P. Auer, N. Cesa-bianchi, and P. Fischer, Finite-time analysis of the multiarmed bandit problem, Machine Learning, vol.47, issue.2/3, pp.235-256, 2002.
DOI : 10.1023/A:1013689704352

A. Auger and O. Teytaud, Continuous lunches are free plus the design of optimal optimization algorithms. Algorithmica, Accepted. 3. B. Bruegmann. Monte-carlo Go (unpublished draft http, 1993.
URL : https://hal.archives-ouvertes.fr/inria-00369788

G. Chaslot, C. Fiter, J. Hoock, A. Rimmel, and O. Teytaud, Adding Expert Knowledge and Exploration in Monte-Carlo Tree Search, Advances in Computer Games, 2009.
DOI : 10.1007/978-3-642-12993-3_1

URL : https://hal.archives-ouvertes.fr/inria-00386477

G. Chaslot, J. Saito, B. Bouzy, J. W. Uiterwijk, and H. J. Van-den-herik, Monte-Carlo Strategies for Computer Go, Proceedings of the 18th BeNeLux Conference on Artificial Intelligence, pp.83-91, 2006.

R. Coulom, Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search, Proceedings of the 5th International Conference on Computers and Games, pp.72-83, 2006.
DOI : 10.1007/978-3-540-75538-8_7

URL : https://hal.archives-ouvertes.fr/inria-00116992

F. De-mesmay, A. Rimmel, Y. Voronenko, and M. Püschel, Bandit-based optimization on graphs with application to library performance tuning, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, p.92, 2009.
DOI : 10.1145/1553374.1553468

URL : https://hal.archives-ouvertes.fr/inria-00379523

S. Gelly and D. Silver, Combining online and offline knowledge in UCT, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.273-280, 2007.
DOI : 10.1145/1273496.1273531

URL : https://hal.archives-ouvertes.fr/inria-00164003

D. Knuth and R. Moore, An analysis of alpha-beta pruning, Artificial Intelligence, vol.6, issue.4, pp.293-326, 1975.
DOI : 10.1016/0004-3702(75)90019-3

L. Kocsis and C. Szepesvari, Bandit Based Monte-Carlo Planning, 15th European Conference on Machine Learning (ECML), pp.282-293, 2006.
DOI : 10.1007/11871842_29

T. Lai and H. Robbins, Asymptotically efficient adaptive allocation rules, Advances in Applied Mathematics, vol.6, issue.1, pp.4-22, 1985.
DOI : 10.1016/0196-8858(85)90002-8

URL : http://doi.org/10.1016/0196-8858(85)90002-8

C. Lee, M. Wang, G. Chaslot, J. Hoock, A. Rimmel et al., The Computational Intelligence of MoGo Revealed in Taiwan's Computer Go Tournaments, IEEE Transactions on Computational Intelligence and AI in games, 2009.

W. Powell, Approximate Dynamic Programming, 2007.

P. Rolet, M. Sebag, and O. Teytaud, Optimal active learning through billiards and upper confidence trees in continous domains, Proceedings of the ECML conference, 2009.

F. Teytaud and O. Teytaud, Creating an Upper-Confidence-Tree Program for Havannah, ACG 12, 2009.
DOI : 10.1007/978-3-642-12993-3_7

URL : https://hal.archives-ouvertes.fr/inria-00380539

Y. Wang and S. Gelly, Modifications of UCT and sequence-like simulations for Monte-Carlo Go, 2007 IEEE Symposium on Computational Intelligence and Games, pp.175-182, 2007.
DOI : 10.1109/CIG.2007.368095