
HAL Id: inria-00486919
https://inria.hal.science/inria-00486919

Submitted on 27 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating Mode Automata Control Models in SoC
Co-Design for Dynamically Reconfigurable FPGAs

Imran Rafiq Quadri, Samy Meftali, Jean-Luc Dekeyser

To cite this version:
Imran Rafiq Quadri, Samy Meftali, Jean-Luc Dekeyser. Integrating Mode Automata Control Models
in SoC Co-Design for Dynamically Reconfigurable FPGAs. International Conference on Design and
Architectures for Signal and Image Processing (DASIP 09), Sep 2009, Nice, France. �inria-00486919�

https://inria.hal.science/inria-00486919
https://hal.archives-ouvertes.fr


Integrating Mode Automata Control Models in SoC

Co-Design for Dynamically Reconfigurable FPGAs

Imran Rafiq Quadri, Samy Meftali and Jean-Luc Dekeyser,

INRIA LILLE NORD EUROPE - LIFL - University of Lille - CNRS, Lille, France

{Imran.Quadri, Samy.Meftali, Jean-Luc.Dekeyser}@lifl.fr

Abstract—The number of integrated transistors that can be
contained on a chip are increasing at an exponential rate, along
with rise in targeted sophisticated applications. Thus the design
of Systems-on-Chip (SoC) is becoming more and more complex.
Hence there is a critical need to find new seamless methodologies
and tools to handle the SoC co-design aspects. This paper
presents a novel approach for expressing system adaptivity and
reconfigurability in Gaspard, a SoC co-design framework, with
special focus on partially dynamically reconfigurable FPGAs. The
framework is compliant with UML MARTE profile proposed by
Object Management Group, for modeling and analysis of real-
time embedded systems. The overall objective is to carry out
system modeling at a high abstraction level expressed in UML;
and afterwards, transform these high level models into detailed
enriched lower level models in order to automatically generate
the necessary code for final FPGA synthesis.

I. INTRODUCTION

Modern Systems-on-chips (SoCs) have become integral for

designing embedded systems for targeting intensive parallel

computation applications. Continuous advances in SoC tech-

nology permit to increase the number of hardware resources

on a single chip. In parallel, the targeted application domains:

such as multimedia video codes, radar/sonar detection systems

are becoming more sophisticated. These data-parallel applica-

tions focus on regular data partitioning, distribution and their

access, etc. This balance of evolution has led to a system

complexity issue which is one of the main hurdles faced by

SoC designers. The fallout of this complexity is that the system

design, particularly software design, does not evolve at the

same pace as that of hardware leading to a productivity gap.

Adaptivity is also a critical issue related to SoC design for

coping with end user requirements/environments. Mode based

control semantics play a significant role for these complex

systems; such as switching between color and black and white

modes in video processing applications. This type of control

offers Quality of Service features to designers/end users.

However, the control semantics should be generic enough to

be applied to both software and hardware design aspects.

State of the art FPGAs can change their functionality at run-

time, known as Partial Dynamic Reconfiguration (PDR) [1].

PDR allows to modify specific regions of an FPGA on

the fly, hence time-sharing the available hardware resources

for executing multiple (mutually exclusive) tasks. It permits

context switching depending upon application needs, hard-

ware limitations and QoS requirements. Currently only Xilinx

FPGAs fully integrate partial dynamic reconfiguration. These

FPGAs also support internal self dynamic reconfiguration, in

which an internal controller (a hardcore/softcore embedded

processor) manages the reconfiguration [2].

Raising design abstraction levels can be viewed as an

effective solution to resolve the SoC complexity issues. The

challenge is to find effective design methodologies that raise

the design abstraction levels to reduce overall complexity,

while handling issues: such as accurate expression of inherent

system parallelism such as application loops; and hierarchy.

Model Driven Engineering can be viewed as a high level

SoC co-design approach, that enables high level system mod-

eling (of both software and hardware). Model transformations

can be utilized to generate executable models or executable

code, from high level models. MDE is also supported by large

number of industry standards and tools.

Gaspard [3],[4] is an MDE-based SoC co-design framework

dedicated to parallel hardware and software. It is based on the

UML MARTE profile [5] proposed by Object Management

Group; and allows to move from high level MARTE specifica-

tions to different execution platforms. It exploits the inherent

parallelism included in repetitive constructions of hardware

elements or regular constructions such as application loops.

The applications targeted by Gaspard also focus on a specific

application domain, that of data-parallel applications.

In this paper we present an extension of a generic control

semantic for specification of system adaptivity in modern

SoCs. The introduced semantics are integrated in Gaspard and

are specified at MARTE high abstraction levels. This control

extension is applied to the IP deployment level in Gaspard

to focus on FPGA synthesis and is specially oriented towards

partial dynamic reconfiguration. A mechanism for introducing

control determinism at the Register Transfer Level (RTL) is

also presented which aids to introduce regularity between

the control/data flow present at this level. The goal is to

specify part of the reconfigurable system at a high abstraction

level: notably the reconfigurable region and the reconfiguration

controller. Afterwards, using model transformations, the gap

between high level specifications and low implementation de-

tails can be bridged to automatically generate the code required

for the creation of bitstream(s) for final FPGA implementation.

The rest of this paper is organized as follows. Related works

are summarized in section 2. An overview of the Gaspard

framework is provided in section 3. Section 4 presents the

control model for IP deployment and for PDR integration in

FPGAs. Finally section 5 gives the conclusion.



II. RELATED WORKS

We partition the related works in three distinct parts. The

first part summarizes concepts related to mode automata and

their integration in Gaspard. The second part details the usage

of UML for SoC Co-design, FPGA synthesis and PDR aspects.

Finally we give some works related to PDR at the RTL level.

Mode automata [6] are based on the concept of combination

of formalisms, similar to multi-paradigms, proposed to express

data flow languages with different representative styles. They

are used in synchronous domain for formal validation/ver-

ification purposes. Mode automata are primarily composed

of modes and transitions, with each mode having the same

interface. Equations can be specified in modes. Transitions are

normally associated with conditions, to act as triggers. Mode

automata can also be parallely or hierarchically composed,

and adopt a state based approach. An initial version of mode

automata based control for Gaspard has been proposed in [7],

for expressing dynamic adaptivity features at Gaspard appli-

cation specification level. However, unlike traditional mode

automata, the control and data computations are specified

independently, allowing a clear distinction between the two

flows. Extensions to this work have been proposed in [8],[9]

and address hierarchical and parallel compositions.

A Simulink-based graphical MPSoC design approach is

presented in [10], but lacks MDE concepts. In contrast, [11]

integrates MDE for design of a Software-Defined Radio,

but only pure UML specifications are used. Milan [12] is

another MDE-based SoC co-design project, but lacks MARTE

integration. Mopcom [13] integrates MDE and MARTE and is

able to carry out FPGA synthesis, but does not consider PDR

aspects. In [14], a SynDEx based design flow is presented

to manage dynamic reconfiguration in FPGAs, but does not

integrates MDE concepts. Similarly [15] present a high level

synthesis flow for PDR, but does not take MDE into account.

While works such as [16] and [17] focus on generating VHDL

from UML state machines, they are not capable of managing

high performance data intensive applications.

In PDR domain, Xilinx initially proposed two design flows,

which were not very effective leading to new alternatives. An

effective modular approach for 2-D reconfigurable modules

was presented in [18]. [19] implemented 1-D modular recon-

figuration using a horizontal slice based bus macro in order

to connect the static and partial regions. They followed by

placing arbitrary 2-dimensional rectangular shaped modules

using routing primitives [20]. This approach has been further

refined in [21]. In 2006, Xilinx introduced the Early Access

Partial Reconfiguration Design Flow [22] that integrated con-

cepts of [18] and [19]. Works such as [23] focus on imple-

menting softcore internal configuration ports on Xilinx FPGAs

such as Spartan-3, that do not have the hardware Internal

Configuration Access Port (ICAP) reconfigurable core, for

implementing PDR. Works such as [24],[25] illustrate usage

of customized ICAPs. Finally in works such as [26], the

ICAP reconfigurable core is connected with Network on chips

(NoCs) based FPGAs.

While there exists lots of related tools and works; we have

detailed only few and have not given an exhaustive summary.

To the best of our knowledge, only our methodology takes into

account the following domains: SoC co-design and adaptivity

features, data-parallel applications, control/data flow, MDE,

UML MARTE profile and PDR for FPGAs; which is the

novelty of our design framework.

III. GASPARD: MDE BASED SOC CO-DESIGN

FRAMEWORK

Gaspard [3],[4] is a MDE based MARTE compliant SoC

design framework, that allows rapid design and code gener-

ation with the aid of UML graphical tools and technologies

such as Papyrus1 and Eclipse Modeling Framework2 (EMF).

Figure.1: An overview of the Gaspard framework

Figure.1 shows a global view of the Gaspard framework. In

Gaspard, system co-modeling is carried out using the UML

MARTE profile at high abstraction levels. Gaspard permits

modeling of software applications, hardware architectures,

their allocations (mapping of applications onto architectures)

and IP deployment separately, but in a unique modeling

environment. In Gaspard, models of software applications

and hardware architectures can be defined concurrently and

independently thus allowing a clear separation of concerns

between the hardware/software models. While MARTE is

suitable for modeling purposes, it lacks the means to move

from high level modeling specifications to execution platforms.

In order to bridge this gap, Gaspard introduces the notion of IP

deployment that associates every elementary component, the

building blocks of both the hardware and the application, to an

implementation, thus facilitating IP reuse. Up till the deploy-

ment level, the integrated models are platform-independent.

1www.papyrusuml.org/
2www.eclipse.org/emf/



In order to generate executable code to target different

execution platforms such as FPGA synthesis [27], Gaspard

adopts MDE model transformations, as shown in Figure.1.

Model transformation chains allow to move from high ab-

straction levels to low enriched levels. Usually, the initial high

level models contain only domain-specific concepts, while

technological concepts are introduced seamlessly later on in

the intermediate levels.

It should be observed that the transformation chains are

currently unidirectional in nature. While existing RTL chain

only generates synthesizable VHDL; in order to implement

dynamic reconfiguration by usage of an embedded processor,

the extended RTL chain must generate the state machine

source code in C language as well. However, this future

extension has not been illustrated in Figure.1.

A. MARTE Repetitive structure modeling concepts

Gaspard has also contributed in the development of the

MARTE standard. One of the key MARTE packages, the

Repetitive Structure Modeling (RSM) package has been in-

spired from Gaspard. Gaspard, and in turn RSM, is based

on Array-OL [28] model of computation, that describes the

potential parallelism in a system; and is dedicated to data

intensive multidimensional signal processing. In Gaspard, data

are manipulated and represented in the form of multidimen-

sional arrays. RSM allows to describe the regularity of a

system’s structure and topology in a compact manner.

Gaspard utilizes RSM for modeling of complex regular

hardware architectures (such as multiprocessor architectures)

and parallel applications. For a software functionality, RSM

allows to express both data parallelism and task parallelism

effectively. A repetitive component expresses data par-

allelism in an application: in the form of sets of input and

output patterns consumed and produced by the repetitions

of the interior part. A hierarchical component can contain

several parts. It defines complex functionalities in a modular

way and provides a structural aspect of the application in order

to express task parallelism. The shape of a pattern is described

by means of a tiler connector, that describe the tiling of pro-

duced and consumed arrays. The reshape connector allows

to represent complex link topologies in which the elements of

a multidimensional array are redistributed in another array. An

interrepetition dependency is used to specify an acyclic

dependency among the repetitions of the same component,

compared to a tiler, that describes the dependency between the

repeated component and its owner component. Particularly, an

interrepetion dependency specification leads to the sequential

execution of repetitions. A defaultlink provides a default

value for repetitions linked with an interrepetion dependency,

when the source of dependency is absent.

B. Gaspard control modeling semantics

We first recall the basic control semantics present in Gas-

pard. Several basic control concepts, such as Mode Switch

and State Graphs are initially presented. Afterwards, a

simple composition of these concepts, which builds the mode

automata, is presented. The notion of exclusion among modes

in mode automata permits to separate different computations.

Figure.2: Example of a mode switch containing several modes

M1, M2, ..., Mn (i.e. the window tabs) .

1) Mode switch and modes: A mode switch must contain at

least more than one mode. It offers a context switch functional-

ity that chooses execution of one single mode, among several

alternative present modes [7]. The mode switch in Figure.2

shows the semantics of a mode switch, having a window with

multiple tabs and interfaces. For instance, it has an m (mode

value input) port as well as several id (data input) and od (data

output) input/output ports. The switch between these modes is

carried out according to the mode value received through m.

The distinct modes, M1, ..., Mn, in a mode switch are defined

by mode values: m1, ..., mn. The composition of a mode itself

can be hierarchical or elementary in nature. A mode switch

can transform the input data id into the output data od . All

modes have the same interface (i.e., id and od ports). A mode is

activated when it receives a mode value mk by the mode switch

via m. For any received mode value mk, the mode is executed

exclusively. It should be noted that only mode value ports, i.e.,

m; are compulsory for creation of a mode switch, as shown in

Figure.2. Thus other type of ports (such as input/output data

ports) are represented with dashed lines.

S2
e1 & e2

S1

S3

e1 

e2

e1 & e3
e3

e1 

all

allall

Figure.3: Illustration of a state graph in Gaspard

2) State graphs: A state graph in Gaspard as presented in

Figure.3, is similar to state charts [29], used for modeling of

system behavior via a state-based approach. It can be described

as a graphical representation of transition functions [8]. A state

graph is constructed of a set of vertices, called states. A state

connects with other states through directed edges which are

called transitions. Transitions can have conditions depending

upon some events or Boolean expressions. A transition is

triggered when its associated condition is met. A special label

all, on a transition outgoing from state s, indicates any other

events that do not satisfy the conditions on other outgoing

transitions from s. Each state is linked to some mode value

specifications that provide mode values for the state.

3) Composition of mode switch and state graph: Once

mode switches and state graphs are conceptualized, a MACRO

component can be used to compose them together. The



macro in Figure.4 illustrates one possible composition.

The components Gaspard State Graph and Mode Switch

Component are associated with state graphs and mode

switches respectively. In the macro, the Gaspard state graph

produces a mode value (or a set of mode values) associated

with the current executing state and sends the value(s) to

the mode switch component which switches the modes ac-

cordingly. Some data dependencies (or connections) between

these components are not always necessary, for example, data

dependency between Id and id . They are drawn with dashed

lines in Figure.4. The illustrated figure is used as a basic

composition, however, other variations are also possible, for

instance, one Gaspard state graph can control several mode

switch components.

Once the macro is constructed, it is possible to create a

Gaspard Mode Automata (GMA). The Gaspard state graph

acts as a state-based controller and the mode switch component

achieves the mode switch function. Secondly, interrepetition

dependency specifications should be specified for the macro

when it is placed in a repetitive context. This is because

a macro component represents a single transition between

states. For continuous transitions similar to mode automata,

the macro must be repeated. An interrepetition dependency

enables continuous sequential execution and permits creation

of a mode automata. An interrepetition dependency connects

the repetitions of the macro structure and conveys the current

state. Hence, it sends the target state of one repetition as the

source state for the next repetition of the macro. The states

and transitions of the automata are represented via the Gaspard

state graph. The data computations inside a mode are set in

the mode switch component. The detailed formal semantics

related to Gaspard mode automata can be found in [8].

Figure.4: An example of the Gaspard mode automata inte-

grated at the application level in our framework

C. IP deployment in Gaspard

The Gaspard IP deployment level allows one to select a

specific IP for each elementary component of application

or architecture, among several possible choices. The reason

being: in SoC design, a functionality can be implemented in

different manners. For example, an application functionality

can either be optimized for a processor (written in C/C++),

or implemented as a hardware accelerator using Hardware

Description Languages. Hence the deployment level distin-

guishes between the hardware/software functionalities; and

allows to move from platform-independent high level models

to platform-dependent models, for eventual implementation.

The concept of VirtualIP represents the functionality of

a given elementary component, independently from the com-

pilation target. For an elementary component J, it associates

J with all its possible IPs. The desired IP(s) is (are) then

selected by the SoC designer by linking it (them) to J via

an implements dependency. Finally, the CodeFile concept

determines the physical path related to the source code of an

IP, along with required compilation options.

Figure.5: Deployment of an elementary component

Figure.5 and Figure.6 collectively represent the deployment

level. The HuffmanCoding component is an elementary com-

ponent of a typical Gaspard application (an H.263 codec

in this case). At the deployment level, this component may

have several possible implementation choices; either for the

same execution platform (same abstraction level): in a given

language, or for different ones. In the given example, the

component can be simulated in SystemC or can be imple-

mented as a hardware accelerator in an FPGA via VHDL. The

implements dependency from the Huffman-VHDL component

to the HuffmanCoding represents the targeted implementation

choice/execution platform.

Figure.6: Linking a CodeFile to an IP

A limitation of the deployment level is that for final com-

pilation for code generation, an elementary component can be

linked to only one IP. This drawback does not effect platforms

where system adaptivity in not concerned, however in the



case of dynamically reconfigurable FPGAs, this issue must be

addressed. The deployment level is thus extended to integrate

reconfiguration aspects which are presented later in the paper.

IV. INTEGRATING PDR ASPECTS IN GASPARD: ADDING

CONTROL EXTENSIONS AT IP DEPLOYMENT LEVEL

For implementing PDR, an embedded reconfiguration con-

troller has two functionalities: one responsible for communi-

cating with the FPGA ICAP reconfigurable core; and a state

machine for switching between the configurations. The first

functionality is written manually due to some low level RTL

details which cannot be expressed via a modeling approach;

and is treated as a macro. The control model introduced at the

deployment level is used to generate the second functionality

automatically via model transformations. Finally the two parts

can be used to implement PDR in an FPGA that can be divided

into several static/reconfigurable regions.

In our works, the application being modeled at the high

abstraction levels in transformed into a hardware function-

ality, i.e., a hardware accelerator, by means of the model

transformations [27]. This hardware accelerator is treated as a

reconfigurable region at the RTL level. A reconfigurable region

can have several implementations, with each having the same

interface, and can be viewed as a mode switch component

with different modes. We now explain the control model at the

deployment level. We first summarize the extended version of

the deployment that determines the implementations linked to

the reconfigurable region, followed by the deployment control

model that is responsible for generating the controller.

A. Introduction of “Configurations” at the deployment level

Figure.7: Extended Gaspard deployment level

Currently, an elementary component can be linked to only

one IP among the different available choices (if any). Thus

the result of the application/architecture (or their mapping onto

each other) is a static one. This collective composition is called

a Configuration. The current RTL level model transformations

only permit to generate one hardware accelerator (one config-

uration) for final FPGA implementation.

Adopting control in deployment allows to create several

configurations for final FPGA implementation. Each config-

uration is defined as a collection of different IPs, with each

IP linked to its respective elementary component. Thus, a new

stereotype ConfigurationInfo (as illustrated in Figure.7) is

introduced, that is added to the implements dependency as-

sociating an IP with its corresponding elementary component.

A ConfigurationNumber attribute related to this stereotype

allows the designer to link, a particular IP of an elementary

component, with a desired final configuration.

Figure.8: Deploying a Gaspard application having three ele-

mentary components

An elementary component can also be linked to the same

IP in different configurations. This point is related to the

semantics of FPGA partial bitstreams which support glitchless

dynamic reconfiguration. If a configuration bit holds the same

value before/after reconfiguration, the resource controlled by

that bit does not experience any loss in its operation. If the

same IP for an elementary component is used in several

configurations, that IP is not swapped during reconfiguration.

Hence, it is possible to link several IPs to a corresponding

elementary component; each link specifying a unique config-

uration. Also, for any n number of configurations, with each

having m elementary components, each elementary component

of a configuration must have at least one IP. This enables

successful creation of a complete configuration.

Finally, two enumerations, Modes and States are created.

The first contains the mode values related to all possible

configurations; while the second contains the states of the

Gaspard state graph. With information provided in deployment

and model transformations, each state (configuration) is linked

to its respective IPs. Each state also has an associated Boolean

flag (with a default value of 0). A value of 1 specified by

the designer indicates that this state is chosen as the initial

state/configuration for the Gaspard state graph. This infor-

mation is then sent onto the control concept modeled in the

second phase of deployment using the model transformations.

Figure.7 illustrates the extended version of the deployment

related to a generic elementary component while omitting the



enumerations; and Figure.8 represents an abstract overview of

the deployment semantics.

By modifying the RTL level model transformations, it is

possible to generate different hardware accelerators (different

configurations). Once the configurations are created, each is

viewed as a source for a partial bitstream. Each partial bit-

stream signifies a unique implementation for a reconfigurable

hardware accelerator, connected to an embedded controller.

While this extension allows to create different configurations,

the state machine part of the controller is created manually.

For automatic generation of this functionality, the deployment

extensions are inadequate. We then use the existing Gaspard

control concepts to solve these issues.

B. Introducing control model at the deployment level

The first point is related to the nature of modes in a

mode switch component. For a mode switch component at the

application level control model, each mode is an instance of an

application component that can be either elementary, repetitive

or hierarchical in nature. However, at the deployment level, a

mode switch component is related to an elementary component

and contains, all the related IPs as its modes.

As explained in section III.B, only the input mode ports

are necessary for the creation of a mode switch component.

In control model at application level, the related data flow is

represented via data input/output ports. However as control

model at the deployment level is concerned with behavioral

semantics and not structural ones, the data flow is not explicitly

expressed. For all IPs linked to an elementary component,

their input/output data flow values are equivalent to that of the

elementary component. Model transformations are capable to

link ports of each of the IPs in a mode switch component to the

corresponding elementary component. This version of a mode

switch component is termed as a Deployed Mode Switch

Component. We apply a condition that for the construction

of a deployed mode switch component, the corresponding

elementary component must have more than one available IP.

Another difference in the deployment control model is

related to the modeling of the collaborations associated with a

deployed mode switch component, for expressing its behavior.

Compared to application level control model collaborations,

the delegate connectors are absent between the interior parts

of the deployment level collaborations due to absence of

data flow [9]. Given a Gaspard state graph Q and a mode

switch component P, the name of an associated collaboration

corresponds to a mode value associated with a state of Q and

defines the activity of P upon receiving that particular mode

value. Figure.9 illustrates a deployed mode switch component

and its corresponding collaborations. As a deployed mode

switch component relates to only one elementary compo-

nent; and an application (or architecture) can have several;

this requires the creation of several deployed mode switch

components being controlled by a single Gaspard state graph.

The modified Gaspard state graph is termed as a Deployed

Gaspard State Graph.

Figure.9: The Deployed Mode Switch Component

DMSC EC A related to the elementary component EC A

Each of the deployed mode switch components receives

the array of mode values and observes its own related mode

values: the name of the related collaborations which are

defined in the Modes enumeration. If a mode value in the

array matches the mode value associated with a deployed

mode switch component, it switches to the corresponding

mode. However, if there is no match, it remains inactive.

Once the deployed Gaspard state graph and the deployed mode

switches are constructed, they are placed inside a composition

called a Deployed MACRO. This composition is then placed

in a repetition component to construct a Deployment Level

Mode Automata. An interrepetition dependency and a default-

link are utilized to make this mode automata equivalent to a

synchronous mode automata.

In the special case when an elementary component only

has one available IP to be included in all the possible con-

figurations, it has no corresponding deployed mode switch

component or DMSC. In that case, the deployed state graph

and the constructed DMSCs are placed in a composition

called a Deployed Composition. Afterwards, the single IP

belonging to the related EC is placed with this composition

in the Deployed MACRO component. Subsequently, normal

composition of DMA is carried out. A DMSC illustrates a

choice related to the different present modes. In case of no

alternatives, it is not necessary to create the DMSC. Figure.10

represents the corresponding deployment level mode automata

for the example present in Figure.8. As each of the three

configurations contain the single IP C1 for the elementary

component EC C, this IP will always be present in the final

composition of any configuration irrespective of the changes

in events and the respective states.

For mode automata at application level, its initial state is

given by an application component that has input event ports

and an output state port. Initially some events are generated

and taken as input by that component in order to produce the

initiate state. After that, the application component remains

inactive due to the absence of the events arriving on its

input ports. However, for deployment level mode automata, no

structural information about application level is present except

the information related to elementary components. Thus the

initial state related to the deployed Gaspard state graph cannot

be determined explicitly.



We thus introduce an internal component in the deployment

level control model, responsible for relaying the initial state of

the deployed Gaspard state graph or DGSG. This component is

termed as a InitialStateComponent and contains a single

output port of the enumerated States type with a shape value

of {1}. This output port provides the user defined initial state

of the deployed Gaspard state graph. Once a transition to

another state occurs, the interrepetition dependency allows to

provide the information about the previous state; and the target

state is treated as the source state for the subsequent transition

of the deployed Gaspard state graph.

Figure.10: An abstract overview of the Deployment Level

Mode Automata

It is also necessary to address the issue related to the arrival

of incoming events in the deployment level mode automata

shown in Figure.10. In control model at the application level,

the events are either produced randomly in the application

itself due to an elementary component or taken as input from

the external environment (for example user defined stimuli).

But for mode automata at deployment level, the incoming

events need to be linked directly to this level. At the RTL

level, these events are considered as the non deterministic user

specified inputs taken by means of a UART interface present

in the reconfigurable system. A set of options is given to the

user for configuration selection. These options are treated as

input events. The user can thus choose among the different

modeled configurations, depending upon different QoS criteria

such as reconfiguration time and consumed FPGA resources

via a Design Space Exploration (DSE) strategy.

To link the user specified inputs, or events, to the deploy-

ment level, the mode automata is modeled with n number

of event ports, n being the number of possible configurations.

Each event port has a shape value of {1,*}. The first dimension

of this shape value indicates that only one event value arrives

at a particular instant of time, while the second dimension

indicates a temporal infinite repetition. These event ports are of

the type Boolean. The event values serve to cause a transition

in the deployment level mode automata.

The input event ports of the deployment level mode au-

tomata are not linked to any higher abstraction level of

the application, but via model transformations, at the RTL

level, are in fact taken as the input ports (those related to

receiving UART signals) of the embedded processor. This

processor is actually present in the processor sub system, of

the highest hierarchical entity (i.e. top.vhd) of the PDR system.

Figure.10 shows a complete overview of the deployment level

control model, taking into account all the possible scenarios

of elementary components and associated IPs.

C. Integrating event observer at the RTL level

As elaborated in the precedent section, the control events

in our scenario are generally non deterministic in nature and

depend upon the user input, while data computations are

deterministic and arrive in a regular manner as per Gaspard

semantics. Hence we need to create regularity between the

control/data flows. The notion of an EventObserver is thus

introduced at the RTL level in the highest hierarchical PDR

system entity. This concept is not introduced at MARTE

modeling level in order to distance the designer from event

management details. Figure.11 shows an abstract overview of

the top level entity of our PDR system. It should be reminded

that the reconfigurable region, the corresponding implementa-

tions and the reconfigurable controller are generated via high

level MARTE modeling.

Figure.11: A global overview of the our PDR system

The EventObserver consumes user inputs arriving at irregu-

lar time intervals and produces events at regular time intervals

for the deployed Gaspard state graph. This component has in-

put and output event ports EventIn and EventOut respectively,

as well as the Clk and Rst ports for clock and reset signals.

The EventIn port is connected to the top level UART Rx input

port while the EventOut port is connected to the processor’s

UART Rx input port. An extract of the algorithm related to the

EventObserver is presented below using an informal semantic:

———————————————————————-

Sensitivity List (Clk, Event)

if Clk is TRUE and Event then

EventOut = Event;

else if Clk is TRUE and not Event then

EventOut = Default Value;

end if

———————————————————————-

The user input may arrive irregularly at any instant of time,

where as an event value is need at each instant of time t. The

EventObserver listens on its input port, and at each rise of

clock, determines if an event is present or not. In the first

case, the event is sent to the processor subsystem and in turn



the reconfiguration controller. This causes a successful state

transition (or a self transition) in the state graph. In the second

case, if there is no user driven input event at time t, then the

EventObserver generates a default event e d, causing a self

transition in the state graph. This value can be viewed as a

special value among the set of values corresponding to the all

expression: which catches any event not specified in related

transitions and causes a self transition in the state graph. If

ξ is the set of all possible events and E is the set of events

related to the different configurations, The overall relation is

then expressed as:

E = {e 1,e 2,e 3} , all = {ξ � E}∪{e d}

The relations between the different events and states (con-

figurations) in a deployed Gaspard state graph present in the

controller are shown in Figure.12. A self transition does not

switches the current executing configuration, while a transition

to a different state causes the controller to switch to the corre-

sponding configuration. While this notion introduces regularity

in the arrival of control events, it is possible that a control event

and the eventual configuration switch causes a disruption in the

data flow of the application implemented as a reconfigurable

hardware accelerator. It is thus critical to determine the precise

moment to effectively switch a configuration. Our works could

benefit from the notion of degree of granularity [7] that

responds to the synchronization of the control/data flow.

Figure.12: Different representations of deployed Gaspard state

graph: events and state relations

V. CONCLUSION

This paper presents a novel mode automata based control

model in a MDE oriented MARTE compliant SoC co-design

Gaspard framework. The integration of this control model in

the IP deployment level of our framework makes it possible to

model aspects of partial dynamic reconfiguration. Regularity

between the control/data flow is also introduced at the RTL

level. As a perspective, MDE model transformations are cur-

rently being developed to enable automatic code generation

for final implementation of partial dynamic reconfiguration in

a targeted FPGA. This will result in a complete MDE design

flow to implement dynamically reconfigurable FPGAs using a

high level design flow.

REFERENCES

[1] P. Lysaght and B. Blodget and J. Mason, “Invited Paper: Enhanced
Architectures, Design Methodologies and CAD Tools for Dynamic
Reconfiguration of Xilinx FPGAs,” in FPL’06, 2006.

[2] B. Blodget and S. McMillan and P. Lysaght, “A lightweight approach
for embedded reconfiguration of FPGAs,” in DATE’03, 2003.

[3] INRIA DaRT team, “GASPARD SoC Framework,” 2009, http://www.
gaspard2.org/.

[4] A. Gamatié et al, “A model driven design framework for high perfor-
mance embedded systems,” INRIA, Research Report RR-6614, 2008,
http://hal.inria.fr/inria-00311115/en.

[5] OMG, “Modeling and analysis of real-time and embedded systems
(MARTE),” http://www.omgmarte.org/.

[6] F. Maraninchi and Y. Rémond, “Mode-automata: About modes and
states for reactive systems,” in European Symposium On Programming.
Lisbon (Portugal): Springer verlag, Mar. 1998.

[7] O. Labbani et al, “Introducing control in the gaspard2 data-parallel
metamodel: Synchronous approach,” in Proceedings of the International

Workshop MARTES: Modeling and Analysis of Real-Time and Embedded

Systems, 2005.
[8] A. Gamatié and É. Rutten and H. Yu, “A Model for the Mixed-Design of

Data-Intensive and Control-Oriented Embedded Systems,” INRIA, http:
//hal.inria.fr/inria-00293909/fr, Research Report RR-6589, July 2008.

[9] H. Yu, “A MARTE-Based Reactive Model for Data-Parallel Intensive
Processing: Transformation toward the Synchronous Model,” Ph.D.
dissertation, USTL/LIFL, France, 2008. [Online]. Available: http:
//sites.google.com/site/huafengyu/pub-files/thesis.pdf

[10] Y. Atat and N. Zergainoh, “Simulink-based MPSoC Design: New Ap-
proach to Bridge the Gap between Algorithm and Architecture Design,”
in ISVLSI’07, 2007, pp. 9–14.

[11] G. Gailliard et al, “Transaction level modelling of SCA compliant soft-
ware defined radio waveforms and platforms PIM/PSM,” in DATE’07,
2007.

[12] S. Mohanty et al, “Rapid design space exploration of heterogeneous em-
bedded systems using symbolic search and multi-granular simulation,”
in LCTES/Scopes, 2002.

[13] A. Koudri et al, “Using MARTE in the MOPCOM SoC/SoPC Co-
Methodology,” in MARTE Workshop at DATE’08, 2008.

[14] F. Berthelot and F. Nouvel and D. Houzet, “A Flexible system level de-
sign methodology targeting run-time reconfigurable FPGAs,” EURASIP

Journal of Embedded Systems, vol. 8, no. 3, pp. 1–18, 2008.
[15] M. Boden et al, “GePARD - a High-Level Generation Flow for Partially

Reconfigurable Designs,” in ISVLSI 2008, 2008.
[16] R. Damasevicius and V. Stuikys, “Application of UML for hardware

design based on design process model,” in ASP-DAC’04, 2004.
[17] W. McUmber and B. Cheng, “UML-based analysis of embedded systems

using a mapping to VHDL,” in IEEE International Symposium on High

Assurance Software Engineering, HASE’99, 1999, pp. 56–63.
[18] P. Sedcole et al, “Modular Partial Reconfiguration in Virtex FPGAs,” in

FPL’05, 2005, pp. 211–216.
[19] J. Becker and M. Huebner and M. Ullmann, “Real-Time Dynamically

Run-Time Reconfigurations for Power/Cost-optimized Virtex FPGA
Realizations,” in VLSI’03, 2003.

[20] M. Huebner et al, “New 2-Dimensional Partial Dynamic Reconfigura-
tion Techniques for Real-Time Adaptive Microelectronic Circuits,” in
ISVLSI’06, 2006.

[21] C. Schuck et al, “A framework for dynamic 2D placement on FPGAs,”
in IPDPS 2008, 2008.

[22] Xilinx, “Early Access Partial Reconfigurable Flow,” 2006, http://www.
xilinx.com/support/prealounge/protected/index.htm.

[23] S. Bayar and A. Yurdakul, “Dynamic Partial Self-Reconfiguration on
Spartan-III FPGAs via a Parallel Configuration Access Port (PCAP),”
in HiPEAC’08 Workshop on Reconfigurable Computing, 2008.

[24] C. Claus et al, “A new framework to accelerate Virtex-II Pro dynamic
partial self-reconfiguration,” IPDPS 2007, pp. 1–7, 2007.

[25] A. Cuoccio et al, “A Generation Flow for Self-Reconfiguration Con-
trollers Customization,” Forth IEEE International Symposium on Elec-

tronic Design, Test and Applications, DELTA 2008, pp. 279–284, 2008.
[26] R. Koch et al, “An adaptive system-on-chip for network applications,”

in IPDPS 2006, 2006.
[27] I.-R. Quadri, S. Meftali, and J.-L. Dekeyser, “A model driven design

flow for fpgas supporting partial reconfiguration,” International Journal

of Reconfigurable Computing, 2009, Hindawi Publishing Corporation,
Tentative publication date : June 2009.

[28] P. Boulet, “Array-OL revisited, multidimensional intensive signal pro-
cessing specification,” INRIA, http://hal.inria.fr/inria-00128840/en/, Re-
search Report RR-6113, February 2007.

[29] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231–274, June
1987.


