*QK#BM iQ b 7Q #B/B 2+iBQM H i 22 i Mb7

HBM;mBbiB+ TT Q +? iQ i?2 pB2r@mT/ i2

CX 6QDbi2°-JB+? 2H :"22Mr H/-CQM i? MJQQ 2-"2N
a+?KBii

hQ +Bi2 i?Bb p2 " bBQM,

CX 6Qbi2- JB+? 2H :"22Mr H/- CQM i? MJQQ 2- "2MD KBM SB2 +2-

#B/B 2+iBQM H i'22 i° Mb7Q K iBQMb, HBM;mBbiB+ TT Q +? iQ i?2 |
+iBQMb QM S Q; KKBM; G M;m ;2b M/ avbi2Kb UhPSG aV- *J- kyyd
S'Q; KKBM; G M;m ;2b M/ avbi2Kb- kN UjV- TTXRdX RyXRR98fRkjk9l

> G A/, BM'B @yy939NdR
?2iiTh,ff? HXBM'B X7 fBM'B @yy939NdR
am#KBii2/ QM RN J v kyRy

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://hal.inria.fr/inria-00484971
https://hal.archives-ouvertes.fr

Combinators for Bi-Directional Tree Transformations:
A Linguistic Approach to the View Update Problem

J. NATHAN FOSTER
University of Pennsylvania
MICHAEL B. GREENWALD
Bell Labs, Lucent Technologies
JONATHAN T. MOORE
University of Pennsylvania
BENJAMIN C. PIERCE
University of Pennsylvania
ALAN SCHMITT

INRIA Rhone-Alpes

We propose a novel approach to the view update problem for tree-structured data: a domain-
specibc programming language in which all expressions denote bi-directional transformations on
trees. In one direction, these transformationsN dubbed lensesN map a GroncreteO tree into a
simpliped Cabstract viewQ in the other, they map a modibed abstract view, together with the
original concrete tree, to a correspondingly modiPed concrete tree. Our design emphasizes both
robustness and ease of use, guaranteeing strong well- behavedness and totality properties for well-
typed lenses.

We begin by identifying a natural mathematical space of well-behaved bi-directional transfor-
mations over arbitrary structures, studying debPnedness and continuity in this setting. We then
instantiate this semantic framework in the form of a collection of lens combinators that can be
assembled to describe bi-directional transformations on trees. These combinators include familiar
constructs from functional programming (composition, mapping, projection, conditionals, recur-
sion) together with some novel primitives for manipulating trees (splitting, pruning, copying,
merging, etc.). We illu strate the expressiveness of these combinators by developing a number of
bi-directional list-processing transformations as derived forms. An extended example shows how
our combinatorscan beused to debne alensthat translates between anative HT ML representation
of browser bookmarks and a generic abstract bookmark format.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language ClassibPca-
tionsN Specialized application languages

General Terms: Languages
Additional Key Words and Phrases: Bi-directional programming, Harmony, XML, lenses, view
update problem

Permission to make digital/ hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for probt or commercial
advantage, the ACM copyright/ server notice, thetitle of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specibc permission and/ or a fee.

Ic 2007 ACM XX X-XXX/ XX/ XXXX-XXXX $XX.XX

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1D??.

7

2 A J.N. Foder et. al.

1. INTRODUCTION

Computingisfull of situationswhere some structure must be converted toadi! erent
formN a viewN in such a way that changes made to the view can be reRected as
updates to the original structure. This view update problem is a classical topic in
the database literature, but has so far been little studied by programming language
researchers.

This paper addresses a specibc instance of the view update problem that arises
in a larger project called Harmony [Foster et al. 2006]. Harmony is a generic
framework for synchronizing tree-structured dataN a tool for propagating updates
between di! erent copies of tree-shaped data structures, possibly stored in di! erent
formats. For example, Harmony can be used to synchronize the bookmark bles
of several di! erent web browsers, allowing bookmarks and bookmark folders to be
added, deleted, edited, and reorganized in any browser and propagated to the oth-
ers. The ultimate aim of the project isto provide a platform on which a Harmony
programmer can quickly assemble a high-quality synchronizer for a new type of
tree-structured data stored in a standard low-level format such as XML. Other
Harmony instances currently in daily use or under development include synchro-
nizers for calendars (Palm DateBook, ical, and iCalendar formats), address books,
dlide presentations, structured documents, and generic XML and HTML.

Views play a key role in Harmony: to synchronize structures that may be stored
in disparate concrete formats, we debne a single common abstract format and a
collection of lenses that transform each concrete format into this abstract one. For
example, we can synchronize a Mozilla bookmark Ple with an Internet Explorer
bookmark Ple by transforming each into an abstract bookmark structure and propa-
gating changed information between these. Afterwards, we need totaketheupdated
abstract structures and refRect the corresponding updates back into the original
concrete structures. Thus, each lens must include not one but two functionsN one
for extracting an abstract view from a concrete one and another for putting an
updated abstract view back into the original concrete view to yield an updated
concrete view. We call these the get and putback components, respectively. The
intuition is that the mapping from concrete to abstract is commonly some sort of
projection, so the get direction involves getting the abstract part out of a larger
concrete structure, while the putback direction amounts to putting a new abstract
part into an old concrete structure. We show a concrete example of this processin
Section 2.

The di" culty of the view update problem springs from a fundamental tension
between expressiveness and robustness. The richer we make the set of possible
transformations in the get direction, the more di" cult it becomes to debne corre-
sponding functions in the putback direction in such as way that each lens is both
well behavedN its get and putback behaviors bt together in a sensible wayN and
totalN its get and putback functions are debned on all the inputsto which they may
be applied.

To reconcile thistension, a successful approach to the view update problem must
be carefully designed with a particular application domain in mind. T he approach
described here is tuned to the kinds of projection-and-rearrangement transforma-
tions on trees and lists that we have found useful for implementing Harmony in-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 3

stances. It does not directly address some well-known di* culties with view update
in the classical setting of relational databasesN such asthe di" culty of QnvertingO
queries involving joins. (We do hope that our work will suggest new attacks on
these problems, however; a brst step in this direction is described in [Bohannon
et al. 2006].)

A second di" culty concerns ease of use. In general, there are many waysto equip
a given get function with a putback function to form a well-behaved and total lens;
we need some means of specifying which putback is intended that is natural for the
application domain and that does not involve onerous proof obligations or checking
of side conditions. We adopt a linguistic approach to this issue, proposing a set
of lens combinatorsN a small domain-specibc languageN in which every expression
simultaneously specibes both a get function and the corresponding putback. More-
over, each combinator is accompanied by a type declaration, designed so that the
well-behavedness and (for non-recursive lenses) totality of composite lens expres-
sions can be veribed by straightforward, compositional checks. Proving totality of
recursive lenses, like ordinary recursive programs, requires global reasoning that
goes beyond types.

The brst step in our formal development (Section 3) is identifying a natural
mathematical space of well-behaved lenses over arbitrary data structures. Thereis
a good deal of territory to be explored at this semantic level. First, we must phrase
our basic debnitions to allow the underlying functions in lenses to be partial, since
there will in general be structures to which a given lens cannot sensibly be applied.
The sets of structures to which we do intend to apply a given lens are specibed
by associating it with a type of the form C ! A, where C is a set of concrete
Gsource structuresO and A is a set of abstract QGarget structures.O Second, we
debne a notion of well-behavedness that captures our intuitions about how the get
and putback parts of a lens should behave in concert. For example, if we use the get
part of alensto extract an abstract view a from a concrete view ¢ and then use the
putback part to push the very same a back into c, we should get ¢ back. Third, we
deploy standard tools from domain theory to debPne monoctonicity and continuity
for lens combinators parameterized on other lenses, establishing a foundation for
debning lenses by recursion. (Recursion is needed because the trees that our lenses
manipulate may in general have arbitrarily deep nested structureN e.g., when they
represent directory hierarchies, bookmark folders, etc.) Finally, to allow lenses to
be used to create new concrete structures rather than just updating existing ones
(needed, for example, when new records are added to a database in the abstract
view), we adjoin a special QnissingOelement to the structures manipulated by lenses
and establish suitable conventions for how it is treated.

With these semantic foundations in hand, we proceed to syntax. In Section 4,
we present a group of generic lens combinators (identities, composition, and con-
stants), which can work with any kind of data. In Section 5, we focus attention
on tree-structured data and present several more combinators that perform various
manipulations on trees (hoisting, splitting, mapping, etc.); we also show how to
assemble these primitives, along with the generic combinators from before, to yield
some useful derived forms. Section 6 introduces another set of generic combinators
implementing various sorts of bi-directional conditionals. Section 7 gives a more
ambitious illustration of the expressiveness of these combinators by implementing

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

4 A J. N. Foger et. al.

a number of bi-directional list-processing transformations as derived forms, includ-
ing lenses for projecting the head and tail of a list, mapping over a list, grouping
the elements of a list, concatenating two lists, andN our most complex exampleN
implementing a bi-directional Plter lens whose putback function performs a rather
intricate QuveavingOoperation to recombine an updated abstract list with the con-
crete list elements that were Pltered away by the get. This example also demon-
strates the use of the reasoning techniques developed in Section 3 for establishing
totality of recursive lenses. Section 8 further illustrates the use of our combinators
in real-world lens programming by walking through a substantial example derived
from the Harmony bookmark synchronizer.

Section 9 presents some brst steps into a somewhat di! erent region of the lens
design space: lenses for dealing with relational data encoded as trees. We debne
three more primitivesN a (BatteningOcombinator that transforms a list of (keyed)
records into a bush, a (pivotingO combinator that can be used to promote a key
Peld to a higher position in thetree, and a GransposingOcombinator related to the
outer join operation on databases. The brst two combinators play an important
role in Harmony instances for relational data such as address books encoded as
XML trees.

Section 10 surveys related work and Section 11 sketches directions for future
research.

To keep things moving, we defer all proofs to an electronic appendix, which is
available on both the Harmony and TOPLAS web pages.

2. A SMALL EXAMPLE
Suppose our concrete tree ¢ is a simple address book:

10 Y
#{ﬁa ,.. %ﬂone 1" 333-4444 ?
c = " http://pat. com/0 o
- =dﬁh " one I" 888-9999
ris! i

"' http://chris.org

We draw trees sideways to save space. Each set of hollow curly braces corresponds
to a tree node, and each OX!" ...Odenotes a child labeled with the string X The
children of a node are unordered. To avoid clutter, when an edge leads to an empty
tree, we usually omit the braces, the !" symgpol, and the Pggl childless nodeN
e.g., (B33- 44440 above actually stands for O7333-4444 1" {} 700 When trees are
linearized in running text, we separate children with commas for easier reading.
Now, suppose that we want to edit the data from this concrete tree in a yet
simpler format where each name is associated directly \:)vith a phone number.

fat " 3334444 ?

r| s !" 888- 9999})

Why would we want this? Perhaps because the edits are going to be generated
by synchronizing this abstract tree with another replica of the same address book
in which no URL information is recorded. Or perhaps there is no synchronizer
involved and the edits are going to be performed by a human who is only interested
in phone information and doesn® want to see URLs. Whatever the reason, we are
going to make our changes to the abstract tree a, yielding a new abstract tree a' of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 5

the same form but with modibed content.! For example, let us change Pat @ phone
number, drop Chri s, and add a new friend, Jo.

a = 8%& " 333-4321%

50 I" 555- 6666

Lastly, we want to compute a new concrete tree ¢' refRecting the new abstract
tree a'. That is, we want the parts of ¢' that were kept when calculating a (e.g.,
Pat @ phone number) to be overwritten with the corresponding information from
a', while the parts of ¢ that were bltered out (e.g., Pat @ URL) have their values

carried over from c.
W one v %
one !" 333-4321

gg/é;ﬂ_ " http://pat.comgy
| one !" 555- 6666 ég
0

' @R_' http://googl e. com

£

&

:':t__
Goags

We also need to Gl inOappropriate values for the parts of ¢ (in particular, Jo®
URL) that were created in a' and for which ¢ therefore contains no information.
Here, we simply set the URL to a constant default, though in general we might want
to compute it from other information.

Together, the transformations from c to a and from a' plus c to ¢' form a lens.
Our goal isto bPnd a set of combinators that can be assembled to describe a wide
variety of lenses in a concise, natural, and mathematically coherent manner. To
whet the reader@ appetite, thg lens expression that impler:%ntsthetransformations
aboveis nap (focus Phone “ORL!" http://googl e. conyy.

3. SEMANTIC FOUNDATIONS

Although many of our combinators work on trees, their semantic underpinnings can
be presented in an abstract setting parameterized by the data structures (which we
call QviewsQ) manipulated by lenses.? In this sectionN and in Section 4, where we
discuss generic combinatorsN we simply assume some bxed set V of views; from
Section 5 on, we will choose V to be the set of trees.

Basic Structures

When f is a partial function, we write f (a) # if f is debned on argument a and
f(a) = $ otherwise. We writef (a) %bfor f(a) = $ &f (a) = b. We write dom(f)
for {s|f (s) #, the set of arguments on which f isdebPned. When S' V, we write

INotethat we areinterested herein the bnal tree a', not the particular sequence of edit operations
that was used to transform a into a'. This is important in the context of Harmony, which is
designed to support synchronization of o! -the-shelf applications, where in general we only have
access to the current states of the replicas, rather than a trace of modibcations; the tradeo! s
between state-based and trace-based synchronizers are discussed in detail elsewhere [Pierce and
Vouillon 2004; Foster et al. 2006].

2We use the word QviewOhere in a slightly di! erent sense than some of the database papers that
we cit e, where a view is a query that maps concrete to abstract statesN i.e., it is a function that,
for each concrete database state, picks out a view in our sense. Also, note that we use QviewOto
refer uniformly to both concrete and abstract structuresN when we come to programming with
lenses, the distinction will be merely a matter of perspective anyway, since the output of one lens
is often the input to another.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 A J N Foderet. al.

f(S)for{r|s(S) f(s)#) f(s)=r} and ran(f) for f (V). We take function
application to be strict: f (g(x)) # implies g(x) #.

3.1 Debnition [Lenses]: A lens | comprises a partial function I* from V to V,
called the get function of I, and a partial function I+ fromV, V toV, called the
putback function.

The intuition behind the notations |* and I+ isthat the get part of a lens QiftsO
an abstract view out of a concrete one, while the putback part Qpushes downOa new
abstract view into an existing concrete view. We often say Qput a into ¢ (using 1)O
instead of Capply the putback function (of 1) to (a, c).O

3.2 Debnition [Well-behaved lenses]: Let | bealensand let C and A be sub-
sets of V. We say that | is a well behaved lens from C to A, written | (C! A, if
it maps argumentsin C to resultsin A and vice versa

* (C)" A (Get)
I+ (A, C)' C (Put)
and its get and putback functions obey the following laws:
I+ (I* ¢, ¢) %c foralc(C (Get Put)

I* (I+ (a,¢) %a forall(ac)(A, C (PutGet)

We call C the source and A thetarget in C! A. Notethat a given | may be a
well-behaved lens from C to A for many di! erent Cs and As; in particular, every
| istrivially a well-behaved lens from - to -, while the everywhere-undebned lens
belongsto C! A for every C and A.

Intuitively, the Get Put law states that, if we get some abstract view a from a
concrete view ¢ and immediately putback a (with no modibcations) into ¢, we must
get back exactly c if both operations are debned. Put Get, on the other hand,
demands that the putback function must capture all of the information contained
in the abstract view: if putting a view a into a concrete view c yields a view ',
then the abstract view obtained from c' is exactly a.

An example of a lens satisfying Put Get but not Get Put is the following.
Suppose C = string, int and A = string, and debnel by:

I* (s,n)=s I+ (s, (s,n)) = (s',0)

Then I+ (I* (s,1), (s,1) = (s,0) .%(s,1). Intuitively, the law fails because the
putback function has Gside e! ectsQ it modibes information in the concrete view
that is not refRected in the abstract view.

An example of a lens satisfying Get Put but not Put Get isthe following. Let
C=stringand A = string, int, and debnel by :

I* s= (s,0) I+ ((s,n),s)=s

Put Get fails here because some information contained in the abstract view does
not get propagated to the new concrete view. For example, I* (I1+ ((s', 1), s)) =
I* &' = (s,0) .%(s',1).

The Get Put and Put Get laws refect fundamental expectations about the be-
havior of lenses; removing either law signibcantly weakens the semantic foundation.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 7

We may also consider an optional third law, called Put Put :
I+ (a', 1+ (a,0) %l+ (a,c) foralaa (Aandc(C.

Thislaw statesthat the el ect of a sequence of two putbacks is (modulo dePnedness)
just the el ect of the second: the brst gets completely overwritten. Alternatively,
a series of changes to an abstract view may be applied either incrementally or all
at once, resulting in the same bnal concrete view. We say that a well-behaved
lens that also satisbes Put Put is very well behaved. Both well-behaved and very
well behaved lenses correspond to familiar classes of Qupdate translatorsOfrom the
classical database literature; see Section 10.

The foundational development in this section is valid for both well-behaved and
very well behaved lenses. However, when we come to debning our lens combinators
for tree transformations, we will not require Put Put because some of our lens
combinatorsN in particular, nap, fl atten, nerge, and conditionalsN fail to satisfy
it for reasons that seem pragmatically unavoidable (see Sections 5 and 9).

For now, a simple example of a lens that is well behaved but not very well
behaved is as follows. Consider the following lens, where C = string, int and
A = string. The second component of each concrete view intuitively represents a
version number.

& . ,
(s,n) ifs=g¢

|* (S,n) =S | + (S, (S!!n)) = (S,n+1) if s= S!

The get function of | projects away the version number and yields just the Qlata
part.O0 The putback function overwrites the data part, checks whether the new
data part is the same as the old one, and, if not, increments the version num-
ber. This lens satisbes both Get Put and Put Get but not Put Put, as we have
I+ (s, 1+ (s, (c,n)) = (s,n+ 2) .%(s,n+ 1) =1+ (s, (c,n)).

Another critical property of lenses is totality with respect to a given source and
target.

3.3 Debnition [Totality]: Alens| (C ! A is said to be total, written | (
C/0 A/ifC" dom(l* yand A, C' dom(l+).

Thereasons for considering both partial and total lensesinstead of building totality
into the debnition of well-behavedness are much the same as the reasons for consid-
ering partial functions in conventional functional languages. In practice, we want
lensesto betotal:® to guarantee that Harmony synchronizers will work predictably,
lenses must be debned on the whole of the domains where they are used; the get
direction should be debned for any structure in the concrete set, and the putback
direction should be capable of putting back any possible updated version from the
abstract set.* All of our primitive lenses are designed to be total, and all of our lens

3Indeed, well-behavedness is rather trivial in the absence of totality: for any function I" from C
to A, we can obtain a well-behaved lens by taking I# to be undebned on all inputsN or, slightly
less trivially, to be debned only on inputs of the form (I" c,c).

4Since we intend to use lenses to build synchronizers, the updated structures here will be results
of synchronization. A fundamental property of the core synchronization algorithm in Harmony is
that, if all of the updates between synchronizations occur in just one of thereplicas, then the e! ect

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

8 A J.N. Foder et. al.

combinators map total lenses to total lensesN with the sole, but important, excep-
tion of lenses debned by recursion; as usual, recursive lenses must be constructed in
the semantics as limits of chains of increasingly debned partial lenses. The sound-
ness of the type annotations we give for our syntactic lens combinators guarantees
that every well-typed lens expression is well-behaved, but only recursion-free ex-
pressions can be shown total by completely compositional reasoning with types; for
recursive lenses, more global arguments are required, as we shall see.

Basic Properties

We now explore some simple but useful consequences of the lens laws. All the
proofs can be found in the electronic appendix.

3.4 Debnition: Let f be a partial function from A, CtoCand P "' A, C.
We say that f is semi-injective on P if it isinjective (in the standard sense) in the
brst component of arguments drawn from PN i.e., if, for all views a, &', ¢, and ¢
with (a,c) (P and (a',c') (P, if f(a,c) #and f(a',c') # then a = a implies
f(a,c) = f(a,c).

35Lemma: If I (C! A, then I+ is semi-injective on {(a,c) | (a,c) (
A, C) I* (I+ (a) #.

The main application of thislemma is the following corollary, which provides an
easy way to show that a lens is not well behaved. We used it many times while
designing our combinators, to quickly generate and test candidates.

3.6 Corollary: IfI (C/ 0 A, then |+ issemi-injectiveon A, C.

An important special case arises when the putback function of alensis completely
insensitive to its concrete argument.

3.7 Debnition: A lens | is said to be oblivious if |+ (a, ¢) = |+ (a, ¢') for all
a,cc (V.

Oblivious lenses have some special properties that make them simpler to reason
about than lenses in general. For example:

3.8 Lemma: If | isobliviousand | (C; ! Aiand | (C, ! Ay thenl (
(C11C)! (A1l Ay).

3.9 Lemma: IfI (C/ O A isoblivious, then I* isa bijection from C to A.

Conversely, every bijection between C and A induces a total oblivious lens from
C to AN that is, the set of bijections between subsets of V forms a subcategory of
the category of total lenses. Many of the combinators debned below actually livein
this simpler subcategory, as does much of the related work surveyed in Section 10.

of synchronization will be to propagate all these changes to the other replica. This implies that
the putback function in the lens associated with the other replica must be prepared to accept any
value from the abstract domain. In other settings, di! erent notions of totality may be appropriate.
For example, Hu, Mu, and Takeichi [Hu et al. 2004] have argued that, in the context of interactive
editors, a reasonable debnition of totality is that 1# (a, c) should be debPned whenever a di! ers
by at most one edit operation from |I" c.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 9

Recursion

Since we will be interested in lenses over trees, and since treesin many application
domains may have unbounded depth (e.g., a bookmark can be either a link or
a folder containing a list of bookmarks), we will often want to debne lenses by
recursion. Our next task isto set up the necessary structure for interpreting such
debnitions.

The development follows familiar lines. We introduce an information ordering
on lenses and show that the set of lenses equipped with this ordering is a complete
partial order (CPO). Wethen apply standard tools from domain theory to interpret
a variety of common syntactic forms from programming languagesN in particular,
functional abstraction and application (Chigher-order lensesQ) and lenses depbned
by single or mutual recursion.

We say that alens|' is more informative than a lens |, written | 2 I', if both the
get and putback functions of I' have domains that are at least as large as those of |
and their results agree on their common domains:

3.10 Debnition: | 2 I'i! dom(l*) ' dom(l'*), dom(l+)" dom(I'+), I* c=
I'* cfor all c(dom(l*), and |+ (a, c)=1'+ (a, c) for all (a,c) (dom(l+).

3.11 Lemma: 2 isa partial order on lenses.

A cpo is a partially ordered set in which every increasing chain of elements has
a least upper bound intheset. Iflp2 1,2 ...2 |, 2 ... isan increasing chain,
we write ., |, (often shortened to I,) for itsleast upper bound. A cpo with
bottom is a cpo with an element $ that is smaller than every other element. In
our setting, the bottom element $, is the lens whose get and putback functions
are everywhere undebned. It is obviously the smallest lens according to 2 and is
well-behaved at any lens type (it trivially satisbes all equations).

3.12 Lemma: Letlg2 132 ...2 1, 2 ... be an increasing chain of lenses. The
lens | debned by

I+ (a,c)=1Ii+ (a,c) iflj+ (a c)#for somei
I* ¢c=Ii* ¢ if l;* c#for somei

and undebned elsewhere is a least upper bound for the chain.

3.13 Corollary: Letlg2 1,2 ...2 1, 2 ... bean increasing chain of lenses. For
every a,c (V, we have:

(M (,l)* c=v il 3i. L* c=w
2 (,ln)+ (&c)=v il 3i.lj+ (ac)=v.
3.14 Lemma: Let lp2 ;2 ...2 |, 2 ... be an increasing chain of lenses, and
let Co' C1' ...and Ap' Ai' ...beincreasing chains of subsets of V. Then:
(1) Well-behavedness commutes with limits: _ _
(' . (G Aj) implies ah CCLC)Y (A
(2) Totality commutes with limits: ; _ .
Gi('. L (C/0 A) implies ddn CC GO0 (G A).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

10 A J.N. Foger et. al.

3.15 Theorem: Let L bethe set of well-behaved lenses from C toA. Then (L, 2)
isa cpo with bottom.

When debning lenses, we will make heavy use of the following standard theorem
from domain theory (e.g., [Winskel 1993]). Recall that a function f between two
cpos is continuous if it_is monotonic and if, for all increasing chainslg2 1,2 ...2
lh 2 ...,wehavef(l,) =, f(ln). A Pxed point of f isa function Px(f)
satisfying bPx(f) = f (bPx(f)).

3.16 Theorem [Fixed-Point Theorem]: Let f be a continuous function from
D to D, where D isa cpo with bottom. Debne

/
bx(f)=f7($)

n

Then bx(f) is a bxed point, in fact the least bxed point, of f .

Theorem 3.15 tells us that we can apply Theorem 3.16 to continuous functions
from lenses to lensesN i.e., it justibes debning lenses by recursion. The following
corollary packages up thisargument in a convenient form; we will appeal to it many
times in later sections to show that recursive derived forms are well behaved and
total.

3.17 Corollary: Supposef isa continuous function from lenses to lenses.

(1) IfF1(C! Aimpliesf()(C! Aforalll,thenbx(f)(C! A.

(2) Suppose- = Cp' C;' ...and- = Ap' A;' ...areincreasing chains of
subsets of V. I.f I (G/ 0. A; impliesf (1) (Ci+1/ 0 Ajs+, for ali and I,
then Px(f) ((;Ci)/ 0 (| A)).

We can now apply standard domain theory to interpret a variety of constructs
for debning continuous lens combinators. We say that an expression e is continuous
in the variable x if the function " x.e is continuous. An expression is said to be con-
tinuous in its variables, or simply continuous, if it is continuous in every variable
separately. Examples of continuous expressions are variables, constants, tuples (of
continuous expressions), projections (from continuous expressions), applications of
continuous functions to continuous arguments, lambda abstractions (whose bod-
ies are continuous), let bindings (of continuous expressions in continuous bodies),
case constructions (of continuous expressions), and the bxed point operator itself.
Tupling and projection let us debne mutually recursive functions: if we want to
debnef asF(f,g) and gas G(f,g), whereboth F and G are continuous, we debne
(f.9) = Px(" (x,y).(F(x,y), G(X,y))).

When proving the totality of recursive lenses, we sometimes need to use a more
powerful induction scheme in which a lens is proved, simultaneously, to be total
on a whole collection of di! erent types (any of which can be used in the induction
step). Thisis supported by a generalization of the proof technique in 3.17(2).

We specify a total type by a pair (C, A) of subsets of V, and say that alens| has
this type, written | ((C,A)i! I (C/ 0 A. We usethe variable # to range over
total typesand T for sets of total types. Wewrite (C,A)' (C', A" il C' C'and
A" A'and write (C,A) 1 (C',A") for (C1C' A1AY.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 11

3.18 DePnition: Theincreasing chain # ' # ' ... isan increasing instance of
the sequence To, Tq,... 0! # (T; for all i.

Note that To,T1,... here is an arbitrary sequence of sets of total typesN the
sequence need not be increasing. Thisisthe trick that makes this proof technique
work: we start with a sequence of sets of total types To, T1, ... that, a priori, have
nothing to do with each other; we then show that some continuous function f on
lenses getsusfrom each T; to T, 1, inthesensethat f takesany lens| that belongs
to all of thetotal typesin T; toalensf (I) that belongsto all of the total typesin
Ti+1. Finally, weidentify an increasing chain of particular total types#, ' # ' ...
whose limit is the total type that we desire to show for the bxed point of f and
such that each # belongsto T;, and hence is a type for f'($)).

Hereisthe generalization of Corollary 3.17(2) to increasing instances of sequences
of sets of total types. It will be used in Section 7.

3.19 Lemma: Suppose f is a continuous function from lenses to lenses and
To,T1,... isa sequence of sets of total types with Tog = {(-,-)}. If for all | and i
we have (4# (Ti. | (#) implies (4# (Ti+1. T (1) (#), then for every increasing
instance# ' # ' ... of To, Tq,... wehave Px(f) (= #.

Dealing with Creation

In practice, there will be cases where we need to apply a putback function, but
where no old concrete view is available, as we saw with Jo@ URL in Section 2. We
deal with these cases by enriching the universe V of views with a special placeholder
#, pronounced Qmissing,Owhich we assume is not already in V. (There are other,
formally equivalent, ways of handling missing concrete views. The advantages of
this one are discussed in Section 5.) When S' V, wewrite S, for S1 {#}.

Intuitively, | + (a, #) means Qrreate a new concrete view from the information
in the abstract view a.0 By convention, # is only used in an interesting way
when it is the second argument to the puthback function: in all of the lenses debned
below, we maintain the invariants that (1) I* # = #, (2) |+ (#, ¢) = # for any
¢, B I* c=#foranyc=#,and (4 I+ (a,c) = # forany a= # and any c
(including #). We write C !' A for the set of well-behaved lenses from C, to A,
obeying these conventions and C / ‘0 A for the set of total lenses obeying these
conventions. For brevity in the lens debnitions below, we always assumethat c = #
when debning I* ¢ and that a = # when debning | + (a, c), since the results in
these cases are uniquely determined by these conventions. A useful consequence of
these conventionsisthat alensl (C! A also hastypeC! A.

3.20 Lemma: For any lens | and sets of views C and A: | (C ! A implies
I(C! Aand(2)I(C/'0 Aimpliesl(C/ 0 A.

4. GENERIC LENSES

With these semantic foundations in hand, we are ready to move on to syntax. We
begin in this section with several generic lens combinators (we will usually say just
lenses from now on), whose debnitions are independent of the particular choice of
universe V. Each debnition is accompanied by a type declaration asserting its well-
behavedness under certain conditionsN e.g., Ghe identity lens belongstoC ' C
for any CQ

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

12 A J.N. Foger et. al.

Many of the lens debnitions are parameterized on one or more arguments. These
may be of varioustypes: views (e.g., const), other lenses (e.g., composition), pred-
icates on views (e.g., the conditional lenses in Section 6), orN in some of the lenses
for trees in Section 5N edge labels, predicates on labels, etc.

Electronic Appendix A contains representative proofs that the lenses we debne
are well behaved (i.e, that the type declaration accompanying its debnition is
a theorem) and total, and that lenses that take other lenses as parameters are
continuous in these parameters and map total lensesto total lenses. Indeed, nearly
all of the lenses we debne are very well behaved (if their lens arguments are), the
only exceptions being map, fl at t en, ner ge, and conditionals; we do not prove very
well behavedness, however, since we are mainly interested just in the well-behaved
case.

Identity

The simplest lens is the identity. It copies the concrete view in the get direction
and the abstract view in the putback direction.

id* c
id+ (a ¢

C
a

4C' V. id(C/'0 C

Having debned i d, we must prove that it is well behaved and totalN i.e., that its
type declaration is a theorem. We state the properties explicitly as lemmas and
give proofs (in electronic Appendix A) for i d and a few representative lenses. For
therest, we elide both the statements of the properties, which can beread o! from
each lens® debnition, and the proofs, which are largely calculational.

4.1 Lemma [Well-behavedness]: 4C' V.id(C! C
4.2 Lemma [Totality]: 4C' V.id(C/0 C

For each lens debnition, the statements of the totality lemma and well-
behavedness lemmas are almost identical, just replacing ! by / ‘0 . In the case of
i d, we could just as well combine the two into a single lemma, because every lens
with a total type is also well-behaved at that type. However, for lens debnitions
that are parameterized on other lenses (like composition, just below), the totality
of the compound lens depends on the totality (not just well-behavedness) of its
argument lenses, while we can establish the well-behavedness of the composite even
if the arguments are only well-behaved and not necessarily total. Since we expect
this situation will be common in practiceN programmers will always want to check
that their lenses are well-behaved, since the reasoning involved is simple and local,
but may not want to go to the trouble of setting up the more intricate global rea-
soning needed to prove that their recursive lens debnitions are totalN we state the
two lemmas (i.e., typings) separately.

Composition
The lens composition combinator |;k places| and k in sequence.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 13

(1;K)* ¢
(k) + (a ¢

k* (I* ¢

[+ (k+ (a, I*), 0

4A,B,C' V.4l (C! B.4k(B!" A. Lk(C!' A
4A,B,C' V.4l (C/'0 B.4k(B/0 A. Lk(C/0 A

The get direction appliesthe get function of | toyield a brst abstract view, on which
the get function of k is applied. In the other direction, the two putback functions
are applied in turn: prst, the putback function of k isused to put ainto the concrete
view that the get of k was applied to, i.e., I* c¢; the result isthen put into c using
the putback function of I. (If the concrete view cis#, then, I* c will also be # by
our conventions on the treatment of #, so the el ect of (I;k)+ (a, #) isto usek
to put ainto# and then | to put the result into #.) We record two di! erent type
declarations for composition: one for the case where the parameter lenses | and k
are only known to be well behaved, and another for the case where they are also
known to be total.

Once again, proofsthat the composition operator hasthe types mentioned above
are given in electronic Appendix A.

4.3 Lemma [Well-behavedness]:
4A,B,C' V.4 (C!" B.4k(B!" A. LLk(C!" A

4.4 Lemma [Totality]:
4A,B,C' V.4l (C/'0 B.4k(B/0 A. Lk(C/0 A

Besides well-behavedness and totality, we must also show that lens composition
iscontinuous in its arguments. Thiswill justify using composition in recursive lens
debnitions: in order for a recursive lens debned as bx("I. I1;12) (wherel; and I,
may both mention I) to be well formed, we need to apply Theorem 3.16, which
requiresthat "I. I1;1, be continuousin |. The following lemma shows that this will
be the case whenever |, and |, are continuousin |.

4.5 Lemma [Continuity]: Let F and G be continuous functions from lenses to
lenses. Then the function "I. (F(l); G(l)) is continuous.

We have proved an analogous lemma for each of our lens combinators that takes
other lenses as parameters, so that the continuity of every lens expression will follow
from the continuity of its immediate constituents, but we will not bother to state
these continuity lemmas explicitly in what follows.

Constant

Another simple combinator is const v d, which transforms any view into the
constant view v in the get direction. In the putback direction, const simply restores
the old concrete view if oneisavailable; if the concreteview is#, it returns a default
view d.

(const vd)y* ¢ = v
(const vd)+ (a,c) = cifc=#
difc=#

AC' V.4v(V.4d(C. const vd(C/'0 {v}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

14 A J.N. Foser et. al.

Note that the type declaration demands that the putback direction only be applied
to the abstract argument v.

We will debne a few more generic lenses in Section 6; for now, though, let us
turn to some lens combinators that work on tree-structured data, so that we can
ground our debnitions in specibc examples.

5. LENSES FOR TREES

To keep the debnitions of our lens primitives as straightforward as possible, we
work with an extremely simple form of trees. unordered, edge-labeled trees with
no repeated labels among the children of a given node. This model is a natural
bt for applications where the data is unordered, such as the keyed address books
described in Section 2. Unfortunately, unordered trees do not have all the structure
we need for other applications; in particular, we will need to deal with ordered data
such as lists and XML documents via an encoding (shown in Section 8). A more
direct treatment of ordered trees is a worthwhile topic for future work, but, in
the context of the Harmony system, where we are interested in both ordered and
unordered data, the choice of a simpler foundation seems to have been a good one:
the increase in complexity of lens programs that must manipulate ordered data in
encoded form is more than made up by the reduction in the complexity of the
debnitions of lens primitives due to the simpler data model.

Notation

From this point on, we choose the universe V to be the set T of bnite, unordered,
edge-labeled trees with labels drawn from someinbnite set N of namesN e.g., char-
acter stringsN and with the children of a given node all labeled with distinct names.
Trees of this form (often extended with labels on internal nodes as well as on chil-
dren) are sometimes called deterministic trees or feature trees (e.g., [Niehren and
Podelski 1993]). The variables a, ¢, d, and t range over T ; by convention, we use a
for trees that are thought of as abstract and c or d for concrete trees.

A treeisessentially a bnite partial function from namesto other trees. It will be
more convenient, though, to adopt a slightly di! erent perspective: we will consider
atreet (T to be atotal function from N to T, that yields# on all but a pbnite
number of names. We write dom(t) for the domain of tN i.e., the set of the names
for which it returns something other than #N and t(n) for the subtree associated
tonamenint, or # if n .(dom(t).

Tree values are written using hollow curly braces. The empty treeis written {}.
(Notethat {}, a nodewith q[%children, isdi! erg;t from #.) We often describetrees
by comprehension, writing " F(n)|n(N7 whereF issome function from N
toT, and N ' Npj ﬁme set of names. When t and t' have disjoint domains,
we write t at' or t'”0(the latter especially in multi-line displays) for the tree
mapping n to t(n) for n (dom(t), to t'(n) for n (dom(t'), and to # otherwise.

When p' N is a set of names, we write p for N\p, the complement of p.

write t|, for the restrigjon of t to childgen with names from plcgﬁ'.e., the tree

" t(n) | n(p5 dom(t)”N and t\, for " t(n) | n (dom(t)\ p7@ When p is
just asingleton set {n}, we drop the set braces and writejust t|, and t\, instead of
tlny and t\;,;. To shorten some of the lens debnitions, we adopt the conventions
that dom(#) = - and that #|, = #\, = # for any p.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 15

For writing dowr ypes,?%\(veextendth@etreenotationsto sets%tre?}, fTr T
and n (N, then I" T70dengtes the of singleton trees { A !" t70|t (T}.
IfT' T and N ' N, then I" T73denotes the set of trees {t | dom(t) =
N and 4n (N.t(n) (T} and 9§ ¥ T9 denotes the set of trees {t | dom(t) '
N and 4n (N.t(n) (T, }. Wewrite T; 4T, for {t; &ty |ty (T1,t2 (T2} and
T(n) for {t(n) |t (T}\ {#}. If T' T, then doms(T) = {dom(t) [t (T}. Note
that doms(T) is a set of sets of nam&s%vhile (t) isa set of names.

A value isatree ofthe special forrrg(1" {} 70 often written just k. For instance,
the phone number 7833-4444 1! {} gin the example of Section 2 is a value. We
write Val for the type whose denotation is the set of all values.

Hoisting and Plunging

Let@ warm up with some combinators that perform simple structural transforma-
tions on trees. The lens hoi st n is used to shorten a tree by removing an edge at
thetop. In the get direction, it expects a tree that has exactly one child, named n.
It returns this child, removing the edge n. In the putback direction, the value of the
old concrete treeisignored and a new oneis created, with a single edge n pointing
to the given abstract tree. (Later we will meet a derived form, hoi st _nonuni que,
that works on bushier trees.)

(hoi st n)* ¢
(hoi st n)+ (a,)

)l a%

10, 0,
4C' T.4n(N. hoistn(%" c%/ 0 C

Conversdly, the pl unge lens is used to deepen a tree by adding an edge at the
top. In the get direction, a new tree is created, with a single edge n pointing to
the given concrete tree. In the putback direction, the value of the old concrete tree
isignored and the abstract treeisrequired to have exactly one subtree, labeled n,
which becomes the result of the pl unge.

(plunge n)* ¢ = %ﬁ " c%
(pl unge n) + (a, c) = a(n)

10 Q,
AC' T.4n(N. plungen(C/0 %1 c%

Forking

The lens combinator xf or k applies di! erent lensesto di! erent partsof atree. More
precisely, it splits the tree into two parts according to the names of its immediate
children, applies a di! erent lens to each, and concatenates the results. Formally,
xf ork takes as arguments two sets of names and two lenses. The get direction of
xfork pcpal; I, can bevisualized asin Figure 1 (the concretetreeisat the bottom).
The triangles labeled pc denote trees whose immediate children have labels in pc;

5Note that, alt hough we are debning a syntax for lens expressions, the types used to classify these
expressions are semanticN they are just sets of lenses or views. We are not (yetN see Section 11)
proposing an algebra of types or an algorithm for mechanically checking membership of lens
expressions in type expressions.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

16 A J.N. Foger et. al.

Fig. 1. The get direction of xfork

dotted arrows represent splitting or concatenating trees. The result of applying
[1* toc|yc (thetree formed by dropping the immediate children of ¢ whose names
are not in pc) must be a tree whose top-level labels are in the set pa; similarly, the
result of applying I>* to c\pc must bein pa. That is, the lens|; may change the
names of immediate children of the treeit is given, but it must map the part of the
tree with immediate children belonging to pc to a tree with children belonging to
pa. Likewise, |, must map the part of the tree with immediate children belonging
to pc to a tree with children in pa. Conversely, in the putback direction, 1; must
map from pa to pc and |, from pa to pc. Here is the full depnition:

(xforkpcpalil,)* ¢ = (11* clpe) a(la* \pe)
(xforkpcpalylz)+ (a c) = (I1+ (alpa, Clpc)) &(lz+ (8\pa, C\pc))

apc,pa’ N. 4Cy" Tlpe. 4A1" Tloa. 4Co" T\ pe. 4A2" T\ pa.
4, (Ci! AL dl,(Col A,

xforkpcpalyl, ((CpaCy) ! (Ay 8A5)
apc,pa’ N. 4Cy" Tlpe. 4A1" Tloa. 4Co" T\pe. 4A2" T\ pa.
4, (C1/1'0 Apdly(Cyl 0 As.

xforkpcpalyl, ((CpaCy)/ 0 (Ag 8AL)

We rely here on our convention that #|, = #\, = # to avoid explicitly splitting
out the# case in the putback direction.

We have now debned enough basic lenses to implement several useful derived
forms for manipulating trees.

In many uses of xfork, the sets of names specifying where to split the concrete
tree and whereto split the abstract tree areidentical. We can debPne a simpler f or k
as:

forkplyl, = xforkpply s

4p' N.4C;, Ay Tlp. 4C2, A2 T\p. 4li (Cr ! Ap 4l (ot A,
forkplylo ((Cq éCz)) (A1 é.Ag)

4p' N.4Cy,A1' Tlp. 4Co, A" T\p. 4li (C1/ 0 Ap. 4l (C /0 A,
fOfkp'l |2((Cj_ éCz)/ 0 (A]_ éAz)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 17
We can use fork to debne a lens that discards all of the children of a tree whose
names do not belong to some set p:
filter pd = fork pid (const {} d)

AC' T.4p' N.4d(C\,.
filter pd((ClpaC\p)/ 0 CJp

In the get direction, this lens takes a concrete tree, keeps the children with names
in p (using id), and throws away the rest (using const {} d). The tree d is
used when putting an abstract tree back into a missing concrete tree, providing a
default for information that does not appear in the abstract tree but isrequired in
the concrete tree. Thetype of filter follows directly from the types of the three
primitive lenses used to debne it: const {} d, with type C\, / ‘0 {{}}, the lens
i d, with type C|, / '0 C|p, and fork (with the observation that C|, = C|, &{}).
o et us see how filter behaveg in an example. Let the concrete tree ¢ =
ame " Pat, phone!" 333-444479 and lens | = filter {nane} {}. We calcu-
late I* ¢, underlining the next term to be simplifed at each step. y
%

)
I* c¢= (fork {nane} i d (const{} d))* ‘%arre I" Pat, phone!" 333-444

by the depnition gf | P 0
= id* farre I" Pat %é(const {} d)* ‘%hone " 333-4444%
oY the debnjtion of forkgnd splitting,e using { nane}
‘%?ama I" Pat %é{]} = ane !" Pat "éz a
by the debnitions of i d and const

o) 0
Now suppose that we update thistree, a, to Ogama " Patty‘% Let uscalculatethe
result of putting back a into c. To save space, we write k for (const {} {}).

I+ (a 0 28 % 0 0
= (fork {nane} idKk)+ ‘%ame I" Pat % ‘%ame I" Pat, phone!" 333—4444‘%3
by debnition of |y 2 0 2 B 0
id+ ril?ama " Patty%, ‘%ama " Pat‘%gék+ {}. ‘%hone " 333-4444‘%3

%E)y the debnition of fork and splitt%)‘ng a and c using { nane}

ane !" Patty, phone!" 333-444470
by the debnition of i d and const

Note that the putback function restores the bltered part of the concrete tree and
propagates the change made to the abstract tree. In the case of creationN i.e., if
we put back an abstract tree using #N then the default argument to const is
concatenated to the abstract tree to form the result, since there is no bitered part
of the concrete tree to restore.

Another way to thin atreeisto explicitly specify a child that should be removed
if it exists:

Lo} 10 0/Q
prunend = fork {n} Lconst {} %1 d‘%bid

4C' T. 4n(N. 4d(C(n).
prunend((C|, aC\n)/ 0 C\,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

18 A J.N. Fogter et. al.

This lens is similar to filter, except that (1) the name given is the child to be
removed rather than a set of children to keep, and (2) the default treeisthe oneto
go under n if the concrete tree is#.

Conversely, we can grow a treein the get direction by explicitly adding a child.
Thetypeannotation disallows changesin the newly added tree, soit can be dropped
in the putback.

addnt = xfork {} {n} (const t {}; plungen)id

4n(N. 4C' T\n.4t4)T. 0
addnt(C/0 % {t}%éC

0,
Let us expl@rethe?ehavior of add through an example. _%,et c :0/0%!" {|}£and
| = add b R!" {} £ To save space, write k for const o)é "} % {} and p for
pl unge b. We calculate I* c directly, underlining the term to be simplifed at each
step.

* c= (xfork {} {b} (k; ppid)* c

by the debnition gf | 0
(ki p)* {} & o Gr 0%

by the debn%}on of york and splitting c using {}
pr (k qpatar %
4 by the depnitions of the cbomposition andid

p % {]}%P)éﬁé!" 0%

y the debnition of k0

B 1" {}, b!" %?!" {]}“@‘é

by the debnition of p

Mgw suppose v%modiwms tree by renaming the child a to ¢, obtaining a =
" {}, b " {} 7%% The result of the putback function, | + (a, c), is calcu-
lated as follows:

I+ (a,c)= (xfork {} {b} (ki pid)+ (a ¢

4bytheda jition of | 0 55 4 . /o5
(k; p)+ y' %!" {]}&};, i &aid+ 2%) " {]}%'%!.. {]}%3
6 by the de4 ition of xf orlg, IittSiF)g a using {(l))} and c using {}
e G By e
6 by tge delzni jon of id g 77 .
k+ p+ q:%' %!" {]}%, k* {} ., {} é-% 1" {]}%

4 by th_s debnitjon of om_ltposition0
N TR
by ghe debpjition of p 0

ﬂ}aéé]!" {ll}p% = % g%
by the debnition of k

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 19

Another derived lens focuses attention on a single child n:

focusnd = (filter {n} d); (hoi st n)

4n(N.4C' T\,.4d(£, 4D" &.
focus n d ((Cé%!" D[’%/!O D

In the get direction, focus blters away all other children, then removes the edge
n and yields n® subtree. As usual, the default tree is only used in the case of
creation, where it isthe default for children that have been Pltered away. Thetype
of focus follows from the types of the lenses from which it is debPned, observing
that filter {n} d((C &Jn!" D})/'0 {n!" D} and that hoist n({n !
D}/ 0 D.

The hoi st primitive debPned earlier requires that the name being hoisted be the
unigue child of the concretetree. It isoften useful torelax thisrequirement, hoisting
one child out of many. This generalized version of hoi st isannotated with the set
p of possible names of the grandchildren that will become children after the hoist,
which must be disjoint from the names of the existing children.

hoi st _nonuni que n p = xfork {n} p(hoist n)id

4n(N. 4p' N. 4D’ T\(n)spgdC' T
hoi st _nonunique n p((A !" C74D)/ 0 (C aD)

A last derived lens renames a single child.

rename m n = xfork {m} {n} (hoist m; plungen)id

4m,n(N.4C' T.4p' T\ : 0
{850} % 4

renamemn ((4" CaD)/ 0 (aD)

In the get direction, renane splits the concrete tree in two. The brst tree has a
single child m (which is guaranteed to exist by the type annotation) and is hoisted
up, removing the edge named m, and then plunged under n. The rest of the
original tree is passed through theid lens. Similarly, the putback direction splits
the abstract view into a tree with a single child n, and the rest of the tree. The
tree under n is put back using the lens (hoi st m; pl unge n), which brst removes
the edge named n and then plunges the resulting tree under m. Notethat the type
annotation on r enane demands that the concrete view have a child named m and
that the abstract view have a child named n. In Section 6 we will see how to wrap
thislensin a conditional to obtain a lens with a more Rexible type.

Mapping
So far, all of our lens combinatorsdo things near theroot of thetreesthey are given.
Of course, we also want to be able to perform transformations in the interior of
trees. Themap combinator isour fundamental means of doing this. When combined
with recursion, it also allows us to iterate over structures of arbitrary depth.

The nap combinator is parameterized on a singlelens|. In the get direction, nap
applies I* to each subtree of the root and combines the results together into a

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

20 A J. N. Foger et. al.

new tree. (Later in this section, we will debne a more general combinator, called
wnap, that can apply a di! erent lens to each subtree. Debning nap brst lightens
the notational burden in the explanations of several bPne points about the behavior
and typing of both combinators.) For example, the lens map | has the following
behavior in the get di{%ction when applied to'a})tree with three children:

#‘/1!" t1$ #‘/1!" I* t
$ 2: ﬁ becomes$ 2:..' to

t2
31" t3 3 |* 3

S

The puthack direction of nap is more interesting. In the simple case where a
and c¢ have equal domains, its behavior is straightforward: it uses I+ to combine
concrete and abstract subtrees with identical names and assembles the results into
a new concrete tree, '

8!9 !

e

"t

[Y
0P #Hap "t
(mep 1)+ 9 ! , "t
$46, 1 100 S i

. 10
ﬁ # !: | + (tl,t:l%
Hoshr ey

In general, however, the abstract tree a in the putback direction need not have
the same domain as c (i.e., the edits that produced the new abstract view may
have involved adding and deleting children); the behavior of nap in this case
is a little more involved. Observe, brst, that the domain of ¢' is determined
by the domain of the abstract argument to putback. Since we aim at build-
ing total lenses, we may suppose that (map 1)* ((map)+ (a, ¢)) is debned, in
which case dom((map 1)* ((map)+ (a, ¢))) = dom(a) by rule Put Get, and
dom((map) + (a, ¢)) = dom(a) as (nap I)* does not change the domain of the
tree. This means we can simply drop children that occur in dom(c) but not in
dom(a). Children bearing names that occur both in dom(a) and dom(c) are dealt
with asdescribed above. Thisleavesthe children that only appear in dom(a), which
need to be passed through | so that they can beincluded in ¢'; to do this, we need
some concrete argument to pass to |+ . There is no corresponding child in ¢, so
instead these abstract trees are put into the missing tree #N indeed, this case is
precisely why we introduced #. Formally, the behavior of map is debned as follows.
(It relies on the convention that c(n) = # if n .(dom(c); the type declaration also
involves some new notation, explained below.)

1% " 1* c(n)|n(dom(c)%
% " 1+ (a(n), c(n)) | n (dom(a)

(map 1)* c

%

(map 1) + (a, ¢)

4C,A_T with C=C' ,A= A", doms(C) = doms(A).
41 (ey - C(n) 1 A()).

mpl(C! A
4C,ALT withC=C', A= A", doms(C) = doms(A).
A((ey -CM)/ 0 A(N)).

mpl(C/0 A

Because of the way that it takesthetree apart, transforms the pieces, and reassem-
blesthem, thetyping of map isalittle subtle. For example, in the get direction, nap

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 21

does not modify the names of the immediate children of the concrete tree, and in
the putback direction, the names of the abstract tree are left unchanged; we might
therefore expect a simple typing rule stating that, if 1 ((., C(n) ' A(n))N
i.e., if | isa well-behaved lens from the concrete subtree type C(n) to the abstract
subtree type A(n) for each child nNthen map | (C ! A. Unfortunately, for arbi-
trary C and A, the map lens is not guaranteed to be well-behaved at this type. In
particular, if doms(C), the set of domains of treesin C, is not equal to doms(A),
then the putback function can produce a tree that is not in C, as the following
example shows. Consider the sets of trees

+ % £ 0 + 0
- B o BB acca By
and observe that with trees

az%!"my!" n% cz%!"n%

we have map id+ (a, ¢) = a, atreethat isnot in C. This shows that the type of
nap must include the requirement that doms(C) = doms(A). (Recall that, for any
type T, the set doms(T) is a set of sets of names.)

A related problem arises when the sets of trees A and C have dependencies
between the names of children and the trees that may appear under those names.
Again, one might naively expect that, if | has type C(m) ' A(m) for each name
m, then map | would havetype C ' A. Consider, however, the set

A={{x" my!" p}, {x!" n y!" a}},
in which the value monly appears under x when p appears under y, and the set

C={{x" my!" p}, {x" my!" a}, {x!" n y!" p}, {x!" n, y!" qg}},

where both mand n appear with both p and q. When we consider just the
projections of C and A at specibc names, we obtain the same sets of subtrees:
C(x) = A(x) = {{n}.{n}} and C(y) = A(y) = {{p}.{at}. Thelensid hastype
C(x)!" A(x)and C(y)!" A(y) (and C(z) = - !' - = A(z) for all other names z).
But it isclearly not the casethat mapid(C! A.

To avoid this error, but still give a type for map that is precise enough to derive
interesting types for lenses debPned in terms of nap, we require that the source and
target sets in the type of nmap be closed under the Ghu$ ingO of their children.
Formally, if T isa set of trees, then the set of shu! ings of T, denoted T', is

T'= gn!" T(n)|n(D}
D" doms(T)

where{n!" T(n) | n (D} isthe set of trees with domain D whose children under
n are taken from the set T(n). We say that T isshu! eclosedi! T = T'. Inthe
example above, A' = C' = CNi.e, C isshu$ e closed, but A is not.

Alternatively, every shu$ eclosed set T can be identibed with a set of set of
names D and a function f from names to types, such that t (T i! dom(t) (D
and t(n) (f(n) for every name n (dom(t). Formally, the shu$ e closed set T is
debned as follows:

T= qn!™ f(n)|n(d}
d" D
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

22 A J.N. Foger et. al.

In the situations where map is used, shu$ e closure is typically easy to check. For
example, therestriction on tree grammars embodied by W3C Schema impliesshu$ e
closure (informally, therestriction on W3C Schema is analogous to imposing shu$ e
closure on the schemas along every path, not just at the root). Additionally, any
set of trees whose elements each have singleton domains is shu$ e closed. Also, for
every set of trees T, the encoding introduced in Section 7 of listswith elementsin T
is shu$ e closed, which justibes using nap (with recursion) to implement operations
on lists. Furthermore, types of the form {n !" T | n (N} with inPnite domain
but with the same structure under each edge, which are heavily used in database
examples (where the top-level names are keys and the structures under them are
records) are shu$ e closed.

Another point to note about nap is that it does not obey the Put Put law.
Consider alens| and (a, ¢) (dom(I+) such that I+ (a, c) =1+ (a #). We have

(rrapl)+2¥§'" 07’((nap|)+ 0 B B
(o 1)+ B B g

B 1+ (a#)P

whereas

%!" I+ (a, c)%: (map 1) + 2% " a%, %!" c%g.

Intuitively, thereis a di! erence between, on the one hand, modifying a child n and,
on the other, removing it and then adding it back: in the brst case, any information
in the concrete view that is (projected awayQin the abstract view will be carried
along to the new concrete view; in the second, such information will be replaced
with default values. This di! erence seems pragmatically reasonable, so we prefer
to keep map and lose Put Put .8

A bnal point of interest isthe relation between nap and the missingtree#. The
putback function of most lens combinators only resultsin a putback into the missing
treeif the combinator itself is called on #. In the case of map |, calling its putback
function on somea and cwherecisnot the missing tree may result in the application
of the putback of | to # if a has some children that arenot in c. In an earlier variant
of map, we dealt with missing children by providing a default concrete child tree,
which would be used when no actual concrete tree was available. However, we
discovered that, in practice, it is often di" cult to bnd a single default concrete tree
that bts all possible abstract trees, particularly because of xf ork (where di! erent
lenses are applied to di! erent parts of the tree) and recursion (where the depth
of a tree is unknown). We tried parameterizing this default concrete tree by the
abstract treeand thelens, but noticed that most primitive lensesignorethe concrete
tree when debning the putback function, as enough information is available in the
abstract tree. The natural choice for a concrete tree parameterized by a and |
was thus | + (a, #), for some special tree #. The only lens for which the putback
function needs to be debned on # is const, as it is the only lens that discards

SAlternatively, we could use a rebnement of the type system to track when Put Put does hold,
annotating some of the lens combinators with extra type information recording the fact that they
are oblivious, and then give map two types: the one we gave here plus another saying Qvhen nap
is applied to an oblivious lens, the result is very well behaved.O

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 23

information. This led us to the present design, where only the const lens (along
with other lenses debned from it, such as f ocus) expects a default tree d. This
approach is much more convenient to program with than the others we tried, since
one only provides defaults at the exact points where information is discarded.

We now debne a more general form of map that is parameterized on a total
function from names to lenses rather than on a single lens.

(whap m)* ¢ 1%% " m(n)* c(n)|n(dom(c)%
(wap m) + (a, c) = % " m(n) + (a(n), ¢(n)) | n (dom(a)

%

4C,A' T withC=C',A=A', doms(C) = doms(A).
4m ((9n(N.C(n) ! A(n)).

wapm(C!'" A
4C,A' TwithC=C',A=A', doms(C) = doms(A).
4m ((9n(N.C(n)/ 0 A(n)).

wapm(C/'0 A

In the type annotation, we use the dependent type notationm (%n. C(n) ' A(n)
to mean that m is a total function mapping each name n to a well-behaved lens
from C(n) to A(n). Although m is a total function, we will often describe it by
giving its behavior on a bnite set of names and adopting the convention that it
maps every other nameto i d. For example, the lenswap {x !" pl unge a} maps
pl unge a over trees under x and i d over the subtrees of every other child. We can
also easily debne map as a derived form: nap | = whap ("n (N.1).

Since the typing of wrap is rather subtle, it isworth stating its well-behavedness
lemma explicitly (and, in the appendix, giving the proof).

5.1 Lemma [Well-behavedness]:
4C,A' T withC=C',A= A", doms(C) = doms(A).
4m ((Yn(N.C(n) ! A(n)).
wapm(Cl' A

Copying and Merging

We next consider two lenses that duplicate information in one direction and re-
integrate (by performing equality checks) in the other.

A view of some underlying data structure may sometimesrequirethat two distinct
subtrees maintain a relationship, such as equality. For example, under the subtree
representing a manager, Alice, an employee-manager database may list the name
and 1D number of every employee in Alice® group. If Bob is managed by Alice,
then Bob® employee record will also list his name and ID number (as well as other
information including a pointer to Alice, as his manager). If Bob® name changes
at a later date, then we expect that it will be updated (identically) under both his
record and Alice® record. If the concrete representation contains his name in only
a single location, we need to duplicate the information in the get direction. To do
this we need a lens that copies a subtree and then allows us to transform the copy
into the shape that we want.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

24 A J.N. Foger et. al.

In the get direction, (copy m n) takes a tree, c, that has no child labeled n. If
c(m) exists, then (copy m n) duplicates ¢(m) by setting both a(m) and a(n) equal
to ¢(m). In the putback direction, copy simply discards a(n). The type of copy
ensures that no information is lost, because a(m) = a(n).

40, Q,
(copymn)* ¢ = ca % 1" c(m)"%
(copy mn)+ (a,c) = a\p

4m,n(N.4C' T\ .4D" T 9
copy m n ((C{é " D, &%/!0 (C é{%!" dn!" d%|d(D'})

Because we want copy to be a total lens, the equality constraint in the abstract
type of copy is essential to ensure well-behavedness. To see why, consider what
would happen if the putback function were debned even when a(m) and a(n) were
not equal and copy+ removed either a(m) or a(n). Then there would be no way
for a subequent application of the get function to restore the discarded information.
Consequently, Put Get would be violated.

Unfortunately, because of this constraint, the set of lenses that can be validly
composed to theright of a copy isalso restrictedN the composed lenses must respect
the equality. Asan example of what can go wrong, consider (copy a b; prune b {})
%%d sup%)se that we want to assign it a lens typing with concrete component

" A simple calculation shows that get function behaves like i d: the lens
brst copies a to b and then prunes V@/I r;@ into blems, however, if
we evaluate (copy a b; prune b {}) + 5'" " d,70 with d; = dp. Un-
%dmg the com smon we evaluate (copy a b)+ with an abstract argument

" dg, b1 dz As argued above, the copy lens cannot be both debned and
well-behaved on such an abstract argument because the copied data isnot identical.
As the example demonstrates, the lenses composed after a copy must preserve the
equality of the copied data. Otherwise we cannot ensure that the type requirement
a(m) = a(n) will be satisbed.

In our intended application, using lensesto build synchronizersfor tree-structured
data, we have not found a need for copy. Thisis not surprising, because if a con-
crete representation demands that some invariant hold within the data structure,
we assume that (1) each application will locally maintain the invariantsin its own
representation, and (2) the function of a synchronizer isto simply propagat e changes
from one well-formed replica to another. Moreover, if one beld in a concrete rep-
resentation is derivable from another (or a set of other belds), then we need not
expose both beldsin the abstract view. Instead, we can merge the belds (see below).
Any change to the merged Peld will be pushed back down to all the derived belds
in the concrete view. Thus, nerge, the inverse of copy makes more sense for the
views manipulated by a data synchronizer.

By contrast, some have argued for the need for more powerful forms of copy in
settings such as editing a user-friendly view of a structured document [Hu et al.
2004; Mu et al. 2004a]. Consider asituation where a user edits a view of a document
in which a table of contents is automatically generated from the section headings
appearing in the source text (i.e., the concrete view is just some structured text,
while the abstract view contains the text plus the table of contents). One might

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 25

feel that adding a new section to the text in the abstract view should cause an
entry to be added to the table of contents, and similarly that adding an entry to
the table of contents should create an empty section in the text. Such function-
ality is not consistent with our Put Get law: both adding a section heading and
adding an entry in the table of contents will result in the same concrete document
after a putback; such a putback function is not injective and cannot participate in
a lens in our sense. However, in contexts where this kind of behavior is a pri-
mary goal, system designers may be willing to weaken the promises they make to
programmers by guaranteeing weaker properties than Put Get . For example, Mu
et al [2004a] only require their bidirectional transformations to obey a Put Get -
Put law. Put Get Put is weaker than Put Get in two ways. First, it does not
require that I* (I+ (a,c)) equals a. Rather, it requires that, if ¢ = I+ (a,c) and
a = I* (c), then & should Gcontain the same information as a,0in the sense that
I+ (a',c') = ¢'. Second, Put Get Put allows get to be undebned over parts of the
range of putbackN Put Get Put is only required to hold when the get is debned,
but no reguirements are made on how broadly get must be debned. (Given that
their setting isinteractive, it isreasonable to say, as they do, that if get after some
putback is undebned, then the system can signal the user that the modibcation to
a was illegal and cancel it). Hu et al [2004] go a step further and weaken both
Put Get and Get Put by only requiring Put Get when a is|* (c) and by only
requiring Get Put when cisl+ (a,c') for somea and c'.

Conversely, sometimes a concrete representation requires equality between two
distinct subtrees. The following nerge lens is one way to preserve this invari-
ant when the abstract view is updated. In the get direction, nerge takes a tree
with two equal branches and deletes one of them. In the putback direction, ner ge
copies the updated value of the remaining branch to both branches in the concrete
view.

(merge m n)* ¢

(merge m n)+ (a,)

I’l 'W 0
a é " a(m) 0 if c(m) = c(n)
aa

" c(n) if c(m) = c(n)

4m,n(N.4C"' T\ 4D' T.
nergemn((éa%'" Dy, nl" 0;(’SIO(Ca%ﬂ"

There is some freedom in the type of nerge. On one hand, we can give it a
precise type that expresses the intended equality constraint in the concrete view;
the lens is well-behaved and total at that type. Alternatively, we can give it a
more permissive type (as we do) by ignoring the equality constraintN even if the
two original branches are unequal, nerge is still debned and well-behavedness is
preserved. This is possible because the old concrete view is an argument to the
putback function, and can be tested to see whether the two branches were equal or
not in c. If not, then the value in a does not overwrite the value in the deleted
branch, allowing ner ge to obey Put Get .

Unlike copy, ner ge turnsout to be quite useful in our synchronization framework.
For example, our bookmark synchronizer must deal with the fact that the XML
representation of Apple Safari bookmark Ples includes the URL data for every link

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

26 A J.N. Foger et. al.

twice. By merging the appropriate children, we record this dependency and ensure
that updatesto the URL belds are consistently propagated to both locations.

6. CONDITIONALS

Conditional lens combinators, which can be used to selectively apply one lens or an-
other to a view, are necessary for writing many interesting derived lenses. Whereas
xfork and itsvariants split their input treesinto two parts, send each part through
a separate lens, and recombine the results, a conditional lens performs some test
and sends the whole tree(s) through one or the other of its sub-lenses.

The requirement that makes conditionals tricky is totality: we want to be able
to take a concrete view, put it through a conditional lens to obtain some abstract
view, and then take any other abstract view of suitable type and push it back down.
But this will only work if either (1) we somehow ensure that the abstract view is
guaranteed to be sent to the same sub-lens on the way down as we took on the
way up, or else (2) the two sub-lenses are constrained to behave coherently. Since
we want reasoning about well-behavedness and totality to be compositional in the
absence of recursion (i.e.,, we want the well-behavedness and totality of composite
lenses to follow just from the well-behavedness and totality of their sub-lenses, not
from special facts about the behavior of the sub-lenses), the second is unacceptable.

Interestingly, once we adopt the brst approach, we can give a complete charac-
terization of all possible conditional lenses: we argue that every binary conditional
operator that yields well-behaved and total lensesis an instance of the general cond
combinator presented below. Since this general cond is a little complex, however,
we start by discussing two particularly useful special cases.

Concrete Conditional

Our brst conditional, ccond, is parameterized on a predicate C; on views and two
lenses, I3 and I,. In the get direction, it tests the concrete view ¢ and applies the
get of I, if c satisbesthe predicate and |, otherwise. In the putback direction, ccond
again examines the concrete view, and applies the putback of |, if it satisbes the
predicate and the putback of |, otherwise. Thisisarguably the simplest possible way
to debne a conditional: it bxes all of its decisions in the get direction, so the only
constraint on I; and |, isthat they have the same target. (Since we are interested
in using ccond to debne total lenses, this condition can actually be rather hard to
achieve in practice.)

& :
I,* cifc(C,
|2* Cc IfC(Cy
I1+ (a,¢ ifc(C,
lo+ (a,¢ ifc.(Cy

4C,Cy,A' V.4l (C5C, ! A.4l,(C\C,!' A.
ccondCyly L (C!l A

4C,Cq,A' V. 4l (C5C1/'0 A.4l,(C\Ci/ 0 A.
ccondCy Iyl (C/0 A

(ccond Cy 11 Ip)* ¢ =

(ccond Cy 11 1) + (a, ©) =

One subtlety in the debnition is worth noting: we arbitrarily choose to putback #
using |, (because # .(C; for any C; ' V). We could equally well arrange the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 27

debnition so as to send # through I;. In fact, I; need not be well-behaved (or
even debned) on #; we can construct a well-behaved, total lens using ccond when
l,(C5Cy/ 0 Aandl, (C\Ci/ 0 A.

Abstract Conditional

A quite di! erent way of debning a conditional lens is to make it ignore its con-
crete argument in the puthack direction, basing its decision whether to use I+

or I,+ entirely on its abstract argument. This obliviousness to the concrete ar-
gument removes the need for any side conditions relating the behavior of 1; and
I,N everything works bne if we putback using the opposite lens from the one that
we used to getN as long as, when we immediately put the result of get, we use the
same lens that we used for the get. Requiring that the sources and targets of |; and
I, be disoint guarantees this.

&
|1* Cc IfC(Ci

| |2* CifC.(C]_

Bt (a0 ifa(Ar) c(C
1+ (a, #) ifa(A1) c.(C,

i 1+ (a0 ifa.(A;) c.(Cy
I+ (a #) ifa.(A) c(Cp

4C,A,C1, A" V. 4l (C5Cy ' A5A;. 4l ((C\Cyp) I (A\VAy).
acondC; Al I, (C!l A

4C,A,C1,Ar' V. 4l (C5C, /0 A5AL. 4l, ((C\C1)/ 0 (A\Ay).
acondC; Al I, (C/'0 A

(acond C; Ap I1 12)* ¢ =

(acond C; Ap I 1)+ (a,¢) =

In Section 5, we debned the lens renane m n, whose type demands that each
concrete tree have a child named m and that every abstract tree have a child named
n. Using this conditional, we can write a more permissive lens that renames a child
if it is present and otherwise behaves like the identity.

renane_i f _present mn = acond (Im!" T} aT\;mny) 0! ThaT\{mny)
(renane m n)
id
4n,m (N.4C' T.4D,E' (T\gg.n})- o
renane.i f _present m n ((%1 " C%

4D)1E/ 0 (% " C%éD)lE

General Conditional

The general conditional, cond, is essentially obtained by combining the behaviors
of ccond and acond. T he concrete conditional requires that the targets of the two
lenses be identical, while the abstract conditional requires that they be digoint.
Here, we let them overlap arbitrarily, behaving like ccond in the region where they
do overlap (i.e., for arguments (a,c) to putback where a is in the intersection of
the targets) and like acond in the regions where the abstract argument to putback
belongs to just one of the targets. To this we can add one additional observation:
that the use of # in the debnition of acond is actually arbitrary. All that is
required isthat, when we use the putback of I;, the concrete argument should come

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

28 A J.N. Foger et. al.

from (C,):, so that I; is guaranteed to do something reasonable with it. These
considerations lead us to the following depnition.

& ,
I1* cifc(C,
|2* CifC.(C]_

(cond C; A1 Az far fip I I2)* €

(cond C; Ay Ay fo1 fioily 12) + (&, ©)
i+ (a,c) ifa(Ai5Ay) c(Cy
i1+ (a 0 if a(A15A;) ¢.(Cy

li+ (a ©) ifa(Al\Az) c((Co)

l1i+ (a,f21(c)) ifa(A\Az) c.((Co)

I+ (a, ©) ifa(A2NAp) ¢.(Cy

I+ (a,f12(c)) ifa(A2\A1) c(Cy

4C,Cq1,A1, A" V.4l ((C5Cy) ! A1 4l ((C\C) ! A,

4f 21 ((C\Cq) " (C5Cy)r . 4f12 ((C5C1) " (C\Cy): .

cond Ci AL A f21 f12 |1 |2 (c! (A11A2)
4C,Cq1,A1,A2" V.4l ((C5C1)/ 0 A1.4l,((C\Cy)/'0 A,
4f 21 ((C\Cy1) " (C5Cy), . 4f12 ((C5Cy) " (C\Cy) .

cond Ci AL As f21 f12 |1 |2 (c/0 (AllAz)

When a isin the targets of both I; and I,, cond+ chooses between them based
solely on c (as does ccond, whose targets always overlap). If a lies in the range
of only I, or I,, then cond@® choice of lens for putback is predetermined (as with
acond, whose targets are digoint). Once |+ is chosen to be either |1+ or I+ , if
the old value of cis not in ran(l+), , then we apply a Gxup function,Of 51 or f 1,
to ¢ to choose a new value from ran(l+), . # is one possible result of the bPxup
functions, but in general we can compute a more interesting value, as we will see
inthelist_filter lens, debPned in Section 7.

We argued above that cond captures all the power of ccond and acondN indeed,
because of the bxup functions f1, and f,;, it captures even more. We now argue,
informally, that thisisthe maximum generality possibleN i.e., that any well-behaved
and total lens combinator that behaves like a binary conditional can be obtained
as a special case of cond. Of course, the argument hinges on what we mean when
we say O behaves like a conditional.O We would like to capture the intuition that |
should, in each direction, Qest itsinput(s) and decide whether to behave like I; or
I,.0 In the get direction, there is little choice about how to say this: since there is
just one argument, thetest just amountsto testing membership in a set (predicate)
Ci. Inthe putback direction, there is some apparent Rexibility, since the test might
investigate both arguments. However, the requirements of well-behavedness (and
the feeling that a conditional lens should be QparametricOin I, and I», in the
sense that the choice between |, and |, should not be made by investigating their
behavior) actually eliminate most of this Rexibility. If, for example, the abstract
input a fallsin a (A;5A;, then the choice of whether to apply I3+ or I+ isfully
determined by c: if c(Cq, then it may bethat a= I;* c; in this case, using I;+
guarantees that |+ (a, ¢) = ¢, as required by Get Put, whereas |,+ gives us no
such guarantee; conversely, if c(C\Cy, we must use |5.

Similarly, if a (A1\ A5, then we have no choice but to usel;, since |,@ type does
not promise that applying it to an argument of this type will yield a result in Cj.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 29

Similarly, if a (A,\A1, then we must use |,. However, here we do have a little
genuine freedom: if a (A;\A, while ¢ (C\Cq, then, by the type of |,, thereis
no danger that a = l,* c. In order to apply |1, we need some element of (C,),
to use as the concrete argument, but it does not matter which one we pick; and
conversely for I,. The bxup functionsf,; and f1, cover all possible (deterministic)
ways of making this choice based on the given c. It is possible to be slightly more
general by making f,; and f 1, take both a and c as arguments, but pragmatically
there seems little point in doing this, since either [;+ or [+ isgoing to be called
on their result, and these functions can just as well take a into account.

7. DERIVED LENSES FOR LISTS

XML and many other concrete data formats make heavy use of ordered lists. We
describe in this section how we can represent lists as trees, using a standard cons-
cell encoding, and introduce some derived lenses to manipulate them. We begin
with very simple lenses for projecting the head and tail of a list. We then debne
recursive lenses implementing some more complex operations on lists: mapping,
reversal, grouping, concatenating, and Pltering. We give the proofs of the well-
behavedness and totality lemmas (in Appendix A) for these recursive lenses to
demonstrate how the reasoning principles developed in Section 3 can be applied to
practical examples.

Encoding

7.1 Debnition: A treet issaid to bealist il either it is empty or it has exactly
two children, one named *h and another named *t, and t(*t) isalso a list. We use
the lighter notation [ty ...t,] for thetree

iy B ;;xﬁ% |

In types, we write[] fﬁ thqset {{}} conta[ning only the empty list, C::D for the

h!" C, *t I" 0of Grons-cell treesOwhose head belongs to C and whose
tail belongsto D, and [C] for the set of listswith elementsin CN i.e., the smallest
set of trees satisfying [C] = [] 1 (C::[C]). We sometimes rebne this notation
to describe lists of specibc lengths, writing [D'1] for the set of lists of Ds whose
length isat least i and at most j, and writing [D'] for the set of lists whose length
isexactly i (i.e, [D'"]). Given two list values, I; and |, the set of lists denoted
by theinterleaving |1 &1, consists of all the lists formed by interleaving the elements
of I; with the elements of |, in an arbitrary fashion. For example, [a, b] &[c] is
theset {[a, b, c], [&, ¢, b], [c, a, b]}. Welift the interleaving operator to list
types in the obvious way: the interleaving of two list types, [B] and [C], isthe
union of all the interleavings of lists belonging to [B] with lists belongingto [C].
Similarly, we lift the usual append operator, written ++, to list types: [C] ++ D]
denotes the set of lists obtained by appending any element of [C] to any element
of [D].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

O\

HpE—

7

30 A J.N. Foger et. al.

Head and Tail Projections
Our brst list lenses extract the head or tail of a cons cell.

0 04
hdd = focus *h %t 1" (%

4C,D' T.4d(D. hdd((C:D)/ 0 C

K o
tl d = focus *t /éh!" d5

4C,D' T.4d(C. tl d((C:D)/'0 D

The lens hd expects a default tree, which it uses in the putback direction as the
tail of the created tree when the concrete tree is missing; in the get direction,
it returns the tree under *h. The lens t| works analogously. Note that the
types of these lenses apply to both homogeneous lists (the type of hd implies
4C' T.4d([C].hdd([C] /0 C)aswell ascons cellswhose head and tail have
unrelated types; both possibilities are used in the type of the booknar k lensin Sec-
tion 8. Thetypes of hd and t| follow from the type of f ocus.

List Map

Thelist _map lens applies a lens | to each element of a list:
listmap | = whap {*h!" |, *t !" list_napl}
AC,A' T.4l(C! A. listmapl ([C] ! [A]
AC,LA" T.4l(C/0 A. listomapl ([C] /0 [A]

The get direction applies | to the subtree under *h and recurses on the subtree
under *t. The putback direction uses |+ on corresponding pairs of elements from
the abstract and concrete lists. The result has the same length as the abstract list;
if the concrete list is longer, the extra tail is thrown away. If it is shorter, each
extra element of the abstract list is putback into #.

Since i st _map is our brst recursive lens, it is worth noting how recursive calls
are madein each direction. The get function of the wnap lens simply applies| tothe
head and |i st _map | to the tail until it reaches a tree with no children. Similarly,
in the putback direction, wrap applies | to the head of the abstract tree and either
the head of the concrete tree (if it is present) or #, and it applies|i st _map | tothe
tail of the abstract tree and the tail of the concrete tree (if it is present) or #. In
both directions, the recursive calls continue until the entire treeN concrete (for the
get) or abstract (for the putback)N has been traversed. (The recursion is controlled
by the abstract argument in the putback direction because the nap combinator uses
the children of the abstract tree to determine how many timesto call its argument
lens.)

Because | i st _nap is debPned recursively, proving it is well behaved requires just
a little more work than than for non-recursive derived lenses: we need to show that
it has a particular type assuming that the recursive use of | i st _map has the same
type. This is no surprise: exactly the same reasoning process is used in typing
recursive functional programs.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 31

Recall that the type of wrap requires that both sets of treesin itstype be shu$ e
closed. To prove that |i st _map is well-behaved and total, we will need a lemma
showing that cons-cell and list types are shu$ e closed.

7.2 Lemma: Let S,T' T. Then
(1) (S:=T)=(S=T)
@ [TI=[T]".

With these pieces in hand, the well-behavedness lemma follows by a straightfor-
ward calculation using the type of wnap.

7.3 Lemma [Well-behavedness]:
ACLA' T.4l(C! A, listimapl ([C] ! [A]

The proof of totality for |i st _nap is moreinteresting. We use Corollary 3.17(2),
which requires that we (1) identify two chains of types, - = Co' C; ' ... and
-= A" A1 ...,and (2 fromk (C; /0 Aj,provethat f(k) (Ci+1/ 0 Ajsq
for all i. We can then conclude that Px(f) (~ ;Ci /0 ~, Aj. For |ist_nap we
choose increasing chains of types as follows:

Ci=-"1]1" Cz[]" c=zC=[]"
Ai=-"[1" Az[1" AzAZ[]"
The full argument is given in the proof of Lemma 7.4 in Appendix A.
7.4 Lemma [Totality]: 4C,A' T.4(C/'0 A. listmapl ([C] /0 [A]

Reverse

Our next lens reverses the elements of a list. The algorithm we use to implement
list reversal runsin quadratic timeN we reverse the tail of the list and then use an
auxiliary lensto rotate the head to the end of the reversed tail. Before presenting
theli st _reverse lens, we describe this auxiliary lens, called rot at e.

rotate = acond ([] 2 (D:=[1)) ([11(D:[1))
id
(renane *h t np;
hoi st _nonuni que *t {*h, *t};
fork {*h} id (renane tnp *h;rot at e; pl unge *t))

4D' T. rotate([D]/'0 [D]

In the get direction, rot at e has two cases. If the list is empty or a singleton, the
acond applies i d, which returns the original empty or singleton list unmodibed.
Otherwise, it (1) renames the head to tnp; (2) hoists up the tail, which yields
children *h and *t since thelist is neither empty nor a singleton; and (3) splitsthe
tree in two using fork, applying the i d lens to the part of the tree consisting of
the single child *h (i.e., the second element in the original list), and putsthe t np
element at the end of thelist. To do this, it brst renamest np back to *h, yielding
alist whose head is the head of the original list and whose tail isthe tail of the tail
of the original list. The recursive call to rotat e puts the head of this list to the
end of the list, yielding the original list with two di! erences: the brst element is at

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

32 A J.N. Foger et. al.

the end and the second element not present. Finally, the resulting list is plunged
under *t, and (after the f ork) the result is concatenated with the original second
element.

The putback direction also has two cases, corresponding to the two arms of the
acond lens. It brst checks whether the abstract view isthe empty list or a singleton
list. If so, then it applies the i d lens, which returns the abstract list unchanged.
Otherwise, it applies the three steps given above in reverse order: it brst splitsthe
abstract and concrete lists as in the get direction, passing the head through thei d
lens and partially rotating the tail. To do this, it hoists the tail tag, recursively
applies rotate (bringing the last element to the head of this list), and renames
*h to tnp. The result after the fork is the original list (under the names *h and
*t) without its original last element concatenated with the last element under the
name t np. Next the lens hoi st _nonuni que plunges the *h and *t children under
*t. Finally, tnp is renamed back to *h. This has the el ect of bringing the last
element of the abstract list to the head of the result and shifting the position of
every other element by one.

The well-behavedness proof is a simple calculation, using Corollary 3.17(1) and
the types of the lenses that make up rot at e.

7.5 Lemma [Well-behavedness]: 4D' T.rotate([D] ! [D]

The totality lemma is proved using Corollary 3.17(2), after establishing, by in-
duction on i, that rotate ([D'] /0 [D'].

7.6 Lemma [Totality]: 4D' T.rotate([D] /0 [D]

Using r ot at e, the debnition of | i st _rever se is straightforward:

list_reverse = wrap {*t !" list_reverse}; rotate

4D' T. listreverse([D] /0 [D]

In the get direction, we simply reverse the tail and rotate the head element to the
end of the list. In the putback direction, we perform these steps in reverse order,
brst rotating the last element of the list to the head and then reversing the tail.
Note also that |i st _reverse behaves like the identity when it is applied to the
empty list, i.e., {}, since the get and putback components of wrap and r ot at e each
map {} to {}.

The algorithm for computing the reversal of a list shown here runs in quadratic
time. Interestingly, we havenot been ableto codethefamiliar, linear-timealgorithm
as a derived lens (of course, we could introduce a primitive lens for reversing lists
that uses the €' cient implementation internally, but it is more interesting to try
towritethe €' cient version using our combinators). One di" culty arises if we use
an accumulator to store the result: the putback function of such a transformation
would be non-injective and so could not satisfy Put Get. To see this, consider
putting the tree containing [¢] under the accumulator child and [b a] asthe rest
of thelist. Thiswill yield the sameresult, [a b c], asputting back a tree containing
[1 under the accumulator child and [a b c] astherest of the list.

The well-behavedness lemma follows straightforwardly from the types of whap
and rotat e, using Corollary 3.17(1).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 33

7.7 Lemma [Well-behavedness]: 4D' T.list_reverse([D] ! [D]

For the totality lemma, we use Corollary 3.17(2), after proving, by induction on
i,that list_reverse([D'] /0 [D'] for alli.

7.8 Lemma [Totality]: 4D' T.list_reverse([D] /0 [D]

Grouping

Next we give the debnition of a GyroupingOlens that, in the get direction, takes a
list of Ds and produces a list of lists of Ds where the elements have been grouped
in pairs. It isused in our bookmark synchronizer as part of a transformation that
takes dictionaries of user preferences stored in the particular XML format used by
Apple® Safari browser and yields trees in a simplibed abstract format. When the
concrete list has an even number of elements, the behavior group lens is simpleN
e.g., it maps[d;, dy, d3, d4, ds, dg] to[[dy, do], [d3, ds4], [ds, ds]]. When
there are an odd number of elementsin thelist, gr oup places the Pnal odd element
in a singleton listbe.g., it maps [dy, dp, d3] to[[dy, do], [d3]]. The typing for
group, given below, describes both the odd and even case.

Because it explicitly destroys and builds up cons cells, the debnition of group is
a little bit longer than the lenses we have seen so far. We explain the behavior of
each part of the lensin detail below.

group =
acond [][]
id
(acond (D ::[]) ((D::[]):[1)
(pl unge *h; add *t [])
(renane *h t np;
hoi st _nonuni que *t {*h,*t};
fork {*t}
(map group)
(xfork {*h} {*t} (add *t {}; pl unge *t) (renane t np *h);
pl unge *h)))
4D' T group([D] /0 [D=D:[]11+H[1 2 ((MD:=[D):=[1)

The get component of gr oup has two cases, one for each branch of the two acond
conditionals. If the concrete list is empty, then gr oup behaves like the brst branch,
which is the identity. Otherwise, if the concrete list is a singleton, then group
behaves like the second branch, which plunges the singleton list under *h and adds
a child *t leading to the empy list. That is, it%ransforms singleton listscinto the
singleton list containing c, 7h!" ¢, *t I" {} 70 Otherwise, if neither of the two
previous cases apply, then group behaves like the third branch. There are three
steps. First, it renamesthe head element, storing it away under a child named t np.
Next, it hoists up the tail of the list, yielding a tree with children t np, *h, and *t
(since the list is neither empty nor a singleton). In the third step, it recursively
groups the tail, massages the other tree into a list of length two, and yields the
cons cell made up of these trees as the result.

More specibcally, in the third step of the bPnal case, group splits the treeinto a
tree with a single child *t and a tree containing the *h and t np children. It then

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

34 A J.N. Foger et. al.

recursively groupsthetail using (map group). Theother treeis split yet again, into
*h and tnp. The tree with *h is made into a singleton list by adding a child *t
leading to the empty view, and then plunged under *t. Thetree containingtnp is
turned into the head of a cons cell by renamiQ%t np back to *h. &fter the xfork,
these twotre_? are plunged %nder *h. Thus, “np!" d,*h!" d, 70is transformed
intothetree gh " [d, d] £ The bnal result is obtained by merging the grouped
tail with this head element.

Since each lens used in group is oblivious,” the putback function is symmetric,
with three cases corresponding to the branches of the acond. Its behavior can be
calculated by evaluating the compositionsin reverse order.

The well-behavedness of gr oup follows from Corollary 3.17(1) and a simple, com-
positional argument using the types of each lens appearing in its debnition.

7.9 Lemma [Well-behavedness]:
4D" T group([D] ! [DzD:[11+K([]1 1 ((D:[1):(1))
We prove the totality lemma using Corollary 3.17(2), using the increasing chains
of types:
Ci -1 D[] ' D:(D:[])
A= - [1 @z 0=D=[]):[]"

whose limit is the total type we want to show for group.

7.10 Lemma [Totality]:
4AD' T group([D] /0 [D=zD:[]11+H[] L (D :[D):=[1)

Concatenation

The concat lens takes a tree t as an argument. It transforms lists containing
two sublists of Ds and concatenates them into a single list using a single element
t to track the position where the brst list ends and the second begins. For ex-
ample, gy, thetrﬁ[[c, h,r,i,s],[S mi,t, h]], the get component of
(concat " 1" {}79 producesthesinglelist [C h, r,i,s, " ", S mi,t, h].
Conversely, the putback function takes a list containing exactly one t and splits
the list in two, producing lists containing the elements to the left and right of t
respectively. The debnition is as follows.

concat t = acond ([]::[D] ::[]) (t::[D])
(wrap {*h!" const t[],*t !" hd[]})
(fork {*t} id (hoi st *h; renane *t t np);
fork {*h} id (renane tnp *h; concat t; pl unge *t))

4D' T,t(T.witht.(D. concat t([D]::[D]:[]/0 [D]+Ht:[D])

“Although group uses the const lens indirectly, via add, it is semantically oblivious. Recall that
(add n {}) expands into (xfork {}{n} (const {} {}; plunge n) id). The type annotation on add
ensures that the putback function is only ever applied to abstract trees that have a child n leading
to {}. From this, a simple argument shows that both arguments to const# are always {}. As a
result, in this case, the behavior of const# does not depend on its concrete argumentN the lens
is oblivious.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 35

In the get direction, there are two cases, one for each branch of the acond. If the
concrete list is of the form ([] ::1::[]), where | ([D], then concat t produces
the result (t++) by applying (const t []) to the head and (hd []) to extract |
from the tail. Otherwise, the brst element of the concrete list is non-empty and
the acond selects the second branch. The brst fork splits the outermost cons cell

rdmgto{ q& Thei dlensisapplied to thetail cogyponeng, WhICh hasthe fg

" (I2::[1)7° The other component hasthe form “h " h!" d, *t I" 1,700
The edge labeled *h is clipped out using hoi st, yielding children *h and *t (i.e.,
the head and tail g he brst sublist) the*t child isrenamed to t np. Thesetwo
stepsyield atree h!" d, tnp!" 1170 Th%secondo,{f ork splits the tree according
g? *h} The| d IenS|sa lied to thetree 7h!" The other part of thetreeis
5 A S (P} ..[])/8 By renamingtnpto 4? recursively concjenatmg and
plunglngthe result under *t, we obtain the tree ’gt " (Ip+H(tlR)) 0 Combining
these two results into a single tree, we obtain the list (d::11)++(t::15).

The putback function is oblivious; its behavior is symmetric to the get function.

Once again, the well-behavedness lemma for concat t follows by a simple, com-
positional calculation, using Corollary 3.17(1).

7.11 Lemma [Well-behavedness]:
4D' T,t(T.witht.(D. concat t([D]:[D]:=[]1" [D]++t:[D])

The totality lemma follows from Corollary 3.17(2), using the increasing chains of
types:

Ci - [1=[D]1=[1 " (D=[D=[Dl=[] " (b=Db:=[D=[DY:=[1 "
Ai = - [1++(t=[D])" (Dz[])++(tz[D])" (DD :[])++(t=[D])"

whose limit isthe total type we want to show for concat t.

7.12 Lemma [Totality]:
4D' T,t(T.witht.(D. «concat t([D]:[D]:=[]/0 [D]++t:[D])

Filter

Our most interesting derived list processing lens, list filter, is parameterized
on two sets of views, D and E, which we assume to be digoint and non-empty.
In the get direction, it takes a list whose elements belong to either D or E and
projects away those that belong to E, leaving an abstract list containing only Ds;
in the putback direction, it restores the projected-away Es from the concrete list.
Its debnition utilizes our most complex lens combinatorsN wrap and two forms of
conditionalsN and recursion, yielding a lens that is well-behaved and total on lists
of arbitrary length.

In the get direction, the desired behavior of list filter D E (for brevity, let
us call it I) isclear. In the putback direction, things are more interesting because
there are many ways that we could restore projected elements from the concrete
list. The lens laws impose some constraints on the behavior of I+ . The Get Put
law forces the putback function to restore each of the bltered elements when the
abstract list is put into the original concrete list. For example (letting d and e
be elements of D and E) we must have |+ ([d],[ed]) = [e d]. The Put Get
law forces the putback function to include every element of the abstract list in the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

36 A J.N. Foger et. al.

resulting concrete list in the same order, and these elements must be the only Ds
in the result; there is, however, no restriction on the Es when the abstract treeis
not the Pltered concrete tree.

In the general case, wherethe abstract list aisdi! erent from the bltered concrete
list I* c, thereissomefreedom in how I+ behaves. First, it may selectively restore
only some of the elements of E from the concretelist (or indeed, even lessintuitively,
it might add some new elements of E that it somehow makes up). Second, it may
interleave the restored Es with the Ds from the abstract list in any order, as long
as the order of the Ds is preserved from a. From these possibilities, the behavior
that seems most natural to usisto overwrite elements of D in ¢ with elements of
D from a, element-wise, until either ¢ or a runs out of elements of D. If ¢ runs
out brst, then |+ appends the rest of the elements of a at the end of c. If a runs
out brst, then I+ restores the remaining Es from the end of ¢ and discards any
remaining Dsin ¢ (as it must to satisfy Put Get).

These choices lead usto the following specibcation for a single step of the putback
part of a recursively debned lens implementing |. If the abstract list a is empty,
then we restore all the Esfrom c. If cisempty and a is not empty, then we return
a. If aand c are both cons cells whose heads are in D, then we return a cons cell
whose head is the head of a and whose tail is the result obtained by recursing on
thetailsof both aand c. Otherwise (i.e., chastypeE ::([D]&[E])) werestorethe
head of c and recurse on a and the tail of c. Translating thisinto lens combinators
leads to the debnition below of a recursive lensinner filter, which Plters lists
containing at least one D, and a top-level lenslist filter that handles arbitrary
listsof Dsand Es.

inner filter D E =
ccond (E:([DY'] &[E]))
(tl anyg; inner filter D E)
(wrap {*h!" id,
*t 1" (cond[E] [] [D¥'] Btrg ("c. c+{anyy])

(const [] [])
(inner filter D E))})

list filter DE =
cond[E] [] [DY'] Btrg ("c. c+{anyy])

(const [] [])
(inner filter D E)}

AD,E' T.withD5E=-and D=-and E = -.
inner filter D E([DY']&[E]/'0 [DY']
list filter DE ([D]&[E] /0 [D]

The Gehoice operatorOany, denotes an arbitrary element of the (non-empty) set
D .8 Thefunction Btrg istheusual list-Pltering function, which for present purposes

8We are dealing with countable sets of bnite trees here, so this construct poses no metaphysical
conundrums; alternatively, but less readably, we could just as well pass list filter an extra
argument d$ D.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 37

we simply assume has been debned as a primitive. (In our actual implementation,
we use list filter* ; but for expository purposes, and to simplify the totality
proofs, we avoid thisextra bit of recursiveness.) Finally, thefunction " c. c++ anyp]
appends some arbitrary element of D to the right-hand end of alist ¢. These Gbxup
functionsOare applied in the putback direction by the cond lens.

The behavior of the get function of |'i st _filter can be described as follows. If
c ([E], then the outermost cond selects the const [] [] lens, which produces
[1. Otherwise the cond selectsinner _filter, which uses a ccond instance to test
if the head of thelist isin E. If thistest succeeds, it strips away the head using t |
and recurses; if not, it retains the head and blters the tail using whap.

In the putback direction, if a = [] then the outermost cond lens selects the
const[] [] lens, with casthe concreteargument if ¢ ([E] and (f3trg c) otherwise.
This has the el ect of restoring all of the Es from c. Otherwise, if a= [] then the
cond instance selects the putback of thei nner filter lens, using c asthe concrete
argument if ¢ contains at least one D, and ("c. c++H anyy]) ¢, which appends a
dummy value of type D tothetail of c, if not. The dummy value, anyp, isrequired
because i nner _filter expects a concrete argument that contains at least one D.
Intuitively, the dummy value marksthe point where the head of a should be placed.

Toillustrate how all this works, let us step through some examples in detail. In
each example, the concrete type is [D] &[E] and the abstract typeis[D]. We
will write d; and g; to stand for elements of D and E respectively. To shorten the
presentation, we will writel for list filter D E (i.e, for the cond lensthat it is
debned as) and i for inner filter D E. In the brst example, the abstract tree a
is[di], and the concretetreecis[e; d; €] . At each step, we underline the term
that is simplibed in the next step.

I+ (a,c)=i+ (a 0
by the debnition of cond, asa([DY'] and c(([D]&[E])\ [E]
(tl anye; i)+ (a, 0
by the dePpjitionyof ccond, asc (£ :4[D*']&[E])
(th anyg)+ i+ a, (tl anyg)* ¢, c
by the debpition of compositiog
(th anyg)+ i+ (a,[dr er]), C
reducing (t} anyg)* ¢ 5
(th anyg)+ wmap{*h!" id,*t " 1} + (a,[d2 ez]), C
by the debpjtion of ccond, as[d; go] .(E:([D*']&[E])
(thanyg)+ diz(l+ ([1,[e2])). c
by the debpjition of whap with i d+ (dy, d2) = dy
(th anyg)+ diz((const [][1)+ ([1,[e2])). c
by the debnition of cond, as[] ([] and [e2] ([E]
(tl anyg)+ (di::[e2], ©
by the debnition of const
[e1 d; e2] by the debnition of t1 .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

38 A J.N. Foger et. al.

Our next two examples illustrate how the Gpxup functionsO supplied to the cond
lens are used. The brst function, Rtrg, is used when the abstract list is empty and
the concrete list isnot in [E]. Let a= [] and c= [d; e41].

4 5
I+ (a ¢) = (const [] [])+ [],Btrg[ds €]
by the depnition of cond, asa= [] but c.([E]

(const [] [1)+ ([1.[e1])
by the debnition of Btrg
[e1] by debnition of const.

The other bxup function, ("c. ct+H anyy]), inserts a dummy D element when
list filter is called with a non-empty abstract list and a concrete list whose
elementsareall in E. Let a= [d;] and c= [e;] and assume that any, = do.

4 5
I+ (a,c)=1i+ a, ("c.cttanyy])c
by the debnition of cond, asa([D*'] and c([E]
= i+ (a [e1 do])
by the depnition of (" c. c+H anyp])
= (tl anyg; i)+ (a [er do])
by the debpjtion,of ccond, as[e; do] (£::([D*'g D&[E])
= (tlanye)+ i+ a (tl anye)* [esdg] . [er do]
by the deppjition of composition g
= (tl anyg)+ i+ (& [do]), [e1 do]
reducing (t1 anyg)* [e1 do]
= (tl agye) 5
+ wrap {*h!" id,*t " 1} + (a, [do]), [e1 do]
by the deppition of ccond, as[do] .(E5::([D1--’ 1&[E])
= (thanyg)+ dizx(l+ ([1,[1)), [€1 do]
by the debqition of whap with i d+ (dy, dg) = ds 5
= (thanyg)+ diz((const [] [1)+ ([1,[1)), [e1 do]
by the debnition of cond, as[] ([] and [] ([E]
= (tl anyg)+ (di:[], [e1 do])
by the debnition of const
= [ey di] by the debnition of tI.

T he well-behavedness proof for i nner filter is straightforward: we simply de-
cideon atypefor therecursiveuse of i nner _filter and then show that, under this
assumption, the body of the lenshasthistype. Sincelist filter isnot recursive,
both its well-behavedness and totality lemmas both follow straightforwardly from
the types of the lenses that are used in its depnition.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

7

Combinators for Bi-Directional Tree Transformations a 39

7.13 Lemma [Well-behavedness]:
AD,E' T.withD5E=-and D=-and E = -
inner filter DE([DY']&[E] ' [D']
list filter DE([D]&[E] ! [D]

The totality proof for i nner filter, on the other hand, is somewhat challeng-
ing, involving detailed reasoning about the behavior of particular subterms under
particular conditions. The proof uses Lemma 3.19, with sequences of sets of total

types

To = {(-.)}
Tier = {(IDY]&[E®Y],[D24]) [x+y = i}.

The complete argument is given in electronic Appendix A.

7.14 Lemma [Totality]:
AD,E' T.withD5E=-and D=-and E = -.
inner filter DE([DY']&[E]/'0 [DY]
list filter DE([D]&[E] /0 [D]

8. EXTENDED EXAMPLE: A BOOKMARK LENS

In this section, we develop a larger and more realistic example of programming
with our lens combinators. The example comes from a demo application of our data
synchronization framework, Harmony, in which bookmark information from diverse
browsers, including Internet Explorer, Mozilla, Safari, Camino, and OmniWeb, is
synchronized by transforming each format from its concrete native representation
into a common abstract form. We show here a slightly simplibed form of the Mozilla
lens, which handles the HTML-based bookmark format used by Netscape and its
descendants.

The overall path taken by the bookmark data through the Harmony system can

be pictured as follows.
html concrete
HTML
abstract
view

other
abstract
ew

i synci

html new bookmark{ new
writer concrete put abstract
V|ew V|ew

We brst use a generic HTML reader to transform the HTML bookmark Ple into
an isomorphic concrete tree. This concrete tree is then transformed, using the get
direction of the bookmark lens, into an abstract (yeneric bookmark tree© The
abstract treeis synchronized with the abstract bookmark tree obtained from some
other bookmark Ple, yielding a new abstract tree, which is transformed into a new
concrete tree by passing it back through the putback direction of the bookmar k

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

