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Should penalized least squares regression be
Interpreted as Maximum A Posteriori estimation?

Rémi Gribonval

Abstract

Penalized least squares regression is often used for sigmalising and inverse problems, and is commonly
interpreted in a Bayesian framework as a Maximum A Poste(dAP) estimator, the penalty function being the
negative logarithm of the prior. For example, the widely disgiadratic program (with af' penalty) associated
to the LASSO / Basis Pursuit Denoising is very often considesis MAP estimation under a Laplacian prior in
the context of additive white Gaussian noise (AWGN) redwctiThis paper highlights the fact that, while this
is one possible Bayesian interpretation, there can be other Bgaateptable Bayesian interpretations. Therefore,
solving a penalized least squares regression problem \eitlalty ¢(z) need not be interpreted as assuming a prior
C - exp(—¢(x)) and using the MAP estimator. In particular, it is shown thatdny prior Px, the minimum mean
square error (MMSE) estimator is the solution of a penalieedt square problem with some penalty:), which
can be interpreted as the MAP estimator with the péiorexp(—¢(z)). Vice-versa, forcertain penaltiesy(z), the
solution of the penalized least squares problem is indeedtMSE estimator, with a certain pridPx. In general

dPx(z) # C - exp(—o(z))dx.

. INTRODUCTION

Consider the problem of estimating an unknown signal R from a noisy observatiop = x + b, also known
as denoising Given an arbitrary noisy observationthe goal is to estimate the noiseless signain practice,
designing a denoising scheme amounts to choosing a fungtidR™ — R™ which provides estimates of the form
Z = 1(y). However, unless one specifies further what is meant by &iasad "signal”’, denoising is a completely
il-posed problem since any pair, b such thaty = = + b can be replaced by a pair,t’ wherez’ = z + z,

b = b — 2. Practical denoising schemes hence have to rely on vanges tof prior information onx andb to
design an appropriate denoising functipn

A. Bayesian estimation

A standard statistical approach to the denoising problemsists in assuming thatandb are drawn independently
at random from knowiprior probability distributionsPx and Pz. Under thismode| given a cost functioi® (z, x)
that measures the quality of an estimatoin comparison to the true quantity to estimatethe Bayes estimator
is defined as an estimatgr with minimum expected cost:

arg mwinE {CW(X +B),X)}.

For a quadratic cost functio®(z, z) := || — z||3 the Bayes estimator is the minimum mean square error (MMSE)
estimator [5], also called conditional mean, posterior mea conditional expectation:

Ymee(y) = E(X[Y =y). (1.1)
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Even though this estimator is "optimal” in the above definedse, its computation involves a high-dimensional
integral and cannot generally be done explicitly. In p@stiMonte-Carlo simulations can be used to approximate
the integral.

Often more amenable to efficient numerical optimizatiorhis popular Maximum A Posteriori (MAP) criterion,
which is the Bayes estimator associated to @he 1 cost function €(z,x) = 1, whenz # z; C(&,x) = 0, when
Z = x). Exploiting Bayes rule and assuming that both the noisethedinknown noiseless signal have probability
density functions (pdf)px andpg(b), the MAP estimator reads:

Ymp(y) = argmaxp(zly) = arg max p(y|x)p(r)
ZBER" ZBER"
= arg min {~logpp(y — ) —logpx(x)}.

For white Gaussian noigewe havepp(b) o exp(—||b]|3/2), where||b||3 = "%, b? and the notatiorf (z) « g(x)

meansf(z) = C - g(z) for all =, with C' # 0 some constant independent.of Hence the MAP estimator under
the priorpx (z) can be expressed as

Uwmp(y) = arg min =y — o] + [~ log px («)] (1.2)
zER™ 2

B. Regularization

Optimization problems of the type (I.2) have also been oftensidered in signal processing without explicit
reference to probabilities or priors, under the generimfor

1 2
arg min o [ly — x|z + é(z). (1.3)

The deterministic objective is to achieve a tradeoff betwde data-fidelity termjy — z||3 and the penalty term
¢(x), which promotes solutions with certain properties. In ipatar, when the functiorn is non-smooth at the
origin, such asp(z) = |lz|[b := >, |xi[P,0 < p < 1, the optimum of the criterion (I.3) is known to have
few nonzero entries. Regularization with such penalty fioms is at the basis adhrinkagetechniques for signal
denoising (see e.g. [3] withh = 1, or [6] with 0 < p < 1). More recently, these approaches have become a
very popular means of promotingparsesolutions to under-determined or ill-conditioned lineaverse problems

y = Az + b, and are now a key tool for compressed sensing [4].

C. Plurality of Bayesian interpretations of regularizatio

Given the identity of the optimization problems (1.2) and3f{lwhen ¢(x) = owap(z) := —logpx(z), the
regularization problem (1.3) is often interpretéas "solving the MAP under the prigry (z) = exp(—¢(z))/Cy”,
where

Cy = /Rn exp(—o¢(x))dz. (1.4)

In particular, wheny(z) = ||z||;, @ possible interpretation of (1.3) is MAP denoising unddragplacian prior on
x and white Gaussian noise.

The main objective of this paper is to highlight the fact théiile one Bayesian interpretation of the penalized
least-squares estimator (1.3) with penalty functiofr) is the MAP estimatoriwp(y) with prior px(z) =
exp(—¢(z))/Cy, there can be other admissible Bayesian interpretations

We focus on white Gaussian denoising and show thiaany prior Px and any noisy observationp € R", the
MMSE estimateywee(y) under the priorPx is the solution of a penalized least-squares problem (1i#) an
appropriate penalty functiopwee(x). Thus, the problem (1.3) with penaliywse(x) can equally be interpreted
as: a) the MAP estimatap,,4p(y) with a prior associated to the pgfc () = exp(—dmee())/Copee; OF b) the
MMSE estimator with priorPx. In generaldPx (z) # px(x)dx.

1This interpretation only makes sensef, < oo is integrable. Otherwise some authors refer to a “non-infiiive prior”.



Il. MAIN RESULTS

From now on we focus on Gaussian denoisifg):c R™ is a centered normal Gaussian variable with law
Pp = N(0,1,,) and pdfpp(b) o exp(—|b||3/2). We letX € R™ be a random variable independent®f with law
Px. The probability distribution of the noisy observatidh= X 4+ B has a pdf

n

py (y) :=pB*Px(y) = / pB(y — r)dPx () (1.1)

which is sometimes refered to as theidenceof the observatiory. When Py is associated to a pdfx(x), the
evidence is given by a standard convolution between pdfs= pp x px. Even whenPx is not associated to a
pdf, py infinitely differentiable, i.e.py € C>*(R™).

In this setting, using techniques going back to Stein’s asddl risk estimator [9], [1], one can express the MMSE
estimator as [8]

1 0 "
Ymvee (Y =y+—[—pyy} =y + Vliogpy (y). (1.2)
mse (Y) i () _ )

All vectors u € R, such as the gradier¥ logpy (y) € R”, are in column form. Their transposé’ is in row
form.

Next we study whethet)mse can also be written as the optimum of an optimization probtenthe MAP
type (1.3), with an appropriate choice ¢f Namely, we investigate whemwse can be identified with theroximity
operator[2] of a function ¢, where we recall the definition

. 1
prox, () := arg 1 { 31— = + ()} (13)
z€R™ | 2
Rereading Equation (1.2) the MAP estimator (with prio¢(x)) can be written ag/wp = prox,,,, where
ovep(z) := —log px (z). (1.4)
For smooth¢ we have the implicit characterization [2]
prox,(y) :=y — Va[prox,(y)], Yy cR". (11.5)
Comparing (I1.2) with (I1.5), we see that ifmse = prox, then
Volymee(y)] = —Viogpy(y), VyeR" (11.6)

Indeed, the relation (I1.6) characterizes all functiensuch thatimse = prox,, thanks to the following lemma.

Lemma Il.1. Let X Px,B ~ PgN(0,I) be independent random variables R*. Assume that there is no pair
v € R", ¢ € R such that(X,v) = ¢ with probability one. Then the MMSE estimatgr— ¥mee(y) has the
following properties:

1) it is one-to-onefrom R™ onto Impwee C R™: for any pair y,y" € R™, if vmee(y) = vmee(y’) theny = y/.

2) itis C®(R"); so is its inverse)pie : IMmee — R™.

3) whenn = 1 we further have that)wse is increasing.

The proof is in Appendix A. Note that the probability distitibon Px in Lemma 1.1 can be almost arbitrary,
provided that there is no lower-dimensional affine spac®fto which X belongs almost surely. In particular,
Px need not be separablén light of this lemma, (11.6) is equivalent to

Vg(z) = ~Viogpy [Umee(2)], Yz € Immee.

As shown by our main theorem (the proof is in Appendix B), taguation is satisfied by the functiofwse :
R" — R U {+c0} defined as:

for z € Imywmee; (1.7)
+00, for ¢ Imywee.

— 5 llmee(x) — =3 —log py [Ymee()];
dmee(x) =



Theorem 11.2. Let X Px,B ~ Pg = N(0,1I) be independent random variables Ri*. Assume that there is no
lower-dimensional affine space Bf* to which X belongs almost surely. Then ppox. = ¥wse and:

1) the functionpmse is C*° on its domain Inbwese;

2) for everyy € R, the vectorymee(y) = prox,, .. (y) is theunique global minimumas well as theunique

stationary poiniof the functionz — 1|jy — z||* + ¢mee();

3) for everyy € R", we havepwee(y) > —log py (y);

4) we haveC¢WSE = fR" exp(—¢WBE(3:))d:U < Q.
Therefore, the MMSE estimator with pridty and white Gaussian noise is also the MAP estimator with ther pr
which pdf ISﬁX($) = eXp(—QSI\/I\/BE(l'))/CquSE

Remarkil.1. Note thaty(y) is not only the unique global minimum of — 3 |ly — z[|> + ¢wee(z): it is also its
unique stationary point. This is much stronger: this meaas descent algorithms used to solve the optimization
problem (1.3) with¢ = ¢mee cannot be trapped in a spurious local minimum.

Remarkll.2. When X belongs with probability one to a lower-dimensional affinease V. € R™, we have
Imymee C V. Letting V' be the smallest such affine space, the restrictiomgke to V still has a well defined
Cce° inverseq,z),\]\}BE : Imymse — V' which can be used to defirgnse as in (11.7) and to generalize Theorem 11.2
to an arbitrary priorPx.

1. WORKED EXAMPLE

Let us illustrate Theorem 1.2 with a simple example: we édesthe one-dimensionah(= 1) mixture of two
Gaussians prior on the unknown noiseless data

2 -2

71772 7172
e 204 e 207

pX(x)::p’m"i_(l_p) \/R’
wherep € (0,1) and0 < oy < o1. The evidence of the observed noisy d&ta= X + B with B ~ A/(0, 1) is then

y2 y2
87 2(c3+1) T 2007+

(I1.1)

hence

) = —y dp BT gy e B
Py\y Yy p 2m(o2+1)3 p 2m (o7 +1)3 .
By straightforward computations, we obtain

o8 4 _of |
eel) = 1 oT+1 T o7y ae
1+ aet¥’

1— 241 1 1
a:= P Ug+ , b= — - — € (0,1).
p o7 +1 og+1 o7f+1

The limiting cases? — 0 corresponds to the so called Bernoulli-Gaussian prior, (seg, [11]): the value: = 0
is drawn with probabilityp > 0, hence vectors with i.i.d. entries distributed accordiog i are typically sparse.

The MMSE estimator takes a simplified form [10] whef — 0
O‘% ae?V’

0%+1'1+aeby2'

by?
with

Ymee(y) =Y -

We illustrate in Figure 1 the case = 0.9, 0 — 0, o7 = 10. Figure 1(a) shows/mee (solid line) and
its inverse Yy (dashed line). The latter does not seem to have an analyficession. Figure 1(b) shows

omp(z) = —logpx(x) (dotted line),— log py () (dashed line) and the penalty functi@mse(z) (solid line).
While the penalty functionpwse(z) does not seem to admit an analytic expression, one can obtaian-
alytic expression forgmee[tmee(v)] = —3llv — ¥mee(®)[|3 — logpy (y). The explicit analytic expression —

which is long and rather uninteresting— was used to plaks(z) on Figure 1(a) using the parameterized curve



(a) MMSE estimator and its inverse (p=0.99 o§=10) (b) Penalty functions (p=0.99 c§=10)
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Fig. 1. Left: MMSE estimator/mee(y) (solid line) and its inverseiuse(y) (dashed line),, in the Bernoulli-Gaussian cage= 0.9,
g — 0, 07 = 10. Right: MAP penaltyowme(z) = — log px () (dotted line), negative log-evidende- log py (z)) (dashed line) and MMSE
penalty pmse(z) (solid line).

y — (Umee(y), domee[vmee(y)]). Observing on Figure 1(b) the plot a@fase(x) for the above Bernoulli-Gaussian
prior yields a number of observations.
1) For smallz, the penaltypmse () is approximately shaped as the absolute valyggie(x) ~ c|z| for some constant
This is tempered by the fact thatase(z) is C*°, thus, unlike|z|, it must be smooth at zero.
2) The penaltypmee(x) is unimodal (it is decreasing until its global minimum, thiexcreasing) buit is not
convex
The second observation could seem surprising given thabréhell.2 guarantees the uniqueness of the global
minimizer / stationary point of — 3|y — z||? + ¢mee(z). However, this property is not a characteristic of convex
penalties. As a matter of fact, a functigh: R — R (i.e., in the casex = 1) can be writtenf = prox, with g a
proper lower semi-continuousonvexfunction fromR to R U {+oc} if, and only if, the functionf is increasing
andnon-expansivg2, Proposition 2.4J:

Definition Ill.1. A function f : R — R is non-expansive if f(v') — f(y)| < |y — y| for all y,y'. When f is
differentiable, it is non-expansive if and only |if’(y)| < 1 for all y.

By Lemma 1.1, in dimensiom = 1, the MMSE estimatot)ee iS increasing for any prioPyx. However, for
certain priorsPx, it can indeed be proved to be expansive (see the proof in AGReC):

Proposition 111.2. Assume thatX has a symmetric pdffz € R, px(—z) = px(z)] and that there exists > 0
such thatpx (z) = 0 for all « with |z] < 1+ . Then the penaltywese cannot be convex.

IV. DISCUSSION

Theorem 11.2 shows that for general priof% we haveymee = prox,,... Similarly, whenX has a pdf, we
haveywnp = prox, ., where for a given prior the MAP penaltymp(z) has the simple expression (11.4) while the
MMSE penaltyomese(z) has the much more intricate definition (11.7).

For Gaussian prior$y = N (0,X), the MMSE estimator is the Wiener filter, which is also the MARd the
minimum mean square linear estimator [5], &@ase = ¢omp (UP to a constant additive term).

However, for most priors with a pdfy (z), the MMSE estimator does not coincide with the MAP estiméter,
Umee 7 Ywvap), hencepmese # dmep (€ven up to a constant additive term). Indeed, by Theorep, the penalty
omee(x) defined in (11.7) has a number of specific properties. Theeefid pyap(x) = — log px (x) fails to satisfy
one of these properties, then the identiyse(z) = ¢mp(x) + ¢ (for some constant € R and allz € R™) cannot
be satisfied.



For example, generalized Gaussian prioggz) o< exp(—al|z|/}) with 0 < p < 1 arenot smoothat z = 0, hence
they are notC>°: as a result for such priors there is not even any pgirc R such thaipmee(z) = a+b- dmp ()
for all x.

One may also wonder whether a reciprocal to Theorem I1.2 ssipte: given a penalty functiop(x), does there
exist a priorPx such that the MMSE estimatanseg with this prior is associated to the penattyee(x) = ¢(x)
(up to a constant additive term) ? When this prior exists, wancharacterize it in terms of the penalty function
¢ ? Even though one can always define the tentatively assdciBISE estimator”s(y) = prox,(y), the main
difficulty is to understand when there exists a probabilityasurePx such thaty(y) —y = Vlog(ps * Px)(y).
This combined integration and Gaussian deconvolutionlproloften does not admit a solution, for example: when
1 is not one to one; when(z) is not sufficiently smooth.

V. CONCLUSION AND PERSPECTIVES

We proved that the MMSE estimator for Gaussian denoising arity prior can be written as the MAP estimator
with a possibly different prior (and that the MAP estimatoithvcertain priors can be interpreted as a MMSE
estimator with a possibly different prior). These resuits,conjunction with Nikolova's highlighting of model
distortions brought by MAP estimation [7], indicate thateashould be cautious when interpreting penalized least
squares regression schemes in terms of priors:

« If the unknown noiseless datafollows a prior with pdfpx (z) o« exp(—¢(z)) andif we choose the MAP as a
criterion for estimating itthenthe resulting denoising scheme leads to penalized leastessjuegression with
penalty¢(x). This MAP estimator may however have poor denoising perémee for this type of data [7].

« In practice, the choice of penalized least squares regresgith penaltyo(x) is seldomly associated to the
belief that the unknown noiseless data follows a prior with pdf(z) o« exp(—¢(x)). Instead, it rather
stems from theneedfor numerical efficiency and thempirical observatiorthat it achieves good denoising
performance for the considered class of data.

By definition, optimum denoising (as measured by the meaarsgierror) is achieved by the MMSE estimator.
As shown in this paper, the latter is indeed always assattata penalized least squares schériiéis sheds
a new light on the popularity of such schemes for Gaussianidig).

Quite obviously, the denoising performance of penalizeabstiesquares regression with a given pendity)
heavily depends on the pridPx underlying the unknown noiseless data. We focused in thieipan the case
where the penalized least squares regression estimidtgr= prox,(y) coincides with the MMSE estimator: its
denoising performance(||prox,(Y') — X||3) is optimum. An interesting open problem related to the tesofl this
paper would be to understand for which pridtg we obtain "good” denoising performance wighy) = prox, (y),

i.e., when the denoising performance is bounded by a canétan1 times the optimum performance.

One can imagine concrete applications of the results pteddmere for certain priors: in general the MMSE
estimatorwese(y) is a priori expressed as an intractable high-dimensional integralekier, if the penalty function
owmee(x) admits a simple expression amenable to efficient numeripiin@ation (e.g., convex optimization),
then the MMSE estimator can be computed efficiently. Devglogp such approaches requires a more in-depth
understanding of the properties of penalty functigfgse(x) obtained through Theorem I1.2. Of particular interest
would be the construction of explicit examples whetgse(z) is "simple” while py (y) involves an intractable
integral.

Another interesting perspective is to obtain alternatéssieal interpretations of a larger class of penalizediea
squares regression estimators (e.g., with non-sme@oth such as those leading to sparse estimates). As remarked
above, the lack of smoothness makes it impossible to irgeiguwch estimators in terms of a MMSE estimator,
however one may seek interpretations that leave the stage&ian framework: for example, one may wish to
obtain an interpretation as the optimum of a hybrid Bayesiast functionmin, {EC(¢¥(X + B), X) + K(¢)}
where the tern¥K(-) forces the function) to be in some function class. Eventually, one may also wiséxtend
theses results to ill-posed linear inverse problems of ype § = Ax + b, and to deal with non-Gaussian noise.

2Even though, as shown in this paper, this MAP scheme can sueebe interpreted as an MMSE estimator with a differentrpthis
re-interpretation does not alter the denoising schemetaateinoising performance.
3Yet, the associated penalized least squares problem mayenotore computationally tractable than the original MMSE.
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APPENDIX
A. Proof of Lemma II.1
Lemma A.1l. Denoteywse(y) = (q,z)ﬁ,,\,SE(y))?zl whereyiyee : R™ — R is scalar valued. Under the assumptions
of Lemma 1.1, ther x n Jacobian matrixJ [¢Ymee|(v) = (%¢K/WE(y))ij satisfies the identity

0?1
Tomeel) = (35 + T2} 14 gy (s (A1)
8yi8yj ij
and is symmetric positive definite:
(v, J[Ymee](y) -v) >0, VyeR" v#D0. (A.2)

Proof: Without loss of generality we consider a unit norm vedtolf, = 1. For brevity we omit the dependency
in the variabley when possible. First, by (1.2) we have

Ymee(y) =y + Viogpy (y) =y + Vv (y)/py ()
hence
Vipy  Vpy - (Vpy)"
Py [py]?

Jlémee] = I+ V2logpy =1+

and

Py +ov(Vipy - v,0) — (Vpy,v)?

(J[mee] - v,v) = 5 (A.3)
Dby

We will now prove that the numerator in (A.3) is positive fdr a. Sincepp(b) x e~IIP13/2, we have

Vpp(b) = (=b) pp(b),
Vipp(b) = (b —1)-pp(d).
Sincepy =pp*x Px, Vpy = Vpp x Px, V2py = VzpB * Px this ylelds

pv = [paly - 2) dPx(a)
(Vpy.o) = [ (ty = 2.0) - paly — 2)dPx(z)
(Vo 0,0) = [ ((y= 2,0 ~1) - paly — 2)dPx(z)
hence

p(Vipy o) = [[ (=20 1)
-pe(y — 2)p(y — 2')dPx (z)dPx (z")



The above expression is also valid is we exchange the roleeofntegration variables and ', hence by taking
the average of these two equal expressions we obtain

Ty 0 //

- ﬂf)pB( — 2')dPx (x)dPx (2')

Similarly we can write

P = / / Py — ©)pply — 2')dPx (x)dPx («')

(Vpy,v) // -z, )y — ', v)

-pp(y — x)pp(y — 2')dPx (z)dPx ()

Overall, the numerator of the right hand side in (A.3) beceme

7 — z,v)?
// %pB(y - m)pB(y — LL'/)dP)((SL')dPX (;L'/) (A.4)

Now, since there is ne such that(X, v) = ¢ with probability one, there exists;, zo € R", d = (x9 — x1,v) # 0,
such that the Euclidean ball3; = B(z;,d/3) C R™, have positive probability’x (B;) > 0. For (z,2’) € By x B
the functiong(xz,2’) := MpB(y — z)pp(y — ') is bounded from below by some constant- 0, hence the

integral in (A.4) is bounded from below by

// x, 33 )dPx (x)dPx (z ) >n- Px(B1)Px(Bz2) > 0.
B ><B2
We conclude that.J[vmee] - v,v) > 0.
[
We are now equipped to prove Lemma II.1.

Proof of Lemma Il.1: We let the reader check that- cannot vanish. Since it i€, Ymese is alsoC>®. To
prove thatywse is one-to-one, we proceed by contradiction, assuming dhgde(y) = Ymee(y’) while ¢ #£ 4.
We definev := (v —y) /||y’ — y||2 and the functionf : ¢ — f(t) := (v, Ymee(y +tv)) € R. Since the functiory is
smooth andf(0) = f(|ly’ — yl|2), by Rolle’s theorem the derivative ¢f must vanish for somé < t < ||y’ — y||2.
However by Lemma A.1 we havg(t) = (v, J[¢Ymee](y + tv) - v) > 0 which yields a contradiction. Therefore, the
inverse function)yse exists as claimed. The fact that it is al€6° follows from the positivity of the Jacobian of
Ymee and the inverse function theorem. [ |

B. Proof of Theorem I1.2

The fact thatomse is C*° on Imywee is a straightforward consequence of its definition (I.7y af the fact
that py as well asyyse are C> (Lemma I1.1). We wish to check that the proximity operator¢gfse defined
by (I11.7) is indeedymee. The definition ofpwee(r) for = ¢ Imywmee ensures that prgy . takes its values in
Imymee. We let the reader check that a consequence of Lemma A.ltishbaset Imhwse is open. For brevity
we denotey(y) = log py (y) and

g(u) ZZ%H?J — e (w) |3 + dwvee[tmee(w)]
=5 lnee(u) — o113 — 5 I Va3 ~ a(w).
Since J[Ymee] (u) = I+ V2q(u) (Lemma A.1) andimee(u) = u + Vq(u) (Equation (I1.2)), we obtain

Vg(u) =J[mee] (v) - [Pmee(u) — y]
— V2q(u) - Vq(u) — Vq(u)
=J[mee] (1) - [Ymee(u) —y — Vq(u)]



=J[Ymee] () - [U - Z/]

Now considerf,(t) := g(y + tv) with v # 0 an arbitrary vector. Its derivative is

fo(t) = (Vg(y +tv),v) = (J[tmee] (y + tv) - tv,v)
=t (J[vmee|(y + tv).v,v)

which, by Lemma A.1, has the sign of showing thatf, admits its strict global minimum at= 0. Since this is
true for any choice ob it follows that g has no stationary point other that= y, and thatg(u) > g(y) whenever
u # v, that is to sayr — 1|y — z||3 + ¢mee(z) admits a unique global minimum at= ¢wee(y). To conclude,
sinceymee(y) = Prox,,... (v), we have for any

Omee(y) = %Ily — |13 + dmee(y)

> Sy — ()3 + dwweclimee ()]
= —log py ().

As a resultd < exp(—omee(y)) < py (y), and sincepy (y) is integrable so igxp(—omee(y))-

C. Proof of Lemma Il1.2
Thanks to (A.4), and since boflp andpx are symmetric, the numerator of (A.3) fgor= 0 reads

(w/ — x)2 . _ ! / /

/ 5 pe(—2)pp(—2)px(x)px (z')dxdx
22
:/7 -pp(z) X(l’)dl"/pB(l’/)px(lL'l)dl‘/
"2

—l—/(g;) 'pB(x’)pX(w’)dx’-/pB(w)pX(ac)dw
- /w’ ~pp()px (z)dax’ - /x -pp(x)px (z)dx
:/w2 'pB(x)pX(x)dx'/pB(x')pX(w')dx'

Sincepy (y) = [ pp(z)px(z)dz, inserting the above expression in (A.3) fpe= 0 and using thapx (z) = 0 for
|| <14¢ we obtam

x p(x)px(x
aeel0) = L2 () e
' Japrae @ pB(0)px (2)d
 Jiapreep(@)px()dz
Therefore,)wee is expansive. Since it is also increasing, the associatgek is C*° (Theorem 11.2) hence it is

proper and continuous. As a result of [2, Proposition 2.#icesymee = Prox,,.., the penaltypmese cannot be
convex. Similar examples can be built in higher dimensions.

>(14¢)?>1.
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