N. Amenta, S. Choi, and G. Rote, Incremental constructions con BRIO, Proceedings of the nineteenth conference on Computational geometry , SCG '03, pp.211-219, 2003.
DOI : 10.1145/777792.777824

K. Buchin, Constructing Delaunay Triangulations along Space-Filling Curves, Proc. 17th European Symposium on Algorithms, pp.119-130, 2009.
DOI : 10.1007/978-3-642-04128-0_11

K. Buchin, M. Löffler, P. Morin, and W. Mulzer, Delaunay Triangulation of Imprecise Points Simplified and Extended, Proc. 18th Workshop Algorithms Data Struct, pp.131-143, 2009.
DOI : 10.1007/978-3-540-92182-0_49

B. Chazelle, O. Devillers, F. Hurtado, M. Mora, V. Sacristán et al., Splitting a Delaunay Triangulation in Linear Time, Algorithmica, vol.34, issue.1, pp.39-46, 2002.
DOI : 10.1007/s00453-002-0939-8

URL : https://hal.archives-ouvertes.fr/hal-01179401

F. Chin and C. A. Wang, Finding the Constrained Delaunay Triangulation and Constrained Voronoi Diagram of a Simple Polygon in Linear Time, SIAM Journal on Computing, vol.28, issue.2, pp.471-486, 1998.
DOI : 10.1137/S0097539795285916

P. Machado-manhães-de-castro and O. Devillers, Self-adapting point location, Research Report, vol.7132, 2009.

C. Delage, Spatial sorting, CGAL User and Reference Manual. 3.5 edition, 2009.

O. Devillers, THE DELAUNAY HIERARCHY, International Journal of Foundations of Computer Science, vol.13, issue.02, pp.163-180, 2002.
DOI : 10.1142/S0129054102001035

URL : https://hal.archives-ouvertes.fr/inria-00166711

O. Devillers, S. Pion, and M. Teillaud, WALKING IN A TRIANGULATION, International Journal of Foundations of Computer Science, vol.13, issue.02, pp.181-199, 2002.
DOI : 10.1142/S0129054102001047

URL : https://hal.archives-ouvertes.fr/inria-00344519

L. Devroye, C. Lemaire, and J. Moreau, Expected time analysis for Delaunay point location, Computational Geometry, vol.29, issue.2, pp.61-89, 2004.
DOI : 10.1016/j.comgeo.2004.02.002

L. Devroye, E. Peter-mücke, and B. Zhu, A Note on Point Location in Delaunay Triangulations of Random Points, Algorithmica, vol.22, issue.4, pp.477-482, 1998.
DOI : 10.1007/PL00009234

L. J. Guibas, D. Salesin, and J. Stolfi, Epsilon geometry: building robust algorithms from imprecise computations, Proc. 5th Annu. Sympos, pp.208-217, 1989.

L. J. Guibas, D. Salesin, and J. Stolfi, Constructing strongly convex approximate hulls with inaccurate primitives, Algorithmica, vol.37, issue.2, pp.534-560, 1993.
DOI : 10.1007/BF01190154

M. Löffler and J. Snoeyink, Delaunay triangulation of imprecise points in linear time after preprocessing, Computational Geometry, vol.43, issue.3, pp.234-242, 2009.
DOI : 10.1016/j.comgeo.2008.12.007

T. Nagai, S. Yasutome, and N. Tokura, Convex Hull Problem with Imprecise Input, japanese Conference on Discrete and Computational Geometry, pp.207-219, 2004.
DOI : 10.1007/978-3-540-46515-7_18

R. Seidel, A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons, Computational Geometry, vol.1, issue.1, pp.51-64, 1991.
DOI : 10.1016/0925-7721(91)90012-4