * c if l i * c # for some i

and undeÞned elsewhere is a least upper bound for the chain.

3.13 Cor ol lar y: Let l0 2 l1 2 . . . 2 ln 2 . . . be an increasing chain of lenses. For
every a, c ( V, we have:

(1) (
-

n ln )* c = v i! 3i . l i * c = v.

(2) (
-

n ln ) + (a, c) = v i! 3i . l i + (a, c) = v.

3.14 Lemma: Let l0 2 l1 2 . . . 2 ln 2 . . . be an increasing chain of lenses, and
let C0 ' C1 ' . . . and A0 ' A1 ' . . . be increasing chains of subsets of V. Then:

(1) Well-behavedness commutes with limits:
(4i ( ! . l i ( Ci ! Ai ) implies

-
n ln ( (

.
i Ci ) ! (

.
i Ai ).

(2) Totality commutes with limits:
(4i ( ! . l i ( Ci / 0 Ai ) implies

-
n ln ( (

.
i Ci ) / 0 (

.
i Ai ).
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3.15 T heor em: Let L be the set of well-behaved lenses from C to A. Then (L , 2 )
is a cpo with bot tom.

When deÞning lenses, we will make heavy use of the following standard theorem
from domain theory (e.g., [Winskel 1993]). Recall that a funct ion f between two
cpos is continuous if it is monotonic and if, for all increasing chains l0 2 l1 2 . . . 2
ln 2 . . . , we have f (

-
n ln ) =

-
n f (ln ). A Þxed point of f is a funct ion Þx(f )

sat isfying Þx(f ) = f (Þx(f )).

3.16 T heor em [Fixed-Point T heor em]: Let f be a cont inuous funct ion from
D to D , where D is a cpo with bot tom. DeÞne

Þx(f ) =
/

n

f n ($ )

Then Þx(f ) is a Þxed point , in fact the least Þxed point , of f .

Theorem 3.15 tells us that we can apply Theorem 3.16 to cont inuous funct ions
from lenses to lensesÑ i.e., it just iÞes deÞning lenses by recursion. The following
corollary packages up this argument in a convenient form; we will appeal to it many
t imes in later sect ions to show that recursive derived forms are well behaved and
total.

3.17 Cor ol lar y: Suppose f is a cont inuous funct ion from lenses to lenses.

(1) If l ( C ! A implies f (l ) ( C ! A for all l , then Þx(f ) ( C ! A.

(2) Suppose - = C0 ' C1 ' . . . and - = A0 ' A1 ' . . . are increasing chains of
subsets of V. If l ( Ci / 0 Ai implies f (l ) ( Ci + 1 / 0 Ai + 1 for all i and l,
then Þx(f ) ( (

.
i Ci ) / 0 (

.
i Ai ).

We can now apply standard domain theory to interpret a variety of const ructs
for deÞning cont inuous lens combinators. We say that an expression e is cont inuous
in the variable x if the funct ion " x.e is cont inuous. An expression is said to be con-
t inuous in its variables, or simply cont inuous, if it is cont inuous in every variable
separately. Examples of cont inuous expressions are variables, constants, tuples (of
cont inuous expressions), project ions (from cont inuous expressions), applicat ions of
cont inuous funct ions to cont inuous arguments, lambda abstract ions (whose bod-
ies are cont inuous), let bindings (of cont inuous expressions in cont inuous bodies),
case const ruct ions (of cont inuous expressions), and the Þxed point operator itself.
Tupling and project ion let us deÞne mutually recursive funct ions: if we want to
deÞne f as F (f , g) and g as G(f , g), where both F and G are cont inuous, we deÞne
(f , g) = Þx(" (x, y).(F (x, y), G(x, y))).

When proving the totality of recursive lenses, we somet imes need to use a more
powerful induct ion scheme in which a lens is proved, simultaneously, to be total
on a whole collect ion of di! erent types (any of which can be used in the induct ion
step). This is supported by a generalizat ion of the proof technique in 3.17(2).

We specify a total type by a pair (C, A) of subsets of V, and say that a lens l has
this type, writ ten l ( (C, A) i! l ( C / 0 A. We use the variable # to range over
total types and T for sets of total types. We write (C, A) ' (C!, A!) i! C ' C! and
A ' A! and write (C, A) 1 (C!, A!) for (C 1 C!, A 1 A!).
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3.18 D eÞnit ion: The increasing chain #0 ' #1 ' . . . is an increasing instance of
the sequence T0, T1, . . . i! #i ( Ti for all i .

Note that T0, T1, . . . here is an arbit rary sequence of sets of total typesÑ the
sequence need not be increasing. This is the t rick that makes this proof technique
work: we start with a sequence of sets of total types T0, T1, . . . that , a priori, have
nothing to do with each other; we then show that some cont inuous funct ion f on
lenses gets us from each Ti to Ti + 1, in the sense that f takes any lens l that belongs
to all of the total types in Ti to a lens f (l ) that belongs to all of the total types in
Ti + 1. Finally, we ident ify an increasing chain of part icular total types #0 ' #1 ' . . .
whose limit is the total type that we desire to show for the Þxed point of f and
such that each #i belongs to Ti , and hence is a type for f i ($ l ).

Here is thegeneralizat ion of Corollary 3.17(2) to increasing instances of sequences
of sets of total types. It will be used in Sect ion 7.

3.19 Lemma: Suppose f is a cont inuous funct ion from lenses to lenses and
T0, T1, . . . is a sequence of sets of total types with T0 = { (- , - )} . If for all l and i
we have (4# ( Ti . l ( #) implies (4# ( Ti + 1. f (l ) ( #), then for every increasing
instance #0 ' #1 ' . . . of T0, T1, . . . we have Þx(f ) (

.
i #i .

Dealing with Creation

In pract ice, there will be cases where we need to apply a putback funct ion, but
where no old concrete view is available, as we saw with JoÕs URL in Sect ion 2. We
deal with these cases by enriching the universe V of views with a special placeholder
# , pronounced Òmissing,Ówhich we assume is not already in V. (There are other,
formally equivalent , ways of handling missing concrete views. The advantages of
this one are discussed in Sect ion 5.) When S ' V, we write S! for S 1 { # } .

Intuit ively, l + (a, # ) means Òcreate a new concrete view from the informat ion
in the abst ract view a.Ó By convent ion, # is only used in an interest ing way
when it is the second argument to the putback funct ion: in all of the lenses deÞned
below, we maintain the invariants that (1) l* # = # , (2) l + (# , c) = # for any
c, (3) l* c .= # for any c .= # , and (4) l + (a, c) .= # for any a .= # and any c
(including # ). We write C !! A for the set of well-behaved lenses from C! to A!

obeying these convent ions and C / 0! A for the set of total lenses obeying these
convent ions. For brevity in the lens deÞnit ions below, we always assume that c .= #
when deÞning l* c and that a .= # when deÞning l + (a, c), since the results in
these cases are uniquely determined by these convent ions. A useful consequence of
these convent ions is that a lens l ( C !! A also has type C ! A.

3.20 Lemma: For any lens l and sets of views C and A: l ( C !! A implies
l ( C ! A and (2) l ( C / 0! A implies l ( C / 0 A.

4. GENERIC LENSES

With these semant ic foundat ions in hand, we are ready to move on to syntax. We
begin in this sect ion with several generic lens combinators (we will usually say just
lenses from now on), whose deÞnit ions are independent of the part icular choice of
universe V. Each deÞnit ion is accompanied by a type declarat ion assert ing its well-
behavedness under certain condit ionsÑ e.g., Òthe ident ity lens belongs to C !! C
for any CÓ.
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Many of the lens deÞnit ions are parameterized on one or more arguments. These
may be of various types: views (e.g., const ), other lenses (e.g., composit ion), pred-
icates on views (e.g., the condit ional lenses in Sect ion 6), orÑ in some of the lenses
for t rees in Sect ion 5Ñ edge labels, predicates on labels, etc.

Elect ronic Appendix A contains representat ive proofs that the lenses we deÞne
are well behaved (i.e., that the type declarat ion accompanying its deÞnit ion is
a theorem) and total, and that lenses that take other lenses as parameters are
cont inuous in these parameters and map total lenses to total lenses. Indeed, nearly
all of the lenses we deÞne are very well behaved (if their lens arguments are), the
only except ions being map, f l at t en, mer ge, and condit ionals; we do not prove very
well behavedness, however, since we are mainly interested just in the well-behaved
case.

Identity

The simplest lens is the ident ity. It copies the concrete view in the get direct ion
and the abst ract view in the putback direct ion.

i d* c = c
i d+ (a, c) = a

4C' V. i d ( C / 0! C

Having deÞned i d, we must prove that it is well behaved and totalÑ i.e., that its
type declarat ion is a theorem. We state the propert ies explicit ly as lemmas and
give proofs (in elect ronic Appendix A) for i d and a few representat ive lenses. For
the rest , we elide both the statements of the propert ies, which can be read o! from
each lensÕs deÞnit ion, and the proofs, which are largely calculat ional.

4.1 Lemma [W ell-behavedness]: 4C' V. i d ( C !! C

4.2 Lemma [Tot al i t y ]: 4C' V. i d ( C / 0! C

For each lens deÞnit ion, the statements of the totality lemma and well-
behavedness lemmas are almost ident ical, just replacing !! by / 0! . In the case of
i d, we could just as well combine the two into a single lemma, because every lens
with a total type is also well-behaved at that type. However, for lens deÞnit ions
that are parameterized on other lenses (like composit ion, just below), the totality
of the compound lens depends on the totality (not just well-behavedness) of its
argument lenses, while we can establish the well-behavedness of the composite even
if the arguments are only well-behaved and not necessarily total. Since we expect
this situat ion will be common in pract iceÑ programmers will always want to check
that their lenses are well-behaved, since the reasoning involved is simple and local,
but may not want to go to the t rouble of set t ing up the more int ricate global rea-
soning needed to prove that their recursive lens deÞnit ions are totalÑ we state the
two lemmas (i.e., typings) separately.

Composit ion

The lens composit ion combinator l ; k places l and k in sequence.
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(l ; k)* c = k* (l* c)
(l ; k) + (a, c) = l + (k + (a, l* c), c)

4A, B , C' V. 4l ( C !! B . 4k ( B !! A. l ; k ( C !! A

4A, B , C' V. 4l ( C / 0! B . 4k ( B / 0! A. l ; k ( C / 0! A

The get direct ion applies the get funct ion of l to yield a Þrst abst ract view, on which
the get funct ion of k is applied. In the other direct ion, the two putback funct ions
are applied in turn: Þrst , the putback funct ion of k is used to put a into the concrete
view that the get of k was applied to, i.e., l* c; the result is then put into c using
the putback funct ion of l . (If the concrete view c is # , then, l* c will also be # by
our convent ions on the t reatment of # , so the e! ect of (l ; k) + (a, # ) is to use k
to put a into # and then l to put the result into # .) We record two di! erent type
declarat ions for composit ion: one for the case where the parameter lenses l and k
are only known to be well behaved, and another for the case where they are also
known to be total.

Once again, proofs that the composit ion operator has the types ment ioned above
are given in elect ronic Appendix A.

4.3 Lemma [W ell-behavedness]:
4A, B , C' V. 4l ( C !! B . 4k ( B !! A. l ; k ( C !! A

4.4 Lemma [Tot al i t y ]:
4A, B , C' V. 4l ( C / 0! B . 4k ( B / 0! A. l ; k ( C / 0! A

Besides well-behavedness and totality, we must also show that lens composit ion
is cont inuous in its arguments. This will just ify using composit ion in recursive lens
deÞnit ions: in order for a recursive lens deÞned as Þx(" l . l1; l2) (where l1 and l2
may both ment ion l) to be well formed, we need to apply Theorem 3.16, which
requires that " l . l1; l2 be cont inuous in l . The following lemma shows that this will
be the case whenever l1 and l2 are cont inuous in l .

4.5 Lemma [Cont inuit y ]: Let F and G be cont inuous funct ions from lenses to
lenses. Then the funct ion " l . (F (l); G(l)) is cont inuous.

We have proved an analogous lemma for each of our lens combinators that takes
other lenses as parameters, so that thecont inuity of every lens expression will follow
from the cont inuity of its immediate const ituents, but we will not bother to state
these cont inuity lemmas explicit ly in what follows.

Constant

Another simple combinator is const v d, which t ransforms any view into the
constant view v in the get direct ion. In the putback direct ion, const simply restores
the old concrete view if one is available; if the concrete view is # , it returns a default
view d.

(const v d)* c = v
(const v d) + (a, c) = c if c .= #

d if c = #

4C' V. 4v( V. 4d( C. const v d ( C / 0! { v}
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Note that the type declarat ion demands that the putback direct ion only be applied
to the abst ract argument v.

We will deÞne a few more generic lenses in Sect ion 6; for now, though, let us
turn to some lens combinators that work on t ree-st ructured data, so that we can
ground our deÞnit ions in speciÞc examples.

5. LENSES FOR TREES

To keep the deÞnit ions of our lens primit ives as st raight forward as possible, we
work with an ext remely simple form of t rees: unordered, edge-labeled t rees with
no repeated labels among the children of a given node. This model is a natural
Þt for applicat ions where the data is unordered, such as the keyed address books
described in Sect ion 2. Unfortunately, unordered t rees do not have all the st ructure
we need for other applicat ions; in part icular, we will need to deal with ordered data
such as lists and XML documents via an encoding (shown in Sect ion 8). A more
direct t reatment of ordered t rees is a worthwhile topic for future work, but , in
the context of the Harmony system, where we are interested in both ordered and
unordered data, the choice of a simpler foundat ion seems to have been a good one:
the increase in complexity of lens programs that must manipulate ordered data in
encoded form is more than made up by the reduct ion in the complexity of the
deÞnit ions of lens primitives due to the simpler data model.

Notation

From this point on, we choose the universe V to be the set T of Þnite, unordered,
edge-labeled t rees with labels drawn from some inÞnite set N of namesÑ e.g., char-
acter st ringsÑ and with the children of a given node all labeled with dist inct names.
Trees of this form (often extended with labels on internal nodes as well as on chil-
dren) are somet imes called deterministic t rees or feature trees (e.g., [Niehren and
Podelski 1993]). The variables a, c, d, and t range over T ; by convent ion, we use a
for t rees that are thought of as abst ract and c or d for concrete t rees.

A t ree is essent ially a Þnite part ial funct ion from names to other t rees. It will be
more convenient , though, to adopt a slight ly di! erent perspect ive: we will consider
a t ree t ( T to be a total funct ion from N to T! that yields # on all but a Þnite
number of names. We write dom(t) for the domain of tÑ i.e., the set of the names
for which it returns something other than # Ñ and t(n) for the subt ree associated
to name n in t, or # if n .( dom(t).

Tree values are writ ten using hollow curly braces. The empty t ree is writ ten {||} .
(Note that {||} , a node with no children, is di! erent from # .) We often describe t rees
by comprehension, writ ing

+%%n !" F (n) | n ( N
%
%, , where F is some funct ion from N

to T! and N ' N is some set of names. When t and t! have disjoint domains,
we write t á t! or

+%%t t!
%
%, (the lat ter especially in mult i-line displays) for the t ree

mapping n to t(n) for n ( dom(t), to t !(n) for n ( dom(t!), and to # otherwise.
When p ' N is a set of names, we write p for N \ p, the complement of p.

We write t|p for the rest rict ion of t to children with names from pÑ i.e., the t ree+%%n !" t(n) | n ( p 5 dom(t)
%
%, Ñ and t\ p for

+%%n !" t(n) | n ( dom(t)\ p
%
%, . When p is

just a singleton set { n} , we drop the set braces and write just t|n and t\ n instead of
t|{ n } and t\ { n } . To shorten some of the lens deÞnit ions, we adopt the convent ions
that dom(# ) = - and that # |p = # \ p = # for any p.
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Combinators for Bi-Direct ional Tree Transformations á 15

For writ ing down types,5 we extend these t ree notat ions to sets of t rees. If T ' T
and n ( N , then

+%%n !" T
%
%, denotes the set of singleton t rees {

+%%n !" t
%
%, | t ( T} .

If T ' T and N ' N , then
+%%N !" T

%
%, denotes the set of t rees { t | dom(t) =

N and 4n ( N . t(n) ( T} and
0%%
%N ?!" T

%
%
%
1

denotes the set of t rees { t | dom(t) '

N and 4n ( N . t(n) ( T! } . We write T1 áT2 for { t1 át2 | t1 ( T1, t2 ( T2} and
T(n) for { t(n) | t ( T} \ { # } . If T ' T , then doms(T) = { dom(t) | t ( T} . Note
that doms(T) is a set of sets of names, while dom(t) is a set of names.

A value is a t ree of the special form
+%%k !" {||}

%
%, , often writ ten just k. For instance,

the phone number
+%%333- 4444 !" {||}

%
%, in the example of Sect ion 2 is a value. We

write Val for the type whose denotat ion is the set of all values.

Hoisting and Plunging

LetÕs warm up with some combinators that perform simple st ructural t ransforma-
t ions on t rees. The lens hoi st n is used to shorten a t ree by removing an edge at
the top. In the get direct ion, it expects a t ree that has exact ly one child, named n.
It returns this child, removing the edge n. In the putback direct ion, the value of the
old concrete t ree is ignored and a new one is created, with a single edge n point ing
to the given abst ract t ree. (Later we will meet a derived form, hoi st nonuni que,
that works on bushier t rees.)

(hoi st n)* c = c(n)
(hoi st n) + (a, c) =

+%%n !" a
%
%,

4C' T . 4n( N . hoi st n (
+%%n !" C

%
%, / 0! C

Conversely, the pl unge lens is used to deepen a tree by adding an edge at the
top. In the get direct ion, a new tree is created, with a single edge n point ing to
the given concrete t ree. In the putback direct ion, the value of the old concrete t ree
is ignored and the abst ract t ree is required to have exact ly one subt ree, labeled n,
which becomes the result of the pl unge.

(pl unge n)* c =
+%%n !" c

%
%,

(pl unge n) + (a, c) = a(n)

4C' T . 4n( N . pl unge n ( C / 0!
+%%n !" C

%
%,

Forking

The lens combinator xf or k applies di! erent lenses to di! erent parts of a t ree. More
precisely, it splits the t ree into two parts according to the names of its immediate
children, applies a di! erent lens to each, and concatenates the results. Formally,
xf or k takes as arguments two sets of names and two lenses. The get direct ion of
xf or k pc pa l1 l2 can bevisualized as in Figure1 (theconcrete t ree isat thebot tom).
The t riangles labeled pc denote t rees whose immediate children have labels in pc;

5Note that , alt hough we are deÞning a syntax for lens expressions, t he types used to classify t hese
expressions are semant icÑ they are just set s of lenses or views. We are not (yetÑ see Sect ion 11)
proposing an algebra of types or an algorit hm for mechanically checking membership of lens
expressions in type expressions.
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!!!!!!! ""
""

""
"

pa pa

!!!!!!! pa

!!

""
""

""
"

pa

""

!!!!!!! pc

( l 1 " )
##

""
""

""
"

pc

( l 2 " )
##

!!!!!!! ""
""

""
"

pc pc

$$ %%

Fig. 1. T he get dir ect ion of xf or k

dot ted arrows represent split t ing or concatenat ing t rees. The result of applying
l1* to c|pc (the t ree formed by dropping the immediate children of c whose names
are not in pc) must be a t ree whose top-level labels are in the set pa; similarly, the
result of applying l2* to c\ pc must be in pa. That is, the lens l1 may change the
names of immediate children of the t ree it is given, but it must map the part of the
t ree with immediate children belonging to pc to a t ree with children belonging to
pa. Likewise, l2 must map the part of the t ree with immediate children belonging
to pc to a t ree with children in pa. Conversely, in the putback direct ion, l1 must
map from pa to pc and l2 from pa to pc. Here is the full deÞnit ion:

( xf or k pc pa l1 l2 )* c = (l1* c|pc) á(l2* c\ pc)
( xf or k pc pa l1 l2 ) + (a, c) = (l1 + (a|pa, c|pc)) á(l2 + (a\ pa, c\ pc))

4pc, pa' N . 4C1' T |pc. 4A1' T |pa. 4C2' T \ pc. 4A2' T \ pa.
4l1 ( C1 !! A1. 4l2 ( C2 !! A2.

xf or k pc pa l1 l2 ( (C1 áC2) !! (A1 áA2)

4pc, pa' N . 4C1' T |pc. 4A1' T |pa. 4C2' T \ pc. 4A2' T \ pa.
4l1 ( C1 / 0! A1. 4l2 ( C2 / 0! A2.

xf or k pc pa l1 l2 ( (C1 áC2) / 0! (A1 áA2)

We rely here on our convent ion that # |p = # \ p = # to avoid explicit ly split t ing
out the # case in the putback direct ion.

We have now deÞned enough basic lenses to implement several useful derived
forms for manipulat ing t rees.

In many uses of xf or k, the sets of names specifying where to split the concrete
t ree and where to split the abst ract t ree are ident ical. We can deÞne a simpler f or k
as:

f or k p l1 l2 = xf or k p p l1 l2

4p' N . 4C1, A1' T |p. 4C2, A2' T \ p. 4l1 ( C1 !! A1. 4l2 ( C2 !! A2.
f or k p l1 l2 ( (C1 áC2) !! (A1 áA2)

4p' N . 4C1, A1' T |p. 4C2, A2' T \ p. 4l1 ( C1 / 0! A1. 4l2 ( C2 / 0! A2.
f or k p l1 l2 ( (C1 áC2) / 0! (A1 áA2)
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Combinators for Bi-Direct ional Tree Transformations á 17

We can use f or k to deÞne a lens that discards all of the children of a t ree whose
names do not belong to some set p:

f i l t er p d = f or k p i d (const {||} d)

4C' T . 4p' N . 4d ( C\ p.
f i l t er p d ( (C|p áC\ p) / 0! C|p

In the get direct ion, this lens takes a concrete t ree, keeps the children with names
in p (using i d), and throws away the rest (using const {||} d). The t ree d is
used when put t ing an abst ract t ree back into a missing concrete t ree, providing a
default for informat ion that does not appear in the abst ract t ree but is required in
the concrete t ree. The type of f i l t er follows direct ly from the types of the three
primit ive lenses used to deÞne it : const {||} d, with type C\ p / 0! { {||} } , the lens
i d, with type C|p / 0! C|p, and f or k (with the observat ion that C|p = C|p á{||} ).

Let us see how f i l t er behaves in an example. Let the concrete t ree c =+%%name !" Pat , phone !" 333- 4444
%
%, , and lens l = f i l t er { name} {||} . We calcu-

late l* c, underlining the next term to be simplifed at each step.

l* c = (f or k { name} i d (const {||} d))*
+%%name !" Pat , phone !" 333- 444

%
%,

by the deÞnit ion of l
= i d*

+%%name !" Pat
%
%, á(const {||} d)*

+%%phone !" 333- 4444
%
%,

by the deÞnit ion of f or k and split t ing c using { name}
=

+%%name !" Pat
%
%, á{||} =

+%%name !" Pat
%
%, = a

by the deÞnit ions of i d and const

Now suppose that we update this t ree, a, to
+%%name !" Pat t y

%
%, . Let us calculate the

result of put t ing back a into c. To save space, we write k for (const {||} {||} ).

l + (a, c)
= (f or k { name} i d k) +

2+%%name !" Pat
%
%, ,

+%%name !" Pat , phone !" 333- 4444
%
%, 3

by the deÞnit ion of l
= i d+

2+%%name !" Pat t y
%
%, ,

+%%name !" Pat
%
%, 3

ák +
2
{||} ,

+%%phone !" 333- 4444
%
%, 3

by the deÞnit ion of f or k and split t ing a and c using { name}
=

+%%name !" Pat t y, phone !" 333- 4444
%
%,

by the deÞnit ion of i d and const

Note that the putback funct ion restores the Þltered part of the concrete t ree and
propagates the change made to the abst ract t ree. In the case of creat ionÑ i.e., if
we put back an abst ract t ree using # Ñ then the default argument to const is
concatenated to the abst ract t ree to form the result , since there is no Þltered part
of the concrete t ree to restore.

Another way to thin a t ree is to explicit ly specify a child that should be removed
if it exists:

pr une n d = f or k { n}
2
const {||}

+%%n !" d
%
%, 3

i d

4C' T . 4n( N . 4d( C(n).
pr une n d ( (C|n áC\ n ) / 0! C\ n
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This lens is similar to f i l t er , except that (1) the name given is the child to be
removed rather than a set of children to keep, and (2) the default t ree is the one to
go under n if the concrete t ree is # .

Conversely, we can grow a tree in the get direct ion by explicit ly adding a child.
The typeannotat ion disallowschanges in thenewly added t ree, so it can bedropped
in the putback.

add n t = xf or k { } { n} (const t {||} ; pl unge n) i d

4n( N . 4C' T \ n . 4t ( T .
add n t ( C / 0!

+%%n !" { t}
%
%, áC

Let us explore the behavior of add through an example. Let c =
+%%a !" {||}

%
%, and

l = add b
+%%x !" {||}

%
%, . To save space, write k for const

+%%x !" {||}
%
%, {||} and p for

pl unge b. We calculate l* c direct ly, underlining the term to be simplifed at each
step.

l* c = (xf or k { } { b} (k; p) i d)* c
by the deÞnit ion of l

= (k; p)* {||} ái d*
+%%a !" {||}

%
%,

by the deÞnit ion of xf or k and split t ing c using { }
= p* (k* {||} ) á

+%%a !" {||}
%
%,

by the deÞnit ions of the composit ion and i d

=
4

p*
+%%x !" {||}

%
%,

5
á

+%%a !" {||}
%
%,

by the deÞnit ion of k

=
0%%
%a !" {||} , b !"

+%%x !" {||}
%
%,

%
%
%
1

by the deÞnit ion of p

Now suppose we modify this t ree by renaming the child a to c, obtaining a =+%%c !" {||} , b !"
+%%x !" {||}

%
%,

%
%, . The result of the putback funct ion, l + (a, c), is calcu-

lated as follows:

l + (a, c) = (xf or k { } { b} (k; p) i d) + (a, c)
by the deÞnit ion of l

=
4

(k; p) +
40%%

%b !"
+%%x !" {||}

%
%,

%
%
%
1

, {||}
55

á
4

i d+
2+%%c !" {||}

%
%, ,

+%%a !" {||}
%
%, 35

by the deÞnit ion of xf or k, split t ing a using { b} and c using { }

=
6

(k; p) +
40%%

%b !"
+%%x !" {||}

%
%,

%
%
%
1

, {||}
57

á
+%%c !" {||}

%
%,

by the deÞnit ion of i d

=
6

k +
6

p+
40%%

%b !"
+%%x !" {||}

%
%,

%
%
%
1

, k* {||}
5

, {||}
7 7

á
+%%c !" {||}

%
%,

by the deÞnit ion of composit ion

=
4

k +
2+%%x !" {||}

%
%, , {||}

35
á
+%%c !" {||}

%
%,

by the deÞnit ion of p
= {||} á

+%%c !" {||}
%
%, =

+%%c !" {||}
%
%,

by the deÞnit ion of k
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Another derived lens focuses at tent ion on a single child n:

f ocus n d = (f i l t er { n} d); (hoi st n)

4n( N . 4C' T \ n .4d( C. 4D ' T .
f ocus n d ( (C á

+%%n !" D
%
%, ) / 0! D

In the get direct ion, f ocus Þlters away all other children, then removes the edge
n and yields nÕs subt ree. As usual, the default t ree is only used in the case of
creat ion, where it is the default for children that have been Þltered away. The type
of f ocus follows from the types of the lenses from which it is deÞned, observing
that f i l t er { n} d ( (C á{|n !" D |} ) / 0! {|n !" D |} and that hoi st n ( {|n !"
D |} / 0! D .

The hoi st primit ive deÞned earlier requires that the name being hoisted be the
uniquechild of theconcrete t ree. It isoften useful to relax this requirement , hoist ing
one child out of many. This generalized version of hoi st is annotated with the set
p of possible names of the grandchildren that will become children after the hoist ,
which must be disjoint from the names of the exist ing children.

hoi st nonuni que n p = xf or k { n} p (hoi st n) i d

4n( N . 4p' N . 4D ' T \ { n } # p. 4C' T |p.
hoi st nonuni que n p ( (

+%%n !" C
%
%, áD) / 0! (C áD)

A last derived lens renames a single child.

r ename m n = xf or k { m} { n} (hoi st m; pl unge n) i d

4m, n( N . 4C' T . 4D ' T \ { m ,n } .
r ename m n ( (

+%%m !" C
%
%, áD) / 0! (

+%%n !" C
%
%, áD)

In the get direct ion, r ename splits the concrete t ree in two. The Þrst t ree has a
single child m (which is guaranteed to exist by the type annotat ion) and is hoisted
up, removing the edge named m, and then plunged under n. The rest of the
original t ree is passed through the i d lens. Similarly, the putback direct ion splits
the abst ract view into a t ree with a single child n, and the rest of the t ree. The
t ree under n is put back using the lens (hoi st m; pl unge n), which Þrst removes
the edge named n and then plunges the result ing t ree under m. Note that the type
annotat ion on r ename demands that the concrete view have a child named m and
that the abst ract view have a child named n. In Sect ion 6 we will see how to wrap
this lens in a condit ional to obtain a lens with a more ßexible type.

Mapping

So far, all of our lens combinators do things near the root of the t rees they are given.
Of course, we also want to be able to perform transformat ions in the interior of
t rees. Themap combinator is our fundamental means of doing this. When combined
with recursion, it also allows us to iterate over st ructures of arbit rary depth.

The map combinator is parameterized on a single lens l . In the get direct ion, map
applies l* to each subt ree of the root and combines the results together into a
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new tree. (Later in this sect ion, we will deÞne a more general combinator, called
wmap, that can apply a di! erent lens to each subt ree. DeÞning map Þrst lightens
the notat ional burden in the explanat ions of several Þne points about the behavior
and typing of both combinators.) For example, the lens map l has the following
behavior in the get direct ion when applied to a t ree with three children:

!
#

$

%
%
%
%
%
%

n1 !" t1

n2 !" t2

n3 !" t3

%
%
%
%
%
%

(
)

*
becomes

!
#

$

%
%
%
%
%
%

n1 !" l* t1

n2 !" l* t2

n3 !" l* t3

%
%
%
%
%
%

(
)

*

The putback direct ion of map is more interest ing. In the simple case where a
and c have equal domains, its behavior is st raight forward: it uses l+ to combine
concrete and abst ract subt rees with ident ical names and assembles the results into
a new concrete t ree, c!:

(map l) +

8

9

!
#

$

%
%
%
%
%
%

n1 !" t1

n2 !" t2

n3 !" t3

%
%
%
%
%
%

(
)

*
,

!
#

$

%
%
%
%
%
%

n1 !" t !
1

n2 !" t !
2

n3 !" t !
3

%
%
%
%
%
%

(
)

*

:

; =

!
#

$

%
%
%
%
%
%

n1 !" l + (t1, t !
1)

n2 !" l + (t2, t !
2)

n3 !" l + (t3, t !
3)

%
%
%
%
%
%

(
)

*

In general, however, the abst ract t ree a in the putback direct ion need not have
the same domain as c (i.e., the edits that produced the new abst ract view may
have involved adding and delet ing children); the behavior of map in this case
is a lit t le more involved. Observe, Þrst , that the domain of c! is determined
by the domain of the abst ract argument to putback. Since we aim at build-
ing total lenses, we may suppose that (map l)* ((map l) + (a, c)) is deÞned, in
which case dom((map l)* ((map l) + (a, c))) = dom(a) by rule Put Get , and
dom((map l) + (a, c)) = dom(a) as (map l)* does not change the domain of the
t ree. This means we can simply drop children that occur in dom(c) but not in
dom(a). Children bearing names that occur both in dom(a) and dom(c) are dealt
with as described above. This leaves the children that only appear in dom(a), which
need to be passed through l so that they can be included in c!; to do this, we need
some concrete argument to pass to l+ . There is no corresponding child in c, so
instead these abst ract t rees are put into the missing t ree # Ñ indeed, this case is
precisely why we int roduced # . Formally, the behavior of map is deÞned as follows.
(It relies on the convent ion that c(n) = # if n .( dom(c); the type declarat ion also
involves some new notat ion, explained below.)

(map l)* c =
+%%n !" l* c(n) | n ( dom(c)

%
%,

(map l) + (a, c) =
+%%n !" l + (a(n), c(n)) | n ( dom(a)

%
%,

4C, A' T with C = C! , A = A! , doms(C) = doms(A).
4l ( (

<
n " N . C(n) !! A(n)).

map l ( C !! A

4C, A' T with C = C! , A = A! , doms(C) = doms(A).
4l ( (

<
n " N . C(n) / 0! A(n)).

map l ( C / 0! A

Because of the way that it takes the t ree apart , t ransforms the pieces, and reassem-
bles them, the typing of map is a lit t le subt le. For example, in the get direct ion, map

A CM Transact ions on Programming L anguages and Syst ems, Vol . T BD, No. T DB, M ont h Year .



Combinators for Bi-Direct ional Tree Transformations á 21

does not modify the names of the immediate children of the concrete t ree, and in
the putback direct ion, the names of the abst ract t ree are left unchanged; we might
therefore expect a simple typing rule stat ing that , if l ( (

<
n " N C(n) !! A(n))Ñ

i.e., if l is a well-behaved lens from the concrete subt ree type C(n) to the abst ract
subt ree type A(n) for each child nÑ then map l ( C !! A. Unfortunately, for arbi-
t rary C and A, the map lens is not guaranteed to be well-behaved at this type. In
part icular, if doms(C), the set of domains of t rees in C, is not equal to doms(A),
then the putback funct ion can produce a t ree that is not in C, as the following
example shows. Consider the sets of t rees

C =
++%%x !" m

%
%, ,

+%%y !" n
%
%, ,

A = C 1
++%%x !" m, y !" n

%
%, ,

and observe that with t rees

a =
+%%x !" m, y !" n

%
%, c =

+%%x !" m
%
%,

we have map i d+ (a, c) = a, a t ree that is not in C. This shows that the type of
map must include the requirement that doms(C) = doms(A). (Recall that , for any
type T, the set doms(T) is a set of sets of names.)

A related problem arises when the sets of t rees A and C have dependencies
between the names of children and the t rees that may appear under those names.
Again, one might naively expect that , if l has type C(m) !! A(m) for each name
m, then map l would have type C !! A. Consider, however, the set

A = { {|x !" m, y !" p|} , {|x !" n, y !" q|} } ,

in which the value monly appears under x when p appears under y, and the set

C = { {|x !" m, y !" p|} , {|x !" m, y !" q|} , {|x !" n, y !" p|} , {|x !" n, y !" q|} } ,

where both m and n appear with both p and q. When we consider just the
project ions of C and A at speciÞc names, we obtain the same sets of subt rees:
C(x) = A(x) = { {|m|} , {|n|} } and C(y) = A(y) = { {|p|} , {|q|} } . The lens i d has type
C(x) !! A(x) and C(y) !! A(y) (and C(z) = - !! - = A(z) for all other names z).
But it is clearly not the case that map i d ( C !! A.

To avoid this error, but st ill give a type for map that is precise enough to derive
interest ing types for lenses deÞned in terms of map, we require that the source and
target sets in the type of map be closed under the Òshu$ ingÓ of their children.
Formally, if T is a set of t rees, then the set of shu! ings of T, denoted T! , is

T ! =
=

D " doms(T )

{|n !" T(n) | n ( D |}

where {|n !" T(n) | n ( D |} is the set of t rees with domain D whose children under
n are taken from the set T(n). We say that T is shu! e closed i! T = T! . In the
example above, A! = C! = CÑ i.e., C is shu$ e closed, but A is not .

Alternat ively, every shu$ e-closed set T can be ident iÞed with a set of set of
names D and a funct ion f from names to types, such that t ( T i! dom(t) ( D
and t(n) ( f (n) for every name n ( dom(t). Formally, the shu$ e closed set T is
deÞned as follows:

T =
=

d" D

{|n !" f (n) | n ( d|}

A CM Transact ions on Programming L anguages and Syst ems, Vol . T BD, No. T DB, M ont h Year .



22 á J. N. Foster et. al.

In the situat ions where map is used, shu$ e closure is typically easy to check. For
example, therest rict ion on t reegrammarsembodied by W3C Schema impliesshu$ e
closure (informally, the rest rict ion on W3C Schema is analogous to imposing shu$ e
closure on the schemas along every path, not just at the root ). Addit ionally, any
set of t rees whose elements each have singleton domains is shu$ e closed. Also, for
every set of t rees T, the encoding int roduced in Sect ion 7 of lists with elements in T
is shu$ e closed, which just iÞes using map (with recursion) to implement operat ions
on lists. Furthermore, types of the form {|n !" T | n ( N |} with inÞnite domain
but with the same structure under each edge, which are heavily used in database
examples (where the top-level names are keys and the st ructures under them are
records) are shu$ e closed.

Another point to note about map is that it does not obey the Put Put law.
Consider a lens l and (a, c) ( dom(l+ ) such that l + (a, c) .= l + (a, # ). We have

(map l) +
2+%%n !" a

%
%, , ((map l) +

2
{||} ,

+%%n !" c
%
%, 3

)
3

= (map l) +
2+%%n !" a

%
%, , {||}

3

=
+%%n !" l + (a, # )

%
%,

whereas
+%%n !" l + (a, c)

%
%, = (map l) +

2+%%n !" a
%
%, ,

+%%n !" c
%
%, 3

.

Intuit ively, there is a di! erence between, on the one hand, modifying a child n and,
on the other, removing it and then adding it back: in the Þrst case, any informat ion
in the concrete view that is Òprojected awayÓin the abst ract view will be carried
along to the new concrete view; in the second, such informat ion will be replaced
with default values. This di! erence seems pragmat ically reasonable, so we prefer
to keep map and lose Put Put .6

A Þnal point of interest is the relat ion between map and the missing t ree # . The
putback funct ion of most lens combinators only results in a putback into the missing
t ree if the combinator itself is called on # . In the case of map l, calling its putback
funct ion on somea and c wherec isnot themissing t reemay result in theapplicat ion
of the putback of l to # if a has some children that are not in c. In an earlier variant
of map, we dealt with missing children by providing a default concrete child t ree,
which would be used when no actual concrete t ree was available. However, we
discovered that , in pract ice, it is often di" cult to Þnd a single default concrete t ree
that Þts all possible abst ract t rees, part icularly because of xf or k (where di! erent
lenses are applied to di! erent parts of the t ree) and recursion (where the depth
of a t ree is unknown). We tried parameterizing this default concrete t ree by the
abst ract t reeand the lens, but not iced that most primit ive lenses ignore theconcrete
t ree when deÞning the putback funct ion, as enough informat ion is available in the
abst ract t ree. The natural choice for a concrete t ree parameterized by a and l
was thus l + (a, # ), for some special t ree # . The only lens for which the putback
funct ion needs to be deÞned on # is const , as it is the only lens that discards

6A lt ernat ively, we could use a reÞnement of t he type system to t rack when Put Put does hold,
annotat ing some of t he lens combinators wit h ext ra type informat ion recording the fact t hat t hey
are obliv ious, and then give map two types: t he one we gave here plus another saying Òwhen map
is applied to an obliv ious lens, t he result is very well behaved.Ó
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informat ion. This led us to the present design, where only the const lens (along
with other lenses deÞned from it , such as f ocus) expects a default t ree d. This
approach is much more convenient to program with than the others we tried, since
one only provides defaults at the exact points where informat ion is discarded.

We now deÞne a more general form of map that is parameterized on a total
funct ion from names to lenses rather than on a single lens.

(wmap m)* c =
+%%n !" m(n)* c(n) | n ( dom(c)

%
%,

(wmap m) + (a, c) =
+%%n !" m(n) + (a(n), c(n)) | n ( dom(a)

%
%,

4C, A' T with C = C! , A = A! , doms(C) = doms(A).
4m ( (%n( N . C(n) !! A(n)).

wmap m ( C !! A

4C, A' T with C = C! , A = A! , doms(C) = doms(A).
4m ( (%n( N . C(n) / 0! A(n)).

wmap m ( C / 0! A

In the type annotat ion, we use the dependent type notat ion m ( %n. C(n) !! A(n)
to mean that m is a total funct ion mapping each name n to a well-behaved lens
from C(n) to A(n). Although m is a total funct ion, we will often describe it by
giving its behavior on a Þnite set of names and adopt ing the convent ion that it
maps every other name to i d. For example, the lens wmap { x !" pl unge a} maps
pl unge a over t rees under x and i d over the subt rees of every other child. We can
also easily deÞne map as a derived form: map l = wmap (" n ( N . l).

Since the typing of wmap is rather subt le, it is worth stat ing its well-behavedness
lemma explicit ly (and, in the appendix, giving the proof).

5.1 Lemma [W ell-behavedness]:
4C, A' T with C = C! , A = A! , doms(C) = doms(A).

4m ( (%n( N . C(n) !! A(n)).
wmap m ( C !! A

Copying and Merging

We next consider two lenses that duplicate informat ion in one direct ion and re-
integrate (by performing equality checks) in the other.

A view of someunderlying data st ructuremay somet imesrequire that two dist inct
subt rees maintain a relat ionship, such as equality. For example, under the subt ree
represent ing a manager, Alice, an employee-manager database may list the name
and ID number of every employee in AliceÕs group. If Bob is managed by Alice,
then BobÕs employee record will also list his name and ID number (as well as other
informat ion including a pointer to Alice, as his manager). If BobÕs name changes
at a later date, then we expect that it will be updated (ident ically) under both his
record and AliceÕs record. If the concrete representat ion contains his name in only
a single locat ion, we need to duplicate the informat ion in the get direct ion. To do
this we need a lens that copies a subt ree and then allows us to t ransform the copy
into the shape that we want .
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In the get direct ion, (copy m n) takes a t ree, c, that has no child labeled n. If
c(m) exists, then (copy m n) duplicates c(m) by set t ing both a(m) and a(n) equal
to c(m). In the putback direct ion, copy simply discards a(n). The type of copy
ensures that no informat ion is lost , because a(m) = a(n).

(copy m n)* c = c á
+%%n !" c(m)

%
%,

(copy m n) + (a, c) = a\ n

4m, n( N . 4C' T \ { m ,n } . 4D ' T .
copy m n ( (C á

+%%m !" D!
%
%, ) / 0! (C á{

+%%m !" d, n !" d
%
%, | d ( D! } )

Because we want copy to be a total lens, the equality const raint in the abst ract
type of copy is essent ial to ensure well-behavedness. To see why, consider what
would happen if the putback funct ion were deÞned even when a(m) and a(n) were
not equal and copy+ removed either a(m) or a(n). Then there would be no way
for a subequent applicat ion of the get funct ion to restore the discarded informat ion.
Consequent ly, Put Get would be violated.

Unfortunately, because of this const raint , the set of lenses that can be validly
composed to the right of a copy isalso rest rictedÑ thecomposed lensesmust respect
the equality. As an example of what can go wrong, consider (copy a b; pr une b {||} )
and suppose that we want to assign it a lens typing with concrete component+%%a !" D

%
%, . A simple calculat ion shows that get funct ion behaves like i d: the lens

Þrst copies a to b and then prunes away b. We run into problems, however, if
we evaluate (copy a b; pr une b {||} ) +

2+%%a !" d1
%
%, ,

+%%a !" d2
%
%, 3

with d1 .= d2. Un-
winding the composit ion, we evaluate (copy a b)+ with an abst ract argument+%%a !" d1, b !" d2

%
%, . As argued above, the copy lens cannot be both deÞned and

well-behaved on such an abst ract argument because the copied data is not ident ical.
As the example demonst rates, the lenses composed after a copy must preserve the
equality of the copied data. Otherwise we cannot ensure that the type requirement
a(m) = a(n) will be sat isÞed.

In our intended applicat ion, using lenses to build synchronizers for t ree-st ructured
data, we have not found a need for copy. This is not surprising, because if a con-
crete representat ion demands that some invariant hold within the data st ructure,
we assume that (1) each applicat ion will locally maintain the invariants in its own
representat ion, and (2) the funct ion of a synchronizer is to simply propagatechanges
from one well-formed replica to another. Moreover, if one Þeld in a concrete rep-
resentat ion is derivable from another (or a set of other Þelds), then we need not
expose both Þelds in the abst ract view. Instead, we can merge the Þelds (see below).
Any change to the merged Þeld will be pushed back down to all the derived Þelds
in the concrete view. Thus, mer ge, the inverse of copy makes more sense for the
views manipulated by a data synchronizer.

By cont rast , some have argued for the need for more powerful forms of copy in
set t ings such as edit ing a user-friendly view of a st ructured document [Hu et al.
2004; Mu et al. 2004a]. Consider a situat ion wherea user edits a view of a document
in which a table of contents is automat ically generated from the sect ion headings
appearing in the source text (i.e., the concrete view is just some structured text ,
while the abst ract view contains the text plus the table of contents). One might
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feel that adding a new sect ion to the text in the abst ract view should cause an
entry to be added to the table of contents, and similarly that adding an ent ry to
the table of contents should create an empty sect ion in the text . Such funct ion-
ality is not consistent with our Put Get law: both adding a sect ion heading and
adding an ent ry in the table of contents will result in the same concrete document
after a putback; such a putback funct ion is not inject ive and cannot part icipate in
a lens in our sense. However, in contexts where this kind of behavior is a pri-
mary goal, system designers may be willing to weaken the promises they make to
programmers by guaranteeing weaker propert ies than Put Get . For example, Mu
et al [2004a] only require their bidirect ional t ransformat ions to obey a Put Get -
Put law. Put Get Put is weaker than Put Get in two ways. First , it does not
require that l* (l+ (a, c)) equals a. Rather, it requires that , if c! = l+ (a, c) and
a! = l* (c!), then a! should Òcontain the same informat ion as a,Óin the sense that
l+ (a!, c!) = c!. Second, Put Get Put allows get to be undeÞned over parts of the
range of putbackÑ Put Get Put is only required to hold when the get is deÞned,
but no requirements are made on how broadly get must be deÞned. (Given that
their set t ing is interact ive, it is reasonable to say, as they do, that if get after some
putback is undeÞned, then the system can signal the user that the modiÞcat ion to
a was illegal and cancel it ). Hu et al [2004] go a step further and weaken both
Put Get and Get Put by only requiring Put Get when a is l* (c) and by only
requiring Get Put when c is l+ (a, c!) for some a and c!.

Conversely, somet imes a concrete representat ion requires equality between two
dist inct subt rees. The following mer ge lens is one way to preserve this invari-
ant when the abst ract view is updated. In the get direct ion, mer ge takes a t ree
with two equal branches and deletes one of them. In the putback direct ion, mer ge
copies the updated value of the remaining branch to both branches in the concrete
view.

(mer ge m n)* c = c\ n

(mer ge m n) + (a, c) =
&

a á
+%%n !" a(m)

%
%, if c(m) = c(n)

a á
+%%n !" c(n)

%
%, if c(m) .= c(n)

4m, n( N . 4C' T \ { m ,n } . 4D ' T .
mer ge m n ( (C á

+%%m !" D! , n !" D!
%
%, ) / 0! (C á

+%%m !" D!
%
%, )

There is some freedom in the type of mer ge. On one hand, we can give it a
precise type that expresses the intended equality const raint in the concrete view;
the lens is well-behaved and total at that type. Alternat ively, we can give it a
more permissive type (as we do) by ignoring the equality const raintÑ even if the
two original branches are unequal, mer ge is st ill deÞned and well-behavedness is
preserved. This is possible because the old concrete view is an argument to the
putback funct ion, and can be tested to see whether the two branches were equal or
not in c. If not , then the value in a does not overwrite the value in the deleted
branch, allowing mer ge to obey Put Get .

Unlikecopy, mer ge turnsout to bequiteuseful in our synchronizat ion framework.
For example, our bookmark synchronizer must deal with the fact that the XML
representat ion of Apple Safari bookmark Þles includes the URL data for every link
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twice. By merging the appropriate children, we record this dependency and ensure
that updates to the URL Þelds are consistent ly propagated to both locat ions.

6. CONDITIONALS

Condit ional lens combinators, which can be used to select ively apply one lens or an-
other to a view, are necessary for writ ing many interest ing derived lenses. Whereas
xf or k and its variants split their input t rees into two parts, send each part through
a separate lens, and recombine the results, a condit ional lens performs some test
and sends the whole t ree(s) through one or the other of its sub-lenses.

The requirement that makes condit ionals t ricky is totality: we want to be able
to take a concrete view, put it through a condit ional lens to obtain some abst ract
view, and then take any other abst ract view of suitable type and push it back down.
But this will only work if either (1) we somehow ensure that the abst ract view is
guaranteed to be sent to the same sub-lens on the way down as we took on the
way up, or else (2) the two sub-lenses are const rained to behave coherent ly. Since
we want reasoning about well-behavedness and totality to be composit ional in the
absence of recursion (i.e., we want the well-behavedness and totality of composite
lenses to follow just from the well-behavedness and totality of their sub-lenses, not
from special facts about the behavior of the sub-lenses), the second is unacceptable.

Interest ingly, once we adopt the Þrst approach, we can give a complete charac-
terizat ion of all possible condit ional lenses: we argue that every binary condit ional
operator that yields well-behaved and total lenses is an instance of the general cond
combinator presented below. Since this general cond is a lit t le complex, however,
we start by discussing two part icularly useful special cases.

Concrete Conditional

Our Þrst condit ional, ccond, is parameterized on a predicate C1 on views and two
lenses, l1 and l2. In the get direct ion, it tests the concrete view c and applies the
get of l1 if c sat isÞes the predicate and l2 otherwise. In the putback direct ion, ccond
again examines the concrete view, and applies the putback of l1 if it sat isÞes the
predicateand theputback of l2 otherwise. This isarguably thesimplest possibleway
to deÞne a condit ional: it Þxes all of its decisions in the get direct ion, so the only
const raint on l1 and l2 is that they have the same target . (Since we are interested
in using ccond to deÞne total lenses, this condit ion can actually be rather hard to
achieve in pract ice.)

(ccond C1 l1 l2)* c =
&

l1* c if c ( C1

l2* c if c .( C1

(ccond C1 l1 l2) + (a, c) =
&

l1 + (a, c) if c ( C1

l2 + (a, c) if c .( C1

4C, C1, A' V. 4l1 ( C5C1 !! A. 4l2 ( C\ C1 !! A.
ccond C1 l1 l2 ( C !! A

4C, C1, A' V. 4l1 ( C5C1 / 0! A. 4l2 ( C\ C1 / 0! A.
ccond C1 l1 l2 ( C / 0! A

One subt lety in the deÞnit ion is worth not ing: we arbit rarily choose to putback #
using l2 (because # .( C1 for any C1 ' V). We could equally well arrange the
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deÞnit ion so as to send # through l1. In fact , l1 need not be well-behaved (or
even deÞned) on # ; we can const ruct a well-behaved, total lens using ccond when
l1 ( C 5 C1 / 0 A and l2 ( C \ C1 / 0! A.

Abstract Conditional

A quite di! erent way of deÞning a condit ional lens is to make it ignore its con-
crete argument in the putback direct ion, basing its decision whether to use l1+
or l2+ ent irely on its abst ract argument . This obliviousness to the concrete ar-
gument removes the need for any side condit ions relat ing the behavior of l1 and
l2Ñ everything works Þne if we putback using the opposite lens from the one that
we used to getÑ as long as, when we immediately put the result of get, we use the
same lens that we used for the get. Requiring that the sources and targets of l1 and
l2 be disjoint guarantees this.

(acond C1 A1 l1 l2)* c =
&

l1* c if c ( C1

l2* c if c .( C1

(acond C1 A1 l1 l2) + (a, c) =

!
""#

""$

l1 + (a, c) if a ( A1 ) c ( C1

l1 + (a, # ) if a ( A1 ) c .( C1

l2 + (a, c) if a .( A1 ) c .( C1

l2 + (a, # ) if a .( A1 ) c ( C1

4C, A, C1, A1' V. 4l1 ( C5C1 !! A5A1. 4l2 ( (C\ C1) !! (A\ A1).
acond C1 A1 l1 l2 ( C !! A

4C, A, C1, A1' V. 4l1 ( C5C1 / 0! A5A1. 4l2 ( (C\ C1) / 0! (A\ A1).
acond C1 A1 l1 l2 ( C / 0! A

In Sect ion 5, we deÞned the lens r ename m n, whose type demands that each
concrete t ree have a child named m and that every abst ract t ree have a child named
n. Using this condit ional, we can write a more permissive lens that renames a child
if it is present and otherwise behaves like the ident ity.

r ename i f pr esent m n = acond ({|m !" T |} áT \ { m ,n } ) ({|n !" T |} áT \ { m ,n } )
(r ename m n)
i d

4n, m ( N . 4C' T . 4D , E ' (T \ { m ,n } ).
r ename i f pr esent m n ( (

+%%m !" C
%
%, áD) 1 E / 0! (

+%%n !" C
%
%, áD) 1 E

General Conditional

The general condit ional, cond, is essent ially obtained by combining the behaviors
of ccond and acond. The concrete condit ional requires that the targets of the two
lenses be ident ical, while the abst ract condit ional requires that they be disjoint .
Here, we let them overlap arbit rarily, behaving like ccond in the region where they
do overlap (i.e., for arguments (a, c) to putback where a is in the intersect ion of
the targets) and like acond in the regions where the abst ract argument to putback
belongs to just one of the targets. To this we can add one addit ional observat ion:
that the use of # in the deÞnit ion of acond is actually arbit rary. All that is
required is that , when we use the putback of l1, the concrete argument should come
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from (C1)! , so that l1 is guaranteed to do something reasonable with it . These
considerat ions lead us to the following deÞnit ion.

(cond C1 A1 A2 f 21 f 12 l1 l2)* c =
&

l1* c if c ( C1

l2* c if c .( C1

(cond C1 A1 A2 f 21 f 12 l1 l2) + (a, c) =!
""""""#

""""""$

l1 + (a, c) if a ( A15A2 ) c ( C1

l2 + (a, c) if a ( A15A2 ) c .( C1

l1 + (a, c) if a ( A1\ A2 ) c ( (C1)!

l1+ (a, f 21(c)) if a ( A1\ A2 ) c .( (C1)!

l2 + (a, c) if a ( A2\ A1 ) c .( C1

l2+ (a, f 12(c)) if a ( A2\ A1 ) c ( C1

4C, C1, A1, A2 ' V. 4l1 ( (C5C1) !! A1. 4l2 ( (C\ C1) !! A2.
4f 21 ( (C\ C1) " (C5C1)! . 4f 12 ( (C5C1) " (C\ C1)! .

cond C1 A1 A2 f 21 f 12 l1 l2 ( C !! (A11A2)

4C, C1, A1, A2 ' V. 4l1 ( (C5C1) / 0! A1. 4l2 ( (C\ C1) / 0! A2.
4f 21 ( (C\ C1) " (C5C1)! . 4f 12 ( (C5C1) " (C\ C1)! .

cond C1 A1 A2 f 21 f 12 l1 l2 ( C / 0! (A11A2)

When a is in the targets of both l1 and l2, cond+ chooses between them based
solely on c (as does ccond, whose targets always overlap). If a lies in the range
of only l1 or l2, then condÕs choice of lens for putback is predetermined (as with
acond, whose targets are disjoint ). Once l+ is chosen to be either l1+ or l2+ , if
the old value of c is not in ran(l+ )! , then we apply a ÒÞxup funct ion,Óf 21 or f 12,
to c to choose a new value from ran(l+ )! . # is one possible result of the Þxup
funct ions, but in general we can compute a more interest ing value, as we will see
in the l i st f i l t er lens, deÞned in Sect ion 7.

We argued above that cond captures all the power of ccond and acondÑ indeed,
because of the Þxup funct ions f 12 and f 21, it captures even more. We now argue,
informally, that this is themaximum generality possibleÑ i.e., that any well-behaved
and total lens combinator that behaves like a binary condit ional can be obtained
as a special case of cond. Of course, the argument hinges on what we mean when
we say Òl behaves like a condit ional.Ó We would like to capture the intuit ion that l
should, in each direct ion, Òtest its input (s) and decide whether to behave like l1 or
l2.Ó In the get direct ion, there is lit t le choice about how to say this: since there is
just one argument , the test just amounts to test ing membership in a set (predicate)
C1. In the putback direct ion, there is some apparent ßexibility, since the test might
invest igate both arguments. However, the requirements of well-behavedness (and
the feeling that a condit ional lens should be ÒparametricÓ in l1 and l2, in the
sense that the choice between l1 and l2 should not be made by invest igat ing their
behavior) actually eliminate most of this ßexibility. If, for example, the abst ract
input a falls in a ( A15A2, then the choice of whether to apply l1+ or l2+ is fully
determined by c: if c ( C1, then it may be that a = l1* c; in this case, using l1+
guarantees that l + (a, c) = c, as required by Get Put , whereas l2+ gives us no
such guarantee; conversely, if c ( C\ C1, we must use l2.

Similarly, if a ( A1\ A2, then we have no choice but to use l1, since l2Õs type does
not promise that applying it to an argument of this type will yield a result in C1.
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Similarly, if a ( A2\ A1, then we must use l2. However, here we do have a lit t le
genuine freedom: if a ( A1\ A2 while c ( C\ C1, then, by the type of l2, there is
no danger that a = l2* c. In order to apply l1, we need some element of (C1)!

to use as the concrete argument , but it does not mat ter which one we pick; and
conversely for l2. The Þxup funct ions f 21 and f 12 cover all possible (determinist ic)
ways of making this choice based on the given c. It is possible to be slight ly more
general by making f 21 and f 12 take both a and c as arguments, but pragmat ically
there seems lit t le point in doing this, since either l1+ or l2+ is going to be called
on their result , and these funct ions can just as well take a into account .

7. DERIVED LENSES FOR LISTS

XML and many other concrete data formats make heavy use of ordered lists. We
describe in this sect ion how we can represent lists as t rees, using a standard cons-
cell encoding, and int roduce some derived lenses to manipulate them. We begin
with very simple lenses for project ing the head and tail of a list . We then deÞne
recursive lenses implement ing some more complex operat ions on lists: mapping,
reversal, grouping, concatenat ing, and Þltering. We give the proofs of the well-
behavedness and totality lemmas (in Appendix A) for these recursive lenses to
demonst rate how the reasoning principles developed in Sect ion 3 can be applied to
pract ical examples.

Encoding

7.1 D eÞnit ion: A t ree t is said to be a list i! either it is empty or it has exact ly
two children, one named *h and another named * t , and t(* t ) is also a list . We use
the lighter notat ion [ t1 . . . tn ] for the t ree

!
""#

""$

%
%
%
%
%
%
%
%

*h !" t 1

* t !"

!
#

$

%
%
%
%
%
%

*h !" t 2

* t !"
&%
%
%
%. . . !"

&%
%
%
%
*h !" t n

* t !" {||}

%
%
%
%

' %
%
%
%

'
%
%
%
%
%
%

(
)

*

%
%
%
%
%
%
%
%

(
"")

""*
.

In types, we write [ ] for the set { {||} } containing only the empty list , C ::D for the
set

+%%*h !" C, * t !" D
%
%, of Òcons-cell t reesÓ whose head belongs to C and whose

tail belongs to D , and [ C] for the set of lists with elements in CÑ i.e., the smallest
set of t rees sat isfying [ C] = [ ] 1 (C :: [ C] ). We somet imes reÞne this notat ion
to describe lists of speciÞc lengths, writ ing [ D i ..j ] for the set of lists of Ds whose
length is at least i and at most j , and writ ing [ D i ] for the set of lists whose length
is exact ly i (i.e., [ D i ..i ] ). Given two list values, l1 and l2, the set of lists denoted
by the interleaving l1&l2 consists of all the lists formed by interleaving the elements
of l1 with the elements of l2 in an arbit rary fashion. For example, [ a, b] &[ c] is
the set { [ a, b, c] , [ a, c, b] , [ c, a, b] } . We lift the interleaving operator to list
types in the obvious way: the interleaving of two list types, [ B ] and [ C] , is the
union of all the interleavings of lists belonging to [ B ] with lists belonging to [ C] .
Similarly, we lift the usual append operator, writ ten ++, to list types: [ C] ++[ D ]
denotes the set of lists obtained by appending any element of [ C] to any element
of [ D ] .
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Head and Tail Projections

Our Þrst list lenses ext ract the head or tail of a cons cell.

hd d = f ocus *h
+%%* t !" d

%
%,

4C, D ' T . 4d( D . hd d ( (C ::D ) / 0! C

t l d = f ocus * t
+%%*h !" d

%
%,

4C, D ' T . 4d( C. t l d ( (C ::D ) / 0! D

The lens hd expects a default t ree, which it uses in the putback direct ion as the
tail of the created t ree when the concrete t ree is missing; in the get direct ion,
it returns the t ree under *h. The lens t l works analogously. Note that the
types of these lenses apply to both homogeneous lists (the type of hd implies
4C' T . 4d( [ C] . hd d ( [ C] / 0! C) as well as cons cells whose head and tail have
unrelated types; both possibilit ies are used in the type of the bookmar k lens in Sec-
t ion 8. The types of hd and t l follow from the type of f ocus.

List Map

The l i st map lens applies a lens l to each element of a list :

l i st map l = wmap { *h !" l , * t !" l i st map l}

4C, A' T . 4l ( C !! A. l i st map l ( [ C] !! [ A]

4C, A' T . 4l ( C / 0! A. l i st map l ( [ C] / 0! [ A]

The get direct ion applies l to the subt ree under *h and recurses on the subt ree
under * t . The putback direct ion uses l+ on corresponding pairs of elements from
the abst ract and concrete lists. The result has the same length as the abst ract list ;
if the concrete list is longer, the ext ra tail is thrown away. If it is shorter, each
ext ra element of the abst ract list is putback into # .

Since l i st map is our Þrst recursive lens, it is worth not ing how recursive calls
are made in each direct ion. The get funct ion of the wmap lens simply applies l to the
head and l i st map l to the tail unt il it reaches a t ree with no children. Similarly,
in the putback direct ion, wmap applies l to the head of the abst ract t ree and either
the head of the concrete t ree (if it is present ) or # , and it applies l i st map l to the
tail of the abst ract t ree and the tail of the concrete t ree (if it is present ) or # . In
both direct ions, the recursive calls cont inue unt il the ent ire t reeÑ concrete (for the
get) or abst ract (for the putback)Ñ has been traversed. (The recursion is cont rolled
by the abst ract argument in the putback direct ion because the map combinator uses
the children of the abst ract t ree to determine how many t imes to call its argument
lens.)

Because l i st map is deÞned recursively, proving it is well behaved requires just
a lit t le more work than than for non-recursive derived lenses: we need to show that
it has a part icular type assuming that the recursive use of l i st map has the same
type. This is no surprise: exact ly the same reasoning process is used in typing
recursive funct ional programs.
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Recall that the type of wmap requires that both sets of t rees in its type be shu$ e
closed. To prove that l i st map is well-behaved and total, we will need a lemma
showing that cons-cell and list types are shu$ e closed.

7.2 Lemma: Let S, T ' T . Then

(1) (S::T) = (S::T)!

(2) [ T] = [ T] ! .

With these pieces in hand, the well-behavedness lemma follows by a st raight for-
ward calculat ion using the type of wmap.

7.3 Lemma [W ell-behavedness]:
4C, A' T . 4l ( C !! A. l i st map l ( [ C] !! [ A]

The proof of totality for l i st map is more interest ing. We use Corollary 3.17(2),
which requires that we (1) ident ify two chains of types, - = C0 ' C1 ' . . . and
- = A0 ' A1 ' . . . , and (2) from k ( Ci / 0! Ai , prove that f (k) ( Ci + 1 / 0! Ai + 1

for all i . We can then conclude that Þx(f ) (
.

i Ci / 0!
.

i Ai . For l i st map we
choose increasing chains of types as follows:

Ci = - ' [ ] ' C :: [ ] ' C ::C :: [ ] ' . . .
Ai = - ' [ ] ' A :: [ ] ' A ::A :: [ ] ' . . .

The full argument is given in the proof of Lemma 7.4 in Appendix A.

7.4 Lemma [Tot al i t y ]: 4C, A' T . 4l ( C / 0! A. l i st map l ( [ C] / 0! [ A]

Reverse

Our next lens reverses the elements of a list . The algorithm we use to implement
list reversal runs in quadrat ic t imeÑ we reverse the tail of the list and then use an
auxiliary lens to rotate the head to the end of the reversed tail. Before present ing
the l i st r ever se lens, we describe this auxiliary lens, called r ot at e.

r ot at e = acond ([ ] 1 (D :: [ ] )) ([ ] 1 (D :: [ ] ))
i d
(r ename *h t mp;
hoi st nonuni que * t { *h, * t } ;
f or k { *h} i d (r ename t mp *h; r ot at e; pl unge * t ))

4D ' T . r ot at e ( [ D ] / 0! [ D ]

In the get direct ion, r ot at e has two cases. If the list is empty or a singleton, the
acond applies i d, which returns the original empty or singleton list unmodiÞed.
Otherwise, it (1) renames the head to t mp; (2) hoists up the tail, which yields
children *h and * t since the list is neither empty nor a singleton; and (3) splits the
t ree in two using f or k, applying the i d lens to the part of the t ree consist ing of
the single child *h (i.e., the second element in the original list ), and puts the t mp
element at the end of the list . To do this, it Þrst renames t mp back to *h, yielding
a list whose head is the head of the original list and whose tail is the tail of the tail
of the original list . The recursive call to r ot at e puts the head of this list to the
end of the list , yielding the original list with two di! erences: the Þrst element is at
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the end and the second element not present . Finally, the result ing list is plunged
under * t , and (after the f or k) the result is concatenated with the original second
element .

The putback direct ion also has two cases, corresponding to the two arms of the
acond lens. It Þrst checks whether the abst ract view is the empty list or a singleton
list . If so, then it applies the i d lens, which returns the abst ract list unchanged.
Otherwise, it applies the three steps given above in reverse order: it Þrst splits the
abst ract and concrete lists as in the get direct ion, passing the head through the i d
lens and part ially rotat ing the tail. To do this, it hoists the tail tag, recursively
applies rotate (bringing the last element to the head of this list ), and renames
*h to t mp. The result after the fork is the original list (under the names *h and
* t ) without its original last element concatenated with the last element under the
name t mp. Next the lens hoi st nonuni que plunges the *h and * t children under
* t . Finally, t mp is renamed back to *h. This has the e! ect of bringing the last
element of the abst ract list to the head of the result and shift ing the posit ion of
every other element by one.

The well-behavedness proof is a simple calculat ion, using Corollary 3.17(1) and
the types of the lenses that make up r ot at e.

7.5 Lemma [W ell-behavedness]: 4D ' T . r ot at e ( [ D ] !! [ D ]

The totality lemma is proved using Corollary 3.17(2), after establishing, by in-
duct ion on i , that r ot at e ( [ D i ] / 0! [ D i ] .

7.6 Lemma [Tot al i t y ]: 4D ' T . r ot at e ( [ D ] / 0! [ D ]

Using r ot at e, the deÞnit ion of l i st r ever se is st raight forward:

l i st r ever se = wmap { * t !" l i st r ever se} ; r ot at e

4D ' T . l i st r ever se ( [ D ] / 0! [ D ]

In the get direct ion, we simply reverse the tail and rotate the head element to the
end of the list . In the putback direct ion, we perform these steps in reverse order,
Þrst rotat ing the last element of the list to the head and then reversing the tail.
Note also that l i st r ever se behaves like the ident ity when it is applied to the
empty list , i.e., {||} , since the get and putback components of wmap and r ot at e each
map {||} to {||} .

The algorithm for comput ing the reversal of a list shown here runs in quadrat ic
t ime. Interest ingly, wehavenot been ableto codethefamiliar, linear-t imealgorithm
as a derived lens (of course, we could int roduce a primit ive lens for reversing lists
that uses the e" cient implementat ion internally, but it is more interest ing to t ry
to write the e" cient version using our combinators). One di" culty arises if we use
an accumulator to store the result : the putback funct ion of such a t ransformat ion
would be non-inject ive and so could not sat isfy Put Get . To see this, consider
put t ing the t ree containing [ c] under the accumulator child and [ b a] as the rest
of the list . This will yield the same result , [ a b c] , as put t ing back a t ree containing
[ ] under the accumulator child and [ a b c] as the rest of the list .

The well-behavedness lemma follows st raight forwardly from the types of wmap
and r ot at e, using Corollary 3.17(1).
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7.7 Lemma [W ell-behavedness]: 4D ' T . l i st r ever se ( [ D ] !! [ D ]

For the totality lemma, we use Corollary 3.17(2), after proving, by induct ion on
i , that l i st r ever se ( [ D i ] / 0! [ D i ] for all i .

7.8 Lemma [Tot al i t y ]: 4D ' T . l i st r ever se ( [ D ] / 0! [ D ]

Grouping

Next we give the deÞnit ion of a ÒgroupingÓlens that , in the get direct ion, takes a
list of Ds and produces a list of lists of Ds where the elements have been grouped
in pairs. It is used in our bookmark synchronizer as part of a t ransformat ion that
takes dict ionaries of user preferences stored in the part icular XML format used by
AppleÕs Safari browser and yields t rees in a simpliÞed abst ract format . When the
concrete list has an even number of elements, the behavior gr oup lens is simpleÑ
e.g., it maps [ d1, d2, d3, d4, d5, d6] to [ [ d1, d2] , [ d3, d4] , [ d5, d6] ] . When
there are an odd number of elements in the list , gr oup places the Þnal odd element
in a singleton listÐe.g., it maps [ d1, d2, d3] to [ [ d1, d2] , [ d3] ] . The typing for
gr oup, given below, describes both the odd and even case.

Because it explicit ly dest roys and builds up cons cells, the deÞnit ion of gr oup is
a lit t le bit longer than the lenses we have seen so far. We explain the behavior of
each part of the lens in detail below.

gr oup =
acond [ ] [ ]

i d
(acond (D :: [ ] ) ((D :: [ ] ) :: [ ] )

(pl unge *h; add * t [ ] )
(r ename *h t mp;
hoi st nonuni que * t { *h, * t } ;
f or k { * t }

(map gr oup)
(xf or k { *h } { * t } (add * t {||} ; pl unge * t ) (r ename t mp *h);
pl unge *h)))

4D ' T gr oup ( [ D ] / 0! [ D ::D :: [ ] ] ++([ ] 1 ((D :: [ ] ) :: [ ] ))

The get component of gr oup has two cases, one for each branch of the two acond
condit ionals. If the concrete list is empty, then gr oup behaves like the Þrst branch,
which is the ident ity. Otherwise, if the concrete list is a singleton, then gr oup
behaves like the second branch, which plunges the singleton list under *h and adds
a child * t leading to the empty list . That is, it t ransforms singleton lists c into the
singleton list containing c,

+%%*h !" c, * t !" {||}
%
%, . Otherwise, if neither of the two

previous cases apply, then gr oup behaves like the third branch. There are three
steps. First , it renames the head element , storing it away under a child named t mp.
Next , it hoists up the tail of the list , yielding a t ree with children t mp, *h, and * t
(since the list is neither empty nor a singleton). In the third step, it recursively
groups the tail, massages the other t ree into a list of length two, and yields the
cons cell made up of these t rees as the result .

More speciÞcally, in the third step of the Þnal case, gr oup splits the t ree into a
t ree with a single child * t and a t ree containing the *h and t mp children. It then
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recursively groups the tail using (map gr oup). The other t ree is split yet again, into
*h and t mp. The t ree with *h is made into a singleton list by adding a child * t
leading to the empty view, and then plunged under * t . The t ree containing t mp is
turned into the head of a cons cell by renaming t mp back to *h. After the xf or k,
these two trees are plunged under *h. Thus,

+%%t mp !" di , * h !" dj
%
%, is t ransformed

into the t ree
+%%*h !" [ di , dj ]

%
%, . The Þnal result is obtained by merging the grouped

tail with this head element .
Since each lens used in gr oup is oblivious,7 the putback funct ion is symmetric,

with three cases corresponding to the branches of the acond. Its behavior can be
calculated by evaluat ing the composit ions in reverse order.

The well-behavedness of gr oup follows from Corollary 3.17(1) and a simple, com-
posit ional argument using the types of each lens appearing in its deÞnit ion.

7.9 Lemma [W ell-behavedness]:
4D ' T gr oup ( [ D ] !! [ D ::D :: [ ] ] ++([ ] 1 ((D :: [ ] ) :: [ ] ))

We prove the totality lemma using Corollary 3.17(2), using the increasing chains
of types:

Ci = - ' [ ] ' D :: [ ] ' D :: (D :: [ ] ) ' . . .
Ai = - ' [ ] ' (D :: [ ] ) :: [ ] ' (D ::D :: [ ] ) :: [ ] ' . . .

whose limit is the total type we want to show for gr oup.

7.10 Lemma [Tot al i t y ]:
4D ' T gr oup ( [ D ] / 0! [ D ::D :: [ ] ] ++([ ] 1 ((D :: [ ] ) :: [ ] ))

Concatenation

The concat lens takes a t ree t as an argument . It t ransforms lists containing
two sublists of Ds and concatenates them into a single list using a single element
t to t rack the posit ion where the Þrst list ends and the second begins. For ex-
ample, given the t ree [ [ C, h, r , i , s] , [ S, m, i , t , h] ] , the get component of
(concat

+%%" " !" {||}
%
%, ) produces the single list [ C, h, r , i , s, " " , S, m, i , t , h] .

Conversely, the putback funct ion takes a list containing exact ly one t and splits
the list in two, producing lists containing the elements to the left and right of t
respect ively. The deÞnit ion is as follows.

concat t = acond ([ ] :: [ D ] :: [ ] ) (t :: [ D ] )
(wmap { *h !" const t [ ] , * t !" hd [ ] } )
(f or k { * t } i d (hoi st *h; r ename * t t mp);
f or k { *h} i d (r ename t mp *h; concat t; pl unge * t ))

4D ' T , t ( T . with t .( D . concat t ( [ D ] :: [ D ] :: [ ] / 0! [ D ] ++(t :: [ D ] )

7A lt hough gr oup uses the const lens indir ect ly, via add, it is semant ically obliv ious. Recall t hat
(add n {||} ) expands into (xf or k { } { n} (const {||} {||} ; pl unge n) i d). T he type annotat ion on add
ensures that t he putback funct ion is only ever applied to abst ract t rees that have a child n leading
to {||} . From this, a simple argument shows that both arguments to const # are always {||} . As a
result , in t his case, t he behavior of const # does not depend on it s concrete argumentÑ the lens
is obliv ious.
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In the get direct ion, there are two cases, one for each branch of the acond. If the
concrete list is of the form ([ ] :: l :: [ ] ), where l ( [ D ] , then concat t produces
the result (t++l) by applying (const t [ ] ) to the head and (hd [ ] ) to ext ract l
from the tail. Otherwise, the Þrst element of the concrete list is non-empty and
the acond selects the second branch. The Þrst f or k splits the outermost cons cell
according to { * t } . The i d lens is applied to the tail component , which has the form+%%* t !" (l2 :: [ ] )

%
%, . The other component has the form

+%%*h !"
+%%*h !" d, * t !" l1

%
%,

%
%, .

The edge labeled *h is clipped out using hoi st , yielding children *h and * t (i.e.,
the head and tail of the Þrst sublist ) and the * t child is renamed to t mp. These two
steps yield a t ree

+%%*h !" d, t mp !" l1
%
%, . The second f or k splits the t ree according

to { *h} . The i d lens is applied to the t ree
+%%*h !" d

%
%, . The other part of the t ree is+%%t mp !" l1, * t !" (l2 :: [ ] )

%
%, . By renaming t mp to *h, recursively concatenat ing, and

plunging the result under * t , we obtain the t ree
+%%* t !" (l1++(t :: l2))

%
%, . Combining

these two results into a single t ree, we obtain the list (d:: l1)++(t :: l2).
The putback funct ion is oblivious; its behavior is symmetric to the get funct ion.
Once again, the well-behavedness lemma for concat t follows by a simple, com-

posit ional calculat ion, using Corollary 3.17(1).

7.11 Lemma [W ell-behavedness]:
4D ' T , t ( T . with t .( D . concat t ( [ D ] :: [ D ] :: [ ] !! [ D ] ++(t :: [ D ] )

The totality lemma follows from Corollary 3.17(2), using the increasing chains of
types:

Ci = - ' [ ] :: [ D ] :: [ ] ' (D :: [ ] ) :: [ D ] :: [ ] ' (D ::D :: [ ] ) :: [ D ] :: [ ] ' . . .
Ai = - ' [ ] ++(t :: [ D ] ) ' (D :: [ ] )++(t :: [ D ] ) ' (D ::D :: [ ] )++(t :: [ D ] ) ' . . .

whose limit is the total type we want to show for concat t.

7.12 Lemma [Tot al i t y ]:
4D ' T , t ( T . with t .( D . concat t ( [ D ] :: [ D ] :: [ ] / 0! [ D ] ++(t :: [ D ] )

Filter

Our most interest ing derived list processing lens, l i st f i l t er , is parameterized
on two sets of views, D and E, which we assume to be disjoint and non-empty.
In the get direct ion, it takes a list whose elements belong to either D or E and
projects away those that belong to E , leaving an abst ract list containing only Ds;
in the putback direct ion, it restores the projected-away Es from the concrete list .
Its deÞnit ion ut ilizes our most complex lens combinatorsÑ wmap and two forms of
condit ionalsÑ and recursion, yielding a lens that is well-behaved and total on lists
of arbit rary length.

In the get direct ion, the desired behavior of l i st f i l t er D E (for brevity, let
us call it l ) is clear. In the putback direct ion, things are more interest ing because
there are many ways that we could restore projected elements from the concrete
list . The lens laws impose some const raints on the behavior of l+ . The Get Put
law forces the putback funct ion to restore each of the Þltered elements when the
abst ract list is put into the original concrete list . For example (let t ing d and e
be elements of D and E) we must have l + ([ d] , [ e d] ) = [ e d] . The Put Get
law forces the putback funct ion to include every element of the abst ract list in the
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result ing concrete list in the same order, and these elements must be the only Ds
in the result ; there is, however, no rest rict ion on the Es when the abst ract t ree is
not the Þltered concrete t ree.

In the general case, where the abst ract list a is di! erent from the Þltered concrete
list l* c, there is some freedom in how l+ behaves. First , it may select ively restore
only someof theelementsof E from theconcrete list (or indeed, even less intuit ively,
it might add some new elements of E that it somehow makes up). Second, it may
interleave the restored Es with the Ds from the abst ract list in any order, as long
as the order of the Ds is preserved from a. From these possibilit ies, the behavior
that seems most natural to us is to overwrite elements of D in c with elements of
D from a, element-wise, unt il either c or a runs out of elements of D . If c runs
out Þrst , then l+ appends the rest of the elements of a at the end of c. If a runs
out Þrst , then l+ restores the remaining Es from the end of c and discards any
remaining Ds in c (as it must to sat isfy Put Get ).

These choices lead us to the following speciÞcat ion for a single step of the putback
part of a recursively deÞned lens implement ing l . If the abst ract list a is empty,
then we restore all the Es from c. If c is empty and a is not empty, then we return
a. If a and c are both cons cells whose heads are in D , then we return a cons cell
whose head is the head of a and whose tail is the result obtained by recursing on
the tails of both a and c. Otherwise (i.e., c has type E :: ([ D ] &[ E ] )) we restore the
head of c and recurse on a and the tail of c. Translat ing this into lens combinators
leads to the deÞnit ion below of a recursive lens i nner f i l t er , which Þlters lists
containing at least one D, and a top-level lens l i st f i l t er that handles arbit rary
lists of Ds and Es.

i nner f i l t er D E =
ccond (E :: ([ D 1..! ] &[ E ] ))

(t l anyE ; i nner f i l t er D E)
(wmap { *h !" i d,

* t !" (cond [ E ] [ ] [ D 1..! ] ßtrE (" c. c++[ anyD ] )
(const [ ] [ ] )
(i nner f i l t er D E))} )

l i st f i l t er D E =
cond [ E ] [ ] [ D 1..! ] ßtrE (" c. c++[ anyD ] )

(const [ ] [ ] )
(i nner f i l t er D E)}

4D , E ' T . with D 5 E = - and D .= - and E .= - .
i nner f i l t er D E ( [ D 1..! ] &[ E ] / 0! [ D 1..! ]
l i st f i l t er D E ( [ D ] &[ E ] / 0! [ D ]

The Òchoice operatorÓanyD denotes an arbit rary element of the (non-empty) set
D .8 The funct ion ßtrE is theusual list -Þltering function, which for present purposes

8We are dealin g wit h countable set s of Þnit e t rees here, so this const ruct poses no metaphysical
conundrums; alt ernat ively, but less readably, we could just as well pass l i st f i l t er an ext ra
argument d $ D .
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we simply assume has been deÞned as a primit ive. (In our actual implementat ion,
we use l i st f i l t er * ; but for expository purposes, and to simplify the totality
proofs, weavoid thisext ra bit of recursiveness.) Finally, the funct ion " c. c++[ anyD ]
appends some arbit rary element of D to the right -hand end of a list c. These ÒÞxup
funct ionsÓare applied in the putback direct ion by the cond lens.

The behavior of the get funct ion of l i st f i l t er can be described as follows. If
c ( [ E ] , then the outermost cond selects the const [ ] [ ] lens, which produces
[ ] . Otherwise the cond selects i nner f i l t er , which uses a ccond instance to test
if the head of the list is in E . If this test succeeds, it st rips away the head using t l
and recurses; if not , it retains the head and Þlters the tail using wmap.

In the putback direct ion, if a = [ ] then the outermost cond lens selects the
const [ ] [ ] lens, with c as the concrete argument if c ( [ E ] and (ßtrE c) otherwise.
This has the e! ect of restoring all of the Es from c. Otherwise, if a .= [ ] then the
cond instance selects the putback of the i nner f i l t er lens, using c as the concrete
argument if c contains at least one D, and (" c. c++[ anyD ] ) c, which appends a
dummy value of type D to the tail of c, if not . The dummy value, anyD , is required
because i nner f i l t er expects a concrete argument that contains at least one D.
Intuit ively, the dummy value marks the point where the head of a should be placed.

To illust rate how all this works, let us step through some examples in detail. In
each example, the concrete type is [ D ] &[ E ] and the abst ract type is [ D ] . We
will write di and ej to stand for elements of D and E respect ively. To shorten the
presentat ion, we will write l for l i st f i l t er D E (i.e., for the cond lens that it is
deÞned as) and i for i nner f i l t er D E. In the Þrst example, the abst ract t ree a
is [ d1] , and the concrete t ree c is [ e1 d2 e2] . At each step, we underline the term
that is simpliÞed in the next step.

l + (a, c) = i + (a, c)
by the deÞnit ion of cond, as a ( [ D 1..! ] and c ( ([ D ] &[ E ] ) \ [ E ]

= (t l anyE ; i ) + (a, c)
by the deÞnit ion of ccond, as c ( E :: ([ D 1..! ] &[ E ] )

= (t l anyE ) +
4

i +
4

a, (t l anyE )* c
5

, c
5

by the deÞnit ion of composit ion

= (t l anyE ) +
4

i + (a, [ d2 e2] ), c
5

reducing (t l anyE )* c

= (t l anyE ) +
4

wmap { *h !" i d, * t !" l } + (a, [ d2 e2] ), c
5

by the deÞnit ion of ccond, as [ d2 e2] .( E :: ([ D 1..! ] &[ E ] )

= (t l anyE ) +
4

d1 :: (l + ([ ] , [ e2] )), c
5

by the deÞnit ion of wmap with i d+ (d1, d2) = d1

= (t l anyE ) +
4

d1 :: ((const [ ] [ ] ) + ([ ] , [ e2] )), c
5

by the deÞnit ion of cond, as [ ] ( [ ] and [ e2] ( [ E ]
= (t l anyE ) + (d1 :: [ e2] , c)

by the deÞnit ion of const
= [ e1 d1 e2] by the deÞnit ion of t l .

A CM Transact ions on Programming L anguages and Syst ems, Vol . T BD, No. T DB, M ont h Year .



38 á J. N. Foster et. al.

Our next two examples illust rate how the ÒÞxup funct ionsÓsupplied to the cond
lens are used. The Þrst funct ion, ßtrE , is used when the abst ract list is empty and
the concrete list is not in [ E ] . Let a = [ ] and c = [ d1 e1] .

l + (a, c) = (const [ ] [ ] ) +
4

[ ] , ßtrE [ d1 e1]
5

by the deÞnit ion of cond, as a = [ ] but c .( [ E ]
= (const [ ] [ ] ) + ([ ] , [ e1] )

by the deÞnit ion of ßtrE

= [ e1] by deÞnit ion of const .

The other Þxup funct ion, (" c. c++[ anyD ] ), inserts a dummy D element when
l i st f i l t er is called with a non-empty abst ract list and a concrete list whose
elements are all in E . Let a = [ d1] and c = [ e1] and assume that anyD = d0.

l + (a, c) = i +
4

a, (" c. c++[ anyD ] ) c
5

by the deÞnit ion of cond, as a ( [ D 1..! ] and c ( [ E ]
= i + (a, [ e1 d0] )

by the deÞnit ion of (" c. c++[ anyD ] )
= (t l anyE ; i ) + (a, [ e1 d0] )

by the deÞnit ion of ccond, as [ e1 d0] ( E :: ([ D 1..! ] D&[ E ] )

= (t l anyE ) +
4

i +
4

a, (t l anyE )* [ e1 d0]
5

, [ e1 d0]
5

by the deÞnit ion of composit ion

= (t l anyE ) +
4

i + (a, [ d0] ), [ e1 d0]
5

reducing (t l anyE )* [ e1 d0]
= (t l anyE )

+
4

wmap { *h !" i d, * t !" l } + (a, [ d0] ), [ e1 d0]
5

by the deÞnit ion of ccond, as [ d0] .( E :: ([ D 1..! ] &[ E ] )

= (t l anyE ) +
4

d1 :: (l + ([ ] , [ ] )), [ e1 d0]
5

by the deÞnit ion of wmap with i d+ (d1, d0) = d1

= (t l anyE ) +
4

d1 :: ((const [ ] [ ] ) + ([ ] , [ ] )), [ e1 d0]
5

by the deÞnit ion of cond, as [ ] ( [ ] and [ ] ( [ E ]
= (t l anyE ) + (d1 :: [ ] , [ e1 d0] )

by the deÞnit ion of const
= [ e1 d1] by the deÞnit ion of t l .

The well-behavedness proof for i nner f i l t er is st raight forward: we simply de-
cide on a type for the recursive use of i nner f i l t er and then show that , under this
assumpt ion, the body of the lens has this type. Since l i st f i l t er is not recursive,
both its well-behavedness and totality lemmas both follow st raight forwardly from
the types of the lenses that are used in its deÞnit ion.
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7.13 Lemma [W ell-behavedness]:
4D , E ' T . with D 5 E = - and D .= - and E .= - .

i nner f i l t er D E ( [ D 1..! ] &[ E ] !! [ D 1..! ]
l i st f i l t er D E ( [ D ] &[ E ] !! [ D ]

The totality proof for i nner f i l t er , on the other hand, is somewhat challeng-
ing, involving detailed reasoning about the behavior of part icular subterms under
part icular condit ions. The proof uses Lemma 3.19, with sequences of sets of total
types

T0 = { (- , - )}
Ti + 1 = { ([ D 1..x ] &[ E 0..y ] , [ D 1..x ] ) | x + y = i } .

The complete argument is given in elect ronic Appendix A.

7.14 Lemma [Tot al i t y ]:
4D , E ' T . with D 5 E = - and D .= - and E .= - .

i nner f i l t er D E ( [ D 1..! ] &[ E ] / 0! [ D 1..! ]
l i st f i l t er D E ( [ D ] &[ E ] / 0! [ D ]

8. EXTENDED EXAMPLE: A BOOKMARK LENS

In this sect ion, we develop a larger and more realist ic example of programming
with our lens combinators. The example comes from a demo applicat ion of our data
synchronizat ion framework, Harmony, in which bookmark informat ion from diverse
browsers, including Internet Explorer, Mozilla, Safari, Camino, and OmniWeb, is
synchronized by t ransforming each format from its concrete nat ive representat ion
into a common abst ract form. Weshow here a slight ly simpliÞed form of theMozilla
lens, which handles the HTML-based bookmark format used by Netscape and its
descendants.

The overall path taken by the bookmark data through the Harmony system can
be pictured as follows.

HTML html
reader

concrete

view
HTML

put
bookmarkhtml

writer
viewview abstractconcrete newnew

HTML
new

view
abstract

abstract
view

other

bookmark
get

sync

We Þrst use a generic HTML reader to t ransform the HTML bookmark Þle into
an isomorphic concrete t ree. This concrete t ree is then t ransformed, using the get
direct ion of the bookmar k lens, into an abst ract Ògeneric bookmark t ree.Ó The
abst ract t ree is synchronized with the abst ract bookmark t ree obtained from some
other bookmark Þle, yielding a new abst ract t ree, which is t ransformed into a new
concrete t ree by passing it back through the putback direct ion of the bookmar k
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