
HAL Id: inria-00489816
https://inria.hal.science/inria-00489816

Submitted on 7 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Large-Scale Performance Study of Cluster-Based
High-Dimensional Indexing

Gylfi Thór Gudmundsson, Björn Thór Jónsson, Laurent Amsaleg

To cite this version:
Gylfi Thór Gudmundsson, Björn Thór Jónsson, Laurent Amsaleg. A Large-Scale Performance Study of
Cluster-Based High-Dimensional Indexing. [Research Report] RR-7307, INRIA. 2010. �inria-00489816�

https://inria.hal.science/inria-00489816
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
73

07
--

F
R

+
E

N
G

Vision, Perception and Multimedia Understanding

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Large-Scale Performance Study of
Cluster-Based High-Dimensional Indexing

Gylfi Þór Gudmundsson — Björn Þór Jónsson — Laurent Amsaleg

N° 7307

Juin 2010

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

A Large-S
ale Performan
e Study ofCluster-Based High-Dimensional IndexingGyl� Þór Gudmundsson∗ , Björn Þór Jónsson† , Laurent AmsalegTheme : Vision, Per
eption and Multimedia UnderstandingÉquipes-Projets TexmexRapport de re
her
he n° 7307 � Juin 2010 � 20 pages
Abstra
t: High-dimensional
lustering is a method that is used by some
ontent-based image retrieval systems to partition the data into groups; thegroups (
lusters) are then indexed to a

elerate the pro
essing of queries. Re-
ently, the Cluster Pruning approa
h was proposed as a very simple way toe�
iently and e�e
tively produ
e su
h
lusters. While the original evaluationof the algorithm was performed within a text indexing
ontext at a rather smalls
ale, its simpli
ity and performan
e motivated us to study its behavior in animage indexing
ontext at a mu
h larger s
ale. We experiment with two
ol-le
tions of 72-dimensional state-of-the-art lo
al des
riptors, the larger
olle
tion
ontaining 189 million des
riptors. This paper summarizes the results of thisstudy and shows that while the basi
 algorithm works fairly well, three ex-tensions
an dramati
ally improve its performan
e and s
alability, a

eleratingboth query pro
essing and the
onstru
tion of
lusters, making Cluster Prun-ing a promising basis for building large-s
ale systems that require a
lusteringalgorithm.Key-words: Content-Based Image Retrieval Systems,
lustering, multidimen-sional indexing, large s
ale

∗ S
hool of Computer S
ien
e, Reykjavík University, Menntavegi 1, IS 101 Reykjavík,I
eland. gyl�03�ru.is
† S
hool of Computer S
ien
e, Reykjavík University, Menntavegi 1, IS 101 Reykjavík,I
eland. bjorn�ru.is

Étude de performan
e à grande é
helle d'unindexation multidimensionnelle basée
lustersRésumé : Le
lustering en grandes dimensions est une méthode employée par
ertains systèmes de re
her
he d'images par le
ontenu pour partitionner l'espa
een groupes. Les groupes sont ensuite indexés pour a

élérer le traitement des re-quêtes. Ré
emment, une appro
he dite �Cluster Pruning� a été proposée
ommepermettant l'obtention simple, rapide et e�
a
e de
es groupes. Alors que sonévaluation originale s'est e�e
tuée dans un
ontexte d'indexation de textes età une é
helle réduite, sa simpli
ité et ses performan
es ont été une forte moti-vation pour étudier son
omportement à bien plus grande é
helle, et dans un
ontexte image. Nous menons des expérimentations où sont utilisés des des
rip-teurs lo
aux d'image appartenant à l'état de l'art et de dimension 72. Noustraitons plusieurs
olle
tions de des
ripteurs, dont la plus grande en
ontient189 millions. Cet arti
le présente une synthèse des résultats de
ette étude etmontre que l'algorithme original fon
tionne relativement bien. Toutefois, troisextensions simples permettent d'améliorer de manière très importante ses per-forman
es et son aptitude à passer à l'é
helle, en a

élérant tant le traitementdes requêtes que le temps de
onstru
tion des groupes. Dotée de
es extensions,l'appro
he �Cluster Pruning� devient alors une brique essentielle pouvant serviraux systèmes grande é
helle né
essitant la
réation de groupes de points.Mots-
lés : Systèmes de re
her
he d'images par le
ontenu, partitionnement,indexation multidimensionnelle, grande é
helle

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing31 Introdu
tionRe
ently, there has been a signi�
ant burst of resear
h a
tivity on data stru
-tures and algorithms for approximate nearest neighbor sear
h in high-dimensionaldes
riptor
olle
tions (e.g., see [4, 5, 9, 19℄). Generally speaking, all these meth-ods are based on some sort of segmentation of the high-dimensional
olle
tioninto groups of des
riptors, whi
h are stored together on disk. At query time, anindex is then typi
ally used to sele
t the single nearest su
h group for sear
hing.The goal of the approximate sear
h is to �nd a good trade-o� between resultquality and retrieval time.1.1 Cluster-Based RetrievalSeveral of the methods that have been proposed are based on using
lusteringalgorithms to group the data. This line of work was pioneered by Li et al. [11℄,whi
h proposed the Clindex framework, where a dynami
 sear
h algorithm
ouldhalt pro
essing after reading a given number of
lusters. They showed that goodapproximate results
ould be obtained by reading a small number of
lusters,albeit for a very small
olle
tion. Their parti
ular
lustering algorithm did nots
ale well in pra
ti
e, however.Traditionally,
lustering algorithms, su
h as k-means, �nd the �natural�
lus-ters of the data, and produ
e large
lusters (
ontaining many des
riptors) indense areas of the high-dimensional spa
e and small
lusters (
ontaining fewdes
riptors) in sparse areas. Sigurðardóttir et al. [18℄ showed, however, for theirparti
ular
olle
tion, that large
lusters are very detrimental to performan
e,and that ex
ellent approximate results
ould be returned by simply bulk-loadingthe des
riptors into an SR-tree and using the resulting leaves to
reate
lustersof an even size. Indeed, when result quality was
onsidered as a fun
tion oftime, early results were mu
h better with this simple
lustering s
heme thanwith a traditional
lustering algorithm.Chieri
hetti et al. [3℄ then proposed a very simple algorithm,
alled ClusterPruning, whi
h uses the initial steps of the k-means algorithm to sele
t a numberof random
luster leaders and assign ea
h des
riptor to a single leader. Likein [11℄, at sear
h time, the nearest b
lusters are read and used to produ
e theapproximate results. To improve result quality, they proposed some parametersa�e
ting the size of
lusters and the depth of the
luster index.1.2 S
alabilityWhile the algorithm of Chieri
hetti et al. is e�
ient and e�e
tive, as predi
tedby the previous results, and their analysis is impressive, the performan
e of thealgorithm was only studied using a small s
ale text
olle
tion. Its simpli
ity andperforman
e was a strong motivation to study its behavior in an image indexing
ontext at a larger s
ale, where se
ondary storage is needed.State-of-the-art image appli
ations typi
ally use the SIFT des
riptors [12℄or variants thereof [7, 9℄. These des
riptors have two important propertiesthat make them suitable for large-s
ale retrieval. First, they have been shownto s
ale very well with respe
t to result quality [10℄. Se
ond, ea
h image isdes
ribed by hundreds of des
riptors, making approximate queries (and thuspotentially Cluster Pruning) appropriate for these appli
ations. Be
ause ea
hRR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing4image is des
ribed by hundreds of these high-dimensional des
riptors, large-s
aleindexing and retrieval is absolutely ne
essary.A major assumption made in the original design of Cluster Pruning is thatCPU
ost is dominant during the sear
h. As a result of the de
ision to ignoredisk
ost, the optimal segmentation is to index a
olle
tion of n des
riptors into√
n
lusters
ontaining, on average,√n des
riptors ea
h; this division minimizesthe total CPU
ost of the retrieval. While the
al
ulation of Eu
lidean distan
esis indeed CPU intensive, disk operations are also a signi�
ant sour
e of
ost,as shown in [18℄. It is therefore ne
essary to study, for realisti
 workloads anddata sets that need to be stored on disks, the optimal settings for the numberof
lusters and the resulting distribution of
luster sizes.1.3 ContributionsIn this paper, we study the performan
e of the Cluster Pruning algorithm in the
ontext of a large-s
ale image
opyright prote
tion appli
ation. The
opyrightprote
tion appli
ation has been studied signi�
antly in the literature (e.g., see [1,8, 9℄) and good results have been obtained using a number of lo
al des
riptorvariants. Furthermore, as queries are formed by modifying images in the image
olle
tion, there is no need for subje
tive judgment on similarity of images,greatly fa
ilitating interpretation of results.We study the e�e
t of the various parameters of the Cluster Pruning algo-rithm, in
luding index depth and
luster size, in this disk-based setting. Ourresults
ontradi
t some of the
on
lusions rea
hed by Chieri
hetti et al. [3℄, dueto the large s
ale of our experimental setup. While the basi
 algorithm stillworks fairly well, we propose three key
hanges whi
h signi�
antly improve itsperforman
e. First, a new parameter is needed to
ontrol
luster size on disk, tobetter balan
e IO and CPU
osts. Se
ond, a modi�
ation, whi
h enables the useof the
luster index during the
lustering phase, allows
lustering the
olle
tionin a reasonable time. Third, by
reating additional
lusters and then re
luster-ing the
ontents of the smallest
lusters,
luster size distribution is improvedwhi
h, in turn, improves sear
h e�
ien
y.Note that, as mentioned above, there has been mu
h re
ent resear
h a
tivityin the area of high-dimensional indexing. As a result, there are other
ompetingapproa
hes, whi
h have similar theoreti
al properties, but may be appropriatefor di�erent appli
ations (e.g., see [4, 10, 13, 15, 19℄). In this paper, we donot attempt a
omparison of all these approa
hes, as su
h a
omparison wouldbe extremely time-
onsuming, but fo
us instead on understanding the perfor-man
e of one spe
i�
 approa
h, the Cluster Pruning algorithm, for a parti
ularworkload setting. There is signi�
ant overlap between the ideas behind ClusterPruning and the other approa
hes; Cluster Pruning
an therefore be seen as agood representative for a whole family of algorithms where
lustering is
entral.We thus believe that our analysis represents a very valuable
ontribution to thegeneral understanding of disk-oriented
luster-based indexing.1.4 Outline of the PaperThe remainder of the paper is organized as follows. In Se
tion 2 we reviewthe
opyright prote
tion appli
ation we use in our work. We then review theCluster Pruning algorithm in Se
tion 3. In Se
tion 4 we propose extensions toRR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing5this algorithm for disk-based pro
essing of large
olle
tions. In Se
tion 5 wethen run a detailed study of the impa
t of various parameters on performan
e.We dis
uss related work in Se
tion 6, before
on
luding in Se
tion 7.2 Image Copyright Prote
tionThe appli
ation we use as a
ase study is the well known image
opyright pro-te
tion appli
ation (see [9, 8℄). It is very di�erent from the one studied byChieri
hetti et al., where they used about 95,000 do
ument des
riptors withmore than 400,000 dimensions. In order to set the
ontext for the work, and forour examples, we now des
ribe this appli
ation and our experimental environ-ment.2.1 Image Colle
tions and QueriesWe use two
olle
tions of images. The �rst
olle
tion
ontains 30K high-qualitynews photos, whi
h are very varied in
ontent. The se
ond
olle
tion, whi
hin
ludes the �rst
olle
tion,
ontains about 300K su
h photos.Queries are intended to simulate image theft. The standard method for thispurpose is to generate modi�ed variants of images in the
olle
tion using theStirMark software [14℄ and use those variants as queries. The goal is then toreturn the original image as a mat
h, but no other images. For the purposesof our evaluation, 120 images were
hosen at random from the
olle
tion, andmodi�ed with 26 di�erent StirMark variants (the variants in
lude resizing,
rop-ping,
ompression, and some severe brightness modi�
ations, see [9℄ for details),resulting in 3,120 query images.2.2 Des
riptors and Query ModelEa
h image is des
ribed with many lo
al des
riptors, ea
h des
ribing a small por-tion of the image. We use the E�2 des
riptors, whi
h are a variant of SIFT [12℄,but perform signi�
antly better for this appli
ation [9℄. An E�2 des
riptor has72 dimensions, ea
h stored in a byte. Additionally, ea
h des
riptor stores theidenti�er of the image it was extra
ted from, for a total of 76 bytes. The small
olle
tion has a total of 20,445,871 des
riptors, while the large
olle
tion has189,605,419 des
riptors. The
olle
tions thus require 1.5GB and 13.4GB of diskstorage, respe
tively.Beyer et al. [2℄ and Shaft and Ramakrishnan [17℄ have shown that the onlyway to obtain meaningful performan
e results for large-s
ale high-dimensionalindexing, is to use real appli
ation data whi
h has been shown to s
ale well interms of retrieval quality. They have, for example, shown that the data distri-bution of most generated
olle
tions is su
h that those
olle
tions
an neitheryield meaningful results [2℄, nor be e�
iently indexed [17℄. Previous work hasshown that SIFT des
riptors do indeed s
ale well to large
olle
tions [10℄, andwe believe that our
olle
tions are large enough for our
on
lusions to be quitegeneral.The des
riptors from the images in the photo
olle
tions are stored in a largedes
riptor �le, whi
h is the input to the
lustering pro
ess. When a query �le isre
eived, ea
h of its q query des
riptors is used in a k-nearest neighbor sear
h:RR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing6the
losest
luster representative is �rst found, the
ontents of the
luster fet
hedin memory and distan
es �nally
omputed to get the k neighbors. In this paper,we use k = 20, but the results are not very sensitive to that setting for large
olle
tions. Ea
h neighbor votes for the image it was extra
ted from. Thesevotes are aggregated over the image identi�ers, and the images with the mostvotes are returned as an answer to the query.2.3 Metri
sThe
ost of
lustering and sear
h is measured through CPU time and IO time,but typi
ally reported together as wall-
lo
k time. The sear
h time reported
orresponds to the average time spent to perform ea
h of the 3,120 queries.Quality, on the other hand, is measured as follows. For ea
h of the 3,120 queryimages, it is
lear whi
h image should be returned as a mat
h. We
onsideran image a �
orre
t mat
h� when the
orre
t image has at least twi
e as manyvotes as the image with the se
ond most votes. The per
entage of su
h
orre
tmat
hes is our baseline quality metri
.Note that the quality results in this study are lower than reported in manyother studies, for three reasons. First, some of the StirMark variants are verydi�
ult to �nd and even an exa
t sequential s
an does not �nd all the
or-re
t mat
hes. Se
ond, a few of the sele
ted images have near-dupli
ates in the
olle
tion, and therefore are never found as a
orre
t mat
h using our simplemeasure. Third, our
riteria of having twi
e as many votes is very stri
t; itis possible to �nd a mat
h with a relatively small number of votes by apply-ing post-pro
essing to the top images (e.g., see [8, 12℄), but for simpli
ity weavoid su
h post-pro
essing. The point of this study, however, is not to showthat the des
riptors are e�e
tive at image
opyright prote
tion�this is alreadyknown [8, 9, 12℄. The main point is to investigate the performan
e of the ClusterPruning algorithm, and this simple de�nition of a
orre
t mat
h su�
es for thatpurpose.3 The Cluster Pruning Approa
hIn this se
tion, we brie�y des
ribe the Cluster Pruning approa
h. We �rst de-s
ribe the basi
 algorithm, and then three parameters a�e
ting its behavior. Weend by dis
ussing the
osts of the Cluster Pruning approa
h before summarizingthe results reported in [3℄.3.1 Basi
 AlgorithmAssume a
olle
tion C = p1, . . . , pn of n points in high-dimensional spa
e. The
lusters are then formed as follows. First, a set of l =
√

n
luster leaders is
hosen randomly from C. Then, ea
h point pi is
ompared to all l
lusterleaders and assigned to its
losest leader. Finally, on
e the
lusters have beenformed, a
luster representative is
hosen, per
luster (the obvious
hoi
es arethe
luster leader itself, the
entroid of the
luster, or the medoid of the
luster).At query time, the query point q is �rst
ompared to the set of l
lusterrepresentatives to �nd the nearest representative. Then, the query point is
ompared to all the points in that representative's
luster, to determine the kRR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing7nearest neighbors found in the
luster. Those neighbors are returned as theapproximate answer to the query.The
hoi
e of l =
√

n
lusters is made be
ause the total number of eu
lideandistan
e
al
ulations, whi
h is l + n/l, is minimized when l =
√

n. On average,ea
h
luster
ontains√n points, resulting in a total of 2√n distan
e
al
ulations.Assuming that the set of
luster representatives �ts in memory, but not thedes
riptor
olle
tion, one disk read is required at sear
h time.3.2 Extended Sear
hes: The b ParameterSometimes, reading a single
luster may not yield results of satisfa
tory quality.In su
h
ases, it is possible to read b
lusters to answer ea
h query; the basi
algorithm
orresponds to b = 1. The
ost of retrieval then
onsists of b IOs and
(1+b)

√
n distan
e
al
ulations. Using b, it is possible to dynami
ally
hange thequery exe
ution strategy, for example to read more
lusters to improve results.As b grows, however, returns are expe
ted to diminish as the nearest neigh-bors are most likely to be
ontained within the nearest
lusters [18℄. Unfortu-nately, a suitable
hoi
e of b is di�
ult to determine dynami
ally, as the resultquality is not known at run-time; instead the number of
lusters required for a
-
eptable result quality must be determined expli
itly through experimentation.3.3 Redundant Clustering: The a ParameterAlternatively, it is possible to in
rease the quality of the results by assigningea
h data point to a > 1
lusters, and reading only b = 1
luster at query time.Ea
h
luster will then
ontain, on average, a

√
n points, resulting in (a + 1)

√
neu
lidean distan
e
al
ulations, but only one IO.The
lustering phase is always more
ostly with higher a (the average
lustersize is proportional to a). Furthermore, it is not possible to
hange the a pa-rameter on
e the
lusters are formed, while the b parameter
an be dynami
allymodi�ed at query time.1 The e�e
t of the a parameter on query pro
essing
ostis more
omplex, and is studied in Se
tion 5. In short, as a is in
reased, the sizeof the
lusters on disk in
reases, as well as the time required to pro
ess them.3.4 Re
ursive Clustering: The L ParameterFor large
olle
tions, √n is a large number, resulting in ex
essive CPU
ostand potentially even signi�
ant IO
ost. The solution suggested by Chieri
hettiet al. is to re
ursively
luster the set of
luster representatives, using the exa
tsame method. They introdu
e a parameter, L, to
ontrol the number of levelsin the re
ursion; the default algorithm des
ribed above
orresponds to L = 1.The L parameter is used as follows during the
lustering, whi
h is performedin a bottom-up manner. First, l = nL/(L+1)
luster leaders are now
hosen ini-tially, resulting in l
lusters
ontaining on average n1/(L+1) des
riptors. Clusterassignment then pro
eeds as before, as does the
hoi
e of
luster representatives.On
e the
luster representatives are formed, however, they are
onsidered as a
olle
tion of high-dimensional points, and
lustered using n(L−1)/(L+1) repre-sentatives. This pro
ess is repeated re
ursively, and the out
ome is an L-tier1Note that while it is possible to have both a > 1 and b > 1, su
h settings will most likelyresult in several data points being read a times and are therefore not
onsidered.RR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing8index of
luster representatives, where ea
h representative always represents,on average, n1/(L+1) = L
√

l points at the next level. At query time, the totalnumber of distan
e
al
ulations is (L + 1)n1/(L+1), while the number of IOs isat most L, assuming at least the top level �ts in memory.Note that the size of ea
h
luster de
reases rapidly as L grows. This methodis thus e�e
tive at de
reasing CPU
ost, but potentially at the expense of addi-tional IOs.Example 1 For a
olle
tion of 1 million des
riptors, L = 1 yields a
lusterindex of 1,000 representatives with 1,000 des
riptors per
luster on average.Sear
hing this index, with b = 1, therefore requires 2 × 1, 000 = 2, 000 distan
e
al
ulations per query des
riptor. Using L = 2, on the other hand, yields 10,000
lusters with 100 des
riptors per
luster, and sear
hing requires 3 × 100 = 300distan
e
al
ulations.3.5 Cost of Cluster PruningDuring query pro
essing, Cluster Pruning in
urs
osts for s
anning the
lus-ter index and pro
essing
lusters. While
lustering
osts do not a�e
t sear
hthroughput, they are nevertheless important, as
luster generation must takereasonable time. We now brie�y dis
uss the impa
t of a, b, l and L on the CPUand IO
osts of querying and
lustering.Cost of Index S
an. Assuming the
luster index �ts entirely in memory, the
ost of the index s
an is only CPU
ost, whi
h is O(abL
L
√

l) (as before, either
a = 1 or b = 1).Cost of Cluster S
an. The CPU
ost of sequentially s
anning the b
lustersis O(abl). The IO
ost of reading
lusters is O(b(C +al)), where C is the
ost ofa random IO relative to a distan
e
al
ulation (this
ost depends on hardware,layout on disk, et
.).Cost of Clustering. Assuming that the
luster index �ts in memory, the
ostof the
lustering pro
ess is a�e
ted mostly by the a parameter. The CPU
ost,however,
onsists of s
anning the
luster index for ea
h database des
riptor to�nd the
orre
t
luster, for a
ost of O(naL L

√
l).3.6 Summary of Previous ResultsWhile the bulk of the results reported by Chieri
hetti et al. [3℄ were obtained us-ing a
olle
tion of about 95,000 des
riptors with dimensionality of about 400,000,it is still instru
tive to re
all their results.Their goal was to determine the parameter settings that gave the best resultquality in the shortest time span. First, they found
luster
entroids to be thebest representatives, followed by the
luster leaders. For that small
olle
tion,

L = 1 gave the best results, followed
losely by L = 2. Higher values of Lresulted in very poor results. They also found that for a memory-based settingusing a = 1 worked best, as then b
ould be varied to in
rease quality, while fora disk-based setting using a = 5 and b = 1 gave the best results. Our results,on the other hand, indi
ate that for large
olle
tions, using L > 1 and a = 1 isalways preferred.RR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing94 Cluster Pruning ExtensionsThe main emphasis of the original algorithm was to minimize the CPU
ostof queries. We now propose four new design
hoi
es that a�e
t performan
esigni�
antly, when dealing with lo
al des
riptors in a disk-based setting.4.1 Cluster Size Sele
tionThe results in [18℄ indi
ated that
luster size is a key fa
tor in the performan
eof
luster indexing, and that
luster size should be heavily in�uen
ed by the
hara
teristi
s of the hard disk drive that des
riptors reside on. In the originalCluster Pruning approa
h, however, there is a large di�eren
e in
luster sizes for
L = 1 and L = 2, and both are independent of the IO granularity of the disk.While this behavior minimizes the CPU
ost, in
reasing L leads to very smalldes
riptor
lusters on disk, whi
h under-utilize the IOs, and a
orrespondinglylarge index.Instead of
hoosing l = nL/(L+1) leaders in the �rst step, we propose to givethe desired average
luster size and then determine the number of leaders asfollows:

l =

⌈

n

⌊desired
luster size / des
riptor size⌋⌉ (1)Using this new number of
luster leaders, the
lustering pro
eeds as before.When L > 1, ea
h intermediate-level representative still represents L
√

l pointsat the next level.Example 2 Assuming a desired
luster size of 128KB (the default IO granular-ity of the Linux operating system) ea
h
luster should
ontain ⌊128KB/76B⌋ =
1, 724 des
riptors. For our small
olle
tion, the resulting number of
luster lead-ers would be l = ⌈20, 445, 871/1, 724⌉= 11, 859.By de
oupling the size of the
lusters from the
hoi
e of L, we gain two majorbene�ts. First, larger
lusters lead to a smaller index that may �t entirely inmemory. Se
ond, as ea
h
luster is larger, fewer
lusters may potentially beread. While CPU
ost is sa
ri�
ed, the IO
ost is redu
ed resulting in loweroverall query pro
essing
ost.4.2 Choi
e of Cluster RepresentativesChieri
hetti et al.
onsidered three potential
hoi
es for
luster representatives:the
luster leaders, the
luster
entroids, and the
luster medoids (the des
riptor
losest to the
entroid). Their
on
lusion was that the
entroids gave the bestperforman
e, followed
losely by the
luster leaders.We, on the other hand, propose to use the
luster leaders, for the followingreason. When
luster leaders are used, the bottom level of the
luster index isalready known before des
riptors are assigned to
lusters. This, in turn, meansthat the upper levels of the
luster index
an also be
reated before the
lusterassignment. As a result, the entire
luster index
an be
reated before
lusterassignment and
an therefore be used to dire
t the des
riptors to the appropriate
luster during the
lustering phase, resulting in a very signi�
ant redu
tion of
lustering time.RR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing10Note that this optimization is not possible with the other
hoi
es of
lusterrepresentatives, as those are not known until the a
tual
lusters have been
re-ated. While
entroids may yield slightly better results (our initial experimentsshowed small bene�ts, if any), the di�eren
e in
lustering time is so dramati
that it ne
essitates this
hoi
e.When using an index during
luster assignment, however, it is not
lear thatthe most appropriate
luster is always found for all des
riptors. To in
rease thelikelihood of �nding the best
luster for ea
h des
riptor, we always
reate theupper levels of the index using a = 3. While this setting does in
rease the indexsize, it
an still easily �t in memory.4.3 Balan
ed Size DistributionIn [18℄, it was shown that the largest natural
lusters of a des
riptor
olle
tionmight be as large as 5�20% of the
olle
tion, while many
lusters were verysmall. Small
lusters still require an IO operation, while
ontributing little tothe result quality. Large
lusters result in both a more expensive IO operationand additional CPU
ost. Both small and large
lusters, therefore, redu
e querypro
essing performan
e. Furthermore, large
lusters tend to get sele
ted moreoften for pro
essing than the average
luster, whi
h impa
ts query pro
essingeven further.In theory, the random leader sele
tion pro
ess should generate equally sized
lusters. In pra
ti
e, however, the reality is that several
lusters are signi�
antlysmaller then the desired size and a few large
lusters are an order of magnitudelarger than the average
luster. While the
luster size distribution is mu
h betterbalan
ed than for an algorithm whi
h generates natural des
riptor
lusters, itis still possible to improve the distribution.We propose a simple, yet surprisingly e�e
tive method to balan
e the sizedistribution. We intentionally
hoose X% additional
luster representatives inthe initial step of the algorithm. At the end of the
luster
reation pro
esswe then eliminate the
orresponding number of the smallest
luster leaders byre
lustering their des
riptors into the l remaining
lusters. In addition to theobvious advantage of eliminating the smallest
lusters, the
hoi
e of additionalleaders turns out to redu
e the size of the largest
lusters as the leaders nowbetter represent the des
riptor distribution.We have
hosen not to re
luster the largest
lusters. The reason is thatsin
e large
lusters typi
ally o

ur in dense areas of the des
riptor spa
e, it islikely that re
lustering a large
luster would simply move all the des
riptors toa single
luster (or a few), resulting in that
luster be
oming equally large asthe removed one, or even larger.4.4 Handling Multiple Query Des
riptorsAs ea
h query is represented by a few hundred des
riptors, it is possible tooptimize query pro
essing signi�
antly. Instead of pro
essing query des
riptorsone by one, resulting in (potentially repeated) random IOs, all des
riptors are
onsidered in a bat
hed mode. First, all query des
riptors are
ompared tothe
luster index to determine whi
h
lusters are needed. Se
ond, only those
lusters are read, in order, and their des
riptors
ompared only to the querydes
riptors that found the
orresponding
luster among its b
losest
lusters.RR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing11Clustering Sear
h Time (se
) Corre
t Mat
hes (%)
L Time (min) L = 1 L = 2 L = 1 L = 21 1,287.0 2.09 1.41 76.2 74.72 64.7 2.10 1.42 75.5 75.2Table 1: Impa
t of L on
lustering and sear
h performan
e (small
oll., 128KB
lusters, b = 5, a = 1).This method is more e�
ient, as
lusters are read on
e and the IOs are largelysequential.It is, of
ourse, possible to go even further and pro
ess multiple query imagesat the same time, but we do not
onsider su
h optimizations in this study.5 Performan
e ExperimentsIn this se
tion, we �rst analyze in detail the e�e
ts of the various parametersusing the smaller des
riptor
olle
tion. Then we
ompare the performan
e of the
lustering and sear
h algorithms for the small and the large
olle
tions, usingsettings determined from the experiments.All experiments were run on DELL PowerEdge 1850 ma
hines equipped withtwo 3.2GHz Intel Pentium 4 pro
essors, 2GB of DDR2-memory, 1MB CPU
a
he, and two 140GB 10Krpm SCSI disks. The ma
hines run CentOS 5.0Linux (2.6.18 kernel) and the ext3 �le system. The software was implementedin C++ and
ompiled using g++ 4.1.2.5.1 Impa
t of Cluster Index DepthWe start by studying the impa
t of L on the performan
e of the
lustering andsear
h algorithms. In the Cluster Pruning algorithm, the
hoi
e of L during
lustering and sear
h
an be independent; in fa
t Chieri
hetti et al. used L = 1during
luster
onstru
tion and L ≥ 1 during sear
h [3℄.In this experiment, we generated l = 11, 859
lusters with an average size of128KB (1,724 des
riptors), using L = 1 and L = 2, and then sear
hed b = 5
lusters for ea
h query des
riptor, both using L = 1 and L = 2. Table 1summarizes the results. As the �rst
olumn of the table shows,
luster
reationis mu
h more e�
ient using L = 2, taking only about 5% of the time required for

L = 1. The next two
olumns, for sear
h time, show that sear
hing a two-levelindex is also signi�
antly faster than sear
hing a single level index, although thedi�eren
e is mu
h less pronoun
ed.The last two
olumns show the sear
h quality. Not surprisingly, the bestquality is obtained through
lustering and sear
hing using L = 1, whi
h returns76.2% of the
orre
t mat
hes (re
all that our de�nition of a
orre
t mat
h isvery stri
t). The most e�
ient
ombination, using L = 2 for
lustering andsear
h, returns 75.2% of the
orre
t mat
hes. The di�eren
e is only 30 images,or less than 1% of the query set size. Given the tremendous e�
ien
y gains,whi
h will only be
ome more important as the
olle
tions grow larger, the lossof quality is a

eptable. We therefore only
onsider
lustering and sear
hingwith L = 2 in the rest of this se
tion.RR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing12
l Average Cluster Size Creation Time(
lusters) (KB) (des
.) (min)2,964 512 6,898 23.35,928 256 3,449 38.211,859 128 1,724 66.023,719 64 862 97.847,438 32 431 146.0Table 2: Impa
t of average
luster size on
lustering time (small
oll., L = 2,

a = 1).Note, again, that when studying the performan
e impa
t of L, Chieri
hettiet al.
lustered the
olle
tion using L = 1 but sear
hed it using L = 2 [3℄. Thisis indeed the worst
ombination, a

ording to our results.5.2 Impa
t of Average Cluster SizeWe now study the impa
t of the l parameter determining the number of
lusters
reated, thus a�e
ting the average
luster size. Table 2 shows the
lustering timefor a range of
luster sizes. As expe
ted, having more (smaller)
lusters resultsin a longer
lustering pro
ess, as ea
h des
riptor must be
ompared to a greaternumber of representatives.The impa
t on sear
h time and result quality, however, is more
omplex. Theexpe
tation is that sear
hing smaller
lusters will be faster, but that the resultsmay be poorer, in parti
ular with very small
lusters. On the other hand, whilein
reasing average
luster size will initially yield better results, the expe
tationis that a �law of diminishing returns� will redu
e the additional bene�ts beyonda
ertain point.Figure 1 shows the average time required to sear
h for ea
h query image. Asthe �gure shows, sear
hing is most e�
ient for the smallest
luster sizes. For
lusters of 32KB and 64KB the di�eren
e is negligible as the
ost of sele
tingfrom the large number of
luster
an
els out the redu
ed
ost of reading ands
anning the
lusters. As
lusters grow, however, the di�eren
es be
ome morepronoun
ed.Interestingly, s
anning two
lusters (b = 2) with average size of 128KB is lesstime-
onsuming than s
anning one
luster (b = 1) of 256KB; the same holds for256KB
lusters and 512KB
lusters. This is be
ause, with the smaller
lusters,it is more likely that at least one of the
lusters is in memory. Thus, readingadditional
lusters impa
ts e�
ien
y more positively than having larger
lusters.Figure 2, on the other hand, shows the result quality of the sear
h, for thesame values of l and b. Note that, for
larity, the y-axis fo
uses on the range from60% to 80% of
orre
t mat
hes. This �gure again
on�rms our intuition andshows that most of the quality is a
hieved with
lusters of 64�128KB. Combiningthe two �gures and Table 2, we
on
lude that the best
ombination of
lusteringtime, sear
h performan
e and result quality is a
hieved using an average
lustersize of 64KB or 128KB; we use 128KB in the remainder of our study.
RR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing13

0

1

2

3

4

5

6

1 2 3 4 5

S
ea

rc
h

T
im

e
pe

r
Im

ag
e

(s
ec

)

b

Cluster Size: 512KB
256KB
128KB
64KB
32KB

Figure 1: Impa
t of average
luster size on sear
h time (small
oll., L = 2,
a = 1).Note that the original algorithm at L = 2 would have
reated about 74,000
lusters of about 16KB ea
h; as our results show, those
lusters would be fartoo small and many.5.3 Impa
t of Redundan
yWe now turn to the trade o� between the a and b parameters. As mentionedabove, the expe
tation is that they should yield results of similar quality. Thisis
on�rmed by our results (not shown); for a > 1, only about 10 more mat
hesare found than for the
orresponding b.With respe
t to sear
h performan
e, the intuition is that using a should beslightly more e�
ient as it requires fewer (but larger) random disk operations,while using b is more �exible as b
an be de
ided at query time. Our results,however, do not
on�rm this intuition. Figure 3 shows the impa
t of a and
b on sear
h performan
e for two di�erent memory settings. Consider �rst theresults when the main memory allo
ation is 2GB. As expe
ted, the results areidenti
al for a = b = 1, as this is the same
on�guration. On
e a > 1, however,the performan
e be
omes mu
h worse than for
orresponding settings of b. Theprimary reason for this di�eren
e is that when a > 1
lusters be
ome mu
hlarger and therefore fewer
an be
a
hed in memory. Thus, ea
h query mustread most of its
lusters from disk, while bu�ering performan
e is a�e
ted lessby b.To study the performan
e in a fair setting, we therefore redu
ed the memoryallo
ated to the operating system to 750MB and repeated the experiment. WithRR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing14

60

65

70

75

80

1 2 3 4 5

C
or

re
ct

 M
at

ch
es

 (
%

)

b

Cluster Size: 512KB
256KB
128KB
64KB
32KB

Figure 2: Impa
t of average
luster size on result quality (small
oll., L = 2,
a = 1).

0

1

2

3

4

5

6

7

8

1 2 3 4 5

S
ea

rc
h

T
im

e
pe

r
Im

ag
e

(s
ec

)

a & b

2.00 GB: a
b

0.75 GB: a
b

Figure 3: Impa
t of a and b on sear
h time (small
oll., 128KB
lusters, L = 2).
RR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing15this setting, both parameters are impa
ted by the bu�er management perfor-man
e, but varying b is still more e�
ient. We believe there are three mainreasons for this. First, even though few
lusters �t in memory,
lusters are stillsmaller and the bu�er manager is therefore more likely to �nd them in memory.Se
ond, be
ause ea
h query
onsists of hundreds of des
riptors, whi
h read btimes more
lusters, and be
ause
lusters are read in sequen
e, disk reads area
tually less random than expe
ted. By varying a, on the other hand, fewer butlarger
lusters are read, and disk reads are spread over a larger area of the disk.Third, sin
e
lusters are often larger than the IO granularity of the operatingsystem, ea
h �logi
al� IO may result in many �physi
al� IOs. This o

urs moreoften with the larger
lusters generated using a > 1, whi
h helps to explain thenegative impa
t of a.5.4 Impa
t of Cluster Size DistributionThe general idea for improving
luster size distribution is to intentionally
hoose
X% extra leaders at the start of the
lustering pro
ess. On
e the
olle
tionhas been
lustered, we then remove the X% smallest
lusters and insert their
ontents into the nearest remaining
lusters. Figure 4 shows the resulting datadistribution. The x-axis indi
ates how many additional
lusters are
reatedinitially (per
entage of the desired number of
lusters). The y-axis shows thenumber of des
riptors that fall into a given
luster size
ategory; re
all that theaverage size of
lusters is 1,724 des
riptors. As the �gure shows, more than 10%of the data is initially (X = 0) either in very large or very small
lusters, whileonly about 35% of the data is in the range from 1,000 to 2,000. As X in
reases,the largest and smallest
lusters shrink, and
ontain about 4% when X = 100,while 60% of the data then falls within the range from 1,000 to 2,000.Figure 5 shows the impa
t of varying X on the
lustering time, sear
h time,and result quality,
ompared to X = 0. As expe
ted,
lustering time in
reasesas X is in
reased due to the additional distan
e
al
ulations, and nearly doubleswhen X = 100. Sear
h time, on the other hand, de
reases due to the better sizedistribution of the
lusters. Most importantly, however, result quality is onlya�e
t very slightly, as the number of
orre
t mat
hes only
hanges by ±10.5.5 Impa
t of S
aleThe previous experiments have studied the impa
t of various parameters ata moderate s
ale (although a
olle
tion of 20 million des
riptors is, after all,quite large
ompared to the typi
al
olle
tions studied in the literature). Wehave
on
luded that for optimal performan
e, we should set L = 2 and a = 1,generate
lusters with average size of 128KB, and use b to improve result quality(optionally generating and then removing some extra
lusters). We now applythese settings to a
olle
tion that is an order of magnitude larger and study theperforman
e of the
lustering and sear
h algorithms with this larger
olle
tion.Note that in order to get a fair
omparison of disk a
tivity, we
ompared thesear
h time of the large
olle
tion to the sear
h time of the small
olle
tion withthe 750MB
on�guration.Sin
e the
olle
tion is about 9.3 times larger, and
luster size is the same,there will be about 9.3 times as many
lusters; as the depth of the index is thesame, there will be about √9.3 times more
luster representatives at ea
h level.RR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing16

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

S
ta

ck
ed

 D
at

a
D

is
tr

ib
ut

io
n

(%
)

X (%)

> 4000
3000 - 4000
2000 - 3000
1000 - 2000

< 1000

Figure 4: Data distribution for varying X (small
oll., 128KB
lusters, L = 2,
a = 1). Clustering QueryDes
riptors Time Time Mat
hesColle
tion (millions) (min) (se
) (%)Small 20.4 64.7 3.95 74.6Large 189.6 2,344.7 8.82 74.3Di�eren
e ≈9.3x ≈36x ≈2.2x ≈1xTable 3: Comparison of the small and large
olle
tions (128KB
lusters, L = 2,
b = 3, a = 1).We therefore expe
t that the
luster
reation will take about 9.3

√
9.3 ≈ 28 timesmore time, while the sear
h should be a�e
ted mu
h less. We also hope thatthe result quality will be largely una�e
ted.Table 3 shows the results of the experiment. As the table shows,
lustering isabout 36 times more time-
onsuming, whi
h is
lose to the expe
tation. Sear
h-ing is just over 2 times slower, mostly due to the additional
ost of s
anning theindex, but potentially also due to a slightly worse
luster size distribution. Mostimportantly, however, the table shows that only 10 images are lost when goingto the larger
olle
tion, whi
h is a redu
tion of about 0.3%. As ea
h des
riptoris
ompared to only 3 × 1, 724 = 5, 172 des
riptors on average, when b = 3, orabout 0.003% of the
olle
tion, this is an ex
ellent result.

RR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing17

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80 90 100

P
er

fo
rm

an
ce

 (
re

la
tiv

e
to

 X
=

0)

X (%)

Clustering Time
Total Search Time

Correct Matches

Figure 5: Relative performan
e for varying X (small
oll., 128KB
l., L = 2,
a = 1).5.6 Summary of ResultsSeveral lessons
an be drawn from the above experiments. First, multilevel
lus-tering is ne
essary when indexing large
olle
tions. It allows for very e�
ient
lustering when the index is
reated before assigning des
riptors to
lusters.Note that at even larger s
ales, when s
anning the index be
omes
ostly, in-
rementing the depth of the hierar
hy may be
onsidered. Se
ond, partitioningthe
olle
tion into I/O sized
lusters is best for e�
ien
y. This, together witha more balan
ed distribution of
lusters sizes redu
es the time spent on I/Os.Third, reading more than one
luster at sear
h time yields the best result qual-ity. It also absorbs the ina

ura
ies of assignments of points to
lusters and
ompensates for the losses in pre
ision due to the multiple levels of the hierar-
hy. Furthermore,
ompared to large
lusters, it in
reases the
han
es of �ndinga
luster in memory, avoiding I/Os. All in all, these extensions help ClusterPruning to s
ale very well to quite large data sets.6 Related WorkWhile there has been signi�
ant work on
lustering data, the fo
us has typi
allybeen on identifying the natural
lusters of the
olle
tion, rather than
reatinga
luster index for query pro
essing. Aside from [11℄, using
lustering for im-age retrieval has been investigated by the
omputer-vision
ommunity. Oneseminal approa
h to image retrieval, Video-Google [19℄, uses k-means to groupdes
riptors into visual words, whi
h are then indexed using information retrievalRR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing18te
hniques; in this
ase, the
lusters are not used dire
tly for query pro
essing.Philbin et al. [16℄
on
luded, mu
h like Chieri
hetti et al., that for this appli-
ation result quality is enhan
ed when varying the extent of the sear
h and/orthe redundan
y of the
lustering.Building on Video-Google, Nistér and Stewénius observed that the retrievalquality was in
reased when the visual vo
abulary is signi�
antly enlarged (toseveral millions) [13℄. When k is very large, however, standard k-means fails.They thus proposed a hierar
hi
al k-means approa
h, whi
h is quite similar toCluster Pruning, but builds
lusters top-down. They �rst
luster data into asmall number of partitions (typi
ally 10) with the standard k-means. Then,they re
ursively build the next level of the
luster tree by applying again a
k-means within ea
h of the partitions independently, top-down. Eventually, it
reates an L-levels hierar
hy of k
lusters per level. The
luster within whi
ha query point falls is found by des
ending the tree. To
ompensate for assign-ment errors, data points may be assigned to more than one leaf. Nistér andStewénius do not study the various options dis
ussed in the Cluster Pruningapproa
h. They subsequently addressed quality issues, by using multiple (15�20)
lusterings together to ensure quality, requiring one disk IO per
luster forea
h query des
riptor [6℄.A

elerating the
lustering of the data
olle
tion in the Video-Google
ontextis also the goal of Philbin et al. [15℄. Their
lustering pro
ess is �at, similar tostandard k-means. They basi
ally redu
e the number of representatives ea
hpoint must be
ompared to, boosting the assignment and trading-o� speed for(a small loss in) a

ura
y. They start by pre
omputing a large set of
lusterrepresentatives that get indexed into several randomized kd-trees. They assigna data point to its approximate
losest representative by �rst probing ea
h kd-tree with the point to
luster. They re
ord the x best leaves for ea
h tree, sortedon the distan
es to the separating hyperplanes. Then, the data point is assignedto the representative with the smallest su
h distan
e.Overall, these methods [19, 16, 13, 15℄ have mu
h in
ommon with Clus-ter Pruning yet have quite spe
i�
 properties. First, they never use the datain
lusters, but rather the mapping between data points and
luster
enters.Therefore, they are free to
reate poorly balan
ed
lusters, and
an rely on tf�idf s
hemes from information retrieval to
ompensate for di�eren
es in
luster
ardinalities. Se
ond, they also
reate a very large number of
lusters sin
e this,in turn,
reates very sparse lists, as needed for e�
ient pro
essing of invertedlists. Last, they are mostly main memory oriented. Therefore, an open ques-tion is whether Cluster Pruning and the extensions we propose here would bee�e
tive for appli
ations like Video-Google.7 Con
lusionsMany
ontent-based image retrieval systems and te
hniques rely on
lustering topartition data, either for pre-pro
essing or for data retrieval. Re
ently, the Clus-ter Pruning algorithm was proposed as a very simple, yet e�e
tive, approa
h forrapidly produ
ing
lusters of a

eptable quality. Its simpli
ity and performan
ewas a strong motivation to study its behavior in a large-s
ale image indexing
ontext.RR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing19Building on Cluster Pruning, we have proposed three extensions whi
h in-
rease its performan
e at large s
ale. The �rst extension
omes from the obser-vation that disks
an not be ignored and taking into a

ount the IO granularityis a key fa
tor to performan
e. This suggests to
reate
lusters that
ontain,on average, enough data to entirely �ll the operating system IO granule. These
ond extension
omes from the observation that good sear
h performan
e isobtained when
lusters are better balan
ed. This
an be a
hieved simply by
reating extra
lusters and re
lustering the data in the smallest
lusters. Third,many
lustering algorithms have a high
ost at
luster
onstru
tion time be
ausethey
annot use any index to fa
ilitate the assignment of points to
luster repre-sentatives. With Cluster Pruning, however, representatives are randomly pi
kedbeforehand. Therefore, we propose to use these representatives in a multi-levelindex to dire
t the assignment of data to
lusters, dramati
ally redu
ing the
lustering time.Overall, we believe that, with our modi�
ations, Cluster Pruning is a goodbasis for building large-s
ale systems that require a
lustering algorithm. Notonly is the algorithm fast, but it appears to produ
e
lusters of a

eptablequality, even at large s
ale.Referen
es[1℄ S.-A. Berrani, L. Amsaleg, and P. Gros. Approximate sear
hes: k-neighbors+ pre
ision. In Pro
. CIKM, New Orleans, LA, USA, 2003.[2℄ K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is �nearestneighbor� meaningful? Le
ture Notes in Comp. S
ien
e, 1540:217�235,1999.[3℄ F. Chieri
hetti, A. Pan
onesi, P. Raghavan, M. Sozio, A. Tiberi, and E. Up-fal. Finding near neighbors through
luster pruning. In Pro
. PODS, Bei-jing, China, 2007.[4℄ M. Datar, P. Indyk, N. Immorli
a, and V. Mirrokni. Lo
ality-sensitivehashing using stable distributions. MIT Press, 2006.[5℄ M. Douze, H. Jégou, H. Singh, L. Amsaleg, and C. S
hmid. Evaluationof GIST des
riptors for web-s
ale image sear
h. In Pro
. CIVR, Island ofSantorini, Gree
e, 2009.[6℄ F. Fraundorfer, H. Stewénius, and D. Nistér. A binning s
heme for fasthard drive based image sear
h. In Pro
. CVPR, Minneapolis, MN, USA,2007.[7℄ Y. Ke and R. Sukthankar. PCA-SIFT: A more distin
tive representationfor lo
al image des
riptors. In Pro
. CVPR, Washington, DC, USA, 2004.[8℄ Y. Ke, R. Sukthankar, and L. Huston. E�
ient near-dupli
ate dete
tionand sub-image retrieval. In Pro
. ACM Multimedia, New York, NY, USA,2004.[9℄ H. Lejsek, F. H. Ásmundsson, B. Þ. Jónsson, and L. Amsaleg. S
alabilityof lo
al image des
riptors: a
omparative study. In Pro
. ACM Multimedia,Santa Barbara, CA, USA, 2006.RR n° 7307

A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing20[10℄ H. Lejsek, F. H. Ásmundsson, B. Þ. Jónsson, and L. Amsaleg. NV-tree:An e�
ient disk-based index for approximate sear
h in very large high-dimensional
olle
tions. IEEE TPAMI, 31(5), 2009.[11℄ C. Li, E.Y. Chang, H. Gar
ia-Molina, and G. Wiederhold. Clindex: Clus-tering for approximate similarity sear
h in high-dimensional spa
es. IEEETrans. on Knowl. and Data Engineering, 14(4), 2002.[12℄ D. G. Lowe. Distin
tive image features from s
ale-invariant keypoints.IJCV, 60(2):91�110, 2004.[13℄ D. Nistér and H.K Stewénius. S
alable re
ognition with a vo
abulary tree.In Pro
. CVPR, New York, NY, USA, 2006.[14℄ F. A. P. Petit
olas et al. A publi
 automated web-based evaluation servi
efor watermarking s
hemes: StirMark ben
hmark. In Pro
. of Ele
troni
Imaging, Se
urity and Watermarking of Multimedia Contents III, San Jose,CA, USA, 2001.[15℄ J. Philbin, O. Chum, M. Isard, J. Sivi
, and A. Zisserman. Obje
t re-trieval with large vo
abularies and fast spatial mat
hing. In Pro
. CVPR,Mineapolis, MN, USA, 2007.[16℄ J. Philbin, O. Chum, M. Isard, J. Sivi
, and A. Zisserman. Lost in quanti-zation: Improving parti
ular obje
t retrieval in large s
ale image databases.In Pro
. CVPR, An
horage, AK, USA, 2008.[17℄ U. Shaft and R. Ramakrishnan. Theory of nearest neighbors indexability.ACM Transa
tions on Database Systems, 31(3):814�838, 2006.[18℄ R. Sigurðardottir, H. Hauksson, B. Þ. Jónsson, and L. Amsaleg. A
asestudy of the quality vs. time trade-o� for approximate image des
riptorsear
h. In Pro
. IEEE EMMA workshop, Tokyo, Japan, 2005.[19℄ J. Sivi
 and A. Zisserman. Video google: A text retrieval approa
h toobje
t mat
hing in videos. In Pro
. ICCV, Ni
e, Fran
e, 2003.

RR n° 7307

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	Cluster-Based Retrieval
	Scalability
	Contributions
	Outline of the Paper

	Image Copyright Protection
	Image Collections and Queries
	Descriptors and Query Model
	Metrics

	The Cluster Pruning Approach
	Basic Algorithm
	Extended Searches: The b Parameter
	Redundant Clustering: The a Parameter
	Recursive Clustering: The L Parameter
	Cost of Cluster Pruning
	Summary of Previous Results

	Cluster Pruning Extensions
	Cluster Size Selection
	Choice of Cluster Representatives
	Balanced Size Distribution
	Handling Multiple Query Descriptors

	Performance Experiments
	Impact of Cluster Index Depth
	Impact of Average Cluster Size
	Impact of Redundancy
	Impact of Cluster Size Distribution
	Impact of Scale
	Summary of Results

	Related Work
	Conclusions

