N
N

N

HAL

open science

A Large-Scale Performance Study of Cluster-Based
High-Dimensional Indexing

Gylfi Thér Gudmundsson, Bjorn Thor Jénsson, Laurent Amsaleg

» To cite this version:

Gylfi Thér Gudmundsson, Bjorn Thér Jonsson, Laurent Amsaleg. A Large-Scale Performance Study of
Cluster-Based High-Dimensional Indexing. [Research Report] RR-7307, INRIA. 2010. inria-00489816

HAL Id: inria-00489816
https://inria.hal.science/inria-00489816
Submitted on 7 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00489816
https://hal.archives-ouvertes.fr

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMAIQUE

A Large-Scale Performance Study of
Cluster-Based High-Dimensional | ndexing

Gylfi Por Gudmundsson — Bjérn Por Jonsson — Laurent Amsaleg

N° 7307
Juin 2010

Vision, Perception and Multimedia Understanding

apport
derecherche

ISRN INRIA/RR--7307--FR+ENG

ISSN 0249-6399

INSTITUT NATIONAL

DE RECHERCHE centre de recherche
EN INFORMATIQUE ;‘(I N RIA RENNES - BRETAGNE ATLANTIQUE

ET EN AUTOMATIQUE

A Large-Scale Performance Study of
Cluster-Based High-Dimensional Indexing

Gylfi Por Gudmundssonf] , Bjorn Por Jonssorl] , Laurent Amsaleg

Theme : Vision, Perception and Multimedia Understanding
Equipes-Projets Texmex

Rapport de recherche n® 7307 — Juin 2010 — B0 pages

Abstract: High-dimensional clustering is a method that is used by some
content-based image retrieval systems to partition the data into groups; the
groups (clusters) are then indexed to accelerate the processing of queries. Re-
cently, the Cluster Pruning approach was proposed as a very simple way to
efficiently and effectively produce such clusters. While the original evaluation
of the algorithm was performed within a text indexing context at a rather small
scale, its simplicity and performance motivated us to study its behavior in an
image indexing context at a much larger scale. We experiment with two col-
lections of 72-dimensional state-of-the-art local descriptors, the larger collection
containing 189 million descriptors. This paper summarizes the results of this
study and shows that while the basic algorithm works fairly well, three ex-
tensions can dramatically improve its performance and scalability, accelerating
both query processing and the construction of clusters, making Cluster Prun-
ing a promising basis for building large-scale systems that require a clustering
algorithm.

Key-words: Content-Based Image Retrieval Systems, clustering, multidimen-
sional indexing, large scale

* School of Computer Science, Reykjavik University, Menntavegi 1, IS 101 Reykjavik,
Iceland. gylfi03@ru.is

T School of Computer Science, Reykjavik University, Menntavegi 1, IS 101 Reykjavik,
Iceland. bjorn@ru.is

Centre de recherche INRIA Rennes — Bretagne Atlantique

IRISA, Campus universitaire de Beaulieu, 35042 RennesxXCede
Téléphone : +33 2 99 84 71 00 — Télécopie : +3329984 71 71

Etude de performance a grande échelle d’un
indexation multidimensionnelle basée clusters

Résumé : Le clustering en grandes dimensions est une méthode employée par
certains systémes de recherche d’images par le contenu pour partitionner ’espace
en groupes. Les groupes sont ensuite indexés pour accélérer le traitement des re-
quétes. Récemment, une approche dite “Cluster Pruning” a été proposée comme
permettant ’obtention simple, rapide et efficace de ces groupes. Alors que son
évaluation originale s’est effectuée dans un contexte d’indexation de textes et
a une échelle réduite, sa simplicité et ses performances ont été une forte moti-
vation pour étudier son comportement & bien plus grande échelle, et dans un
contexte image. Nous menons des expérimentations ot sont utilisés des descrip-
teurs locaux d’image appartenant & ’état de ’art et de dimension 72. Nous
traitons plusieurs collections de descripteurs, dont la plus grande en contient
189 millions. Cet article présente une synthése des résultats de cette étude et
montre que l'algorithme original fonctionne relativement bien. Toutefois, trois
extensions simples permettent d’améliorer de maniére trés importante ses per-
formances et son aptitude a passer & ’échelle, en accélérant tant le traitement
des requétes que le temps de construction des groupes. Dotée de ces extensions,
I’approche “Cluster Pruning” devient alors une brique essentielle pouvant servir
aux systémes grande échelle nécessitant la création de groupes de points.

Mots-clés : Systémes de recherche d’images par le contenu, partitionnement,
indexation multidimensionnelle, grande échelle

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indexing3

1 Introduction

Recently, there has been a significant burst of research activity on data struc-

tures and algorithms for approximate nearest neighbor search in high-dimensional
descriptor collections (e.g., see [B, @, [M9]). Generally speaking, all these meth-

ods are based on some sort of segmentation of the high-dimensional collection

into groups of descriptors, which are stored together on disk. At query time, an

index is then typically used to select the single nearest such group for searching.

The goal of the approximate search is to find a good trade-off between result

quality and retrieval time.

1.1 Cluster-Based Retrieval

Several of the methods that have been proposed are based on using clustering
algorithms to group the data. This line of work was pioneered by Li et al. [T1],
which proposed the Clindex framework, where a dynamic search algorithm could
halt processing after reading a given number of clusters. They showed that good
approximate results could be obtained by reading a small number of clusters,
albeit for a very small collection. Their particular clustering algorithm did not
scale well in practice, however.

Traditionally, clustering algorithms, such as k-means, find the “natural” clus-
ters of the data, and produce large clusters (containing many descriptors) in
dense areas of the high-dimensional space and small clusters (containing few
descriptors) in sparse areas. Sigurdardottir et al. [I8] showed, however, for their
particular collection, that large clusters are very detrimental to performance,
and that excellent approximate results could be returned by simply bulk-loading
the descriptors into an SR-tree and using the resulting leaves to create clusters
of an even size. Indeed, when result quality was considered as a function of
time, early results were much better with this simple clustering scheme than
with a traditional clustering algorithm.

Chierichetti et al. [B] then proposed a very simple algorithm, called Cluster
Pruning, which uses the initial steps of the k-means algorithm to select a number
of random cluster leaders and assign each descriptor to a single leader. Like
in [T1], at search time, the nearest b clusters are read and used to produce the
approximate results. To improve result quality, they proposed some parameters
affecting the size of clusters and the depth of the cluster index.

1.2 Scalability

While the algorithm of Chierichetti et al. is efficient and effective, as predicted
by the previous results, and their analysis is impressive, the performance of the
algorithm was only studied using a small scale text collection. Its simplicity and
performance was a strong motivation to study its behavior in an image indexing
context at a larger scale, where secondary storage is needed.

State-of-the-art image applications typically use the SIFT descriptors [I2]
or variants thereof [, @]. These descriptors have two important properties
that make them suitable for large-scale retrieval. First, they have been shown
to scale very well with respect to result quality [I0]. Second, each image is
described by hundreds of descriptors, making approximate queries (and thus
potentially Cluster Pruning) appropriate for these applications. Because each

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indexingd

image is described by hundreds of these high-dimensional descriptors, large-scale
indexing and retrieval is absolutely necessary.

A major assumption made in the original design of Cluster Pruning is that
CPU cost is dominant during the search. As a result of the decision to ignore
disk cost, the optimal segmentation is to index a collection of n descriptors into
/n clusters containing, on average, /n descriptors each; this division minimizes
the total CPU cost of the retrieval. While the calculation of Euclidean distances
is indeed CPU intensive, disk operations are also a significant source of cost,
as shown in [TI8]. It is therefore necessary to study, for realistic workloads and
data sets that need to be stored on disks, the optimal settings for the number
of clusters and the resulting distribution of cluster sizes.

1.3 Contributions

In this paper, we study the performance of the Cluster Pruning algorithm in the
context of a large-scale image copyright protection application. The copyright
protection application has been studied significantly in the literature (e.g., see [1L
8, @]) and good results have been obtained using a number of local descriptor
variants. Furthermore, as queries are formed by modifying images in the image
collection, there is no need for subjective judgment on similarity of images,
greatly facilitating interpretation of results.

We study the effect of the various parameters of the Cluster Pruning algo-
rithm, including index depth and cluster size, in this disk-based setting. Our
results contradict some of the conclusions reached by Chierichetti et al. [3], due
to the large scale of our experimental setup. While the basic algorithm still
works fairly well, we propose three key changes which significantly improve its
performance. First, a new parameter is needed to control cluster size on disk, to
better balance IO and CPU costs. Second, a modification, which enables the use
of the cluster index during the clustering phase, allows clustering the collection
in a reasonable time. Third, by creating additional clusters and then recluster-
ing the contents of the smallest clusters, cluster size distribution is improved
which, in turn, improves search efficiency.

Note that, as mentioned above, there has been much recent research activity
in the area of high-dimensional indexing. As a result, there are other competing
approaches, which have similar theoretical properties, but may be appropriate
for different applications (e.g., see [d, [0, 3, 05, [M9]). In this paper, we do
not attempt a comparison of all these approaches, as such a comparison would
be extremely time-consuming, but focus instead on understanding the perfor-
mance of one specific approach, the Cluster Pruning algorithm, for a particular
workload setting. There is significant overlap between the ideas behind Cluster
Pruning and the other approaches; Cluster Pruning can therefore be seen as a
good representative for a whole family of algorithms where clustering is central.
We thus believe that our analysis represents a very valuable contribution to the
general understanding of disk-oriented cluster-based indexing.

1.4 Outline of the Paper

The remainder of the paper is organized as follows. In Section] we review
the copyright protection application we use in our work. We then review the
Cluster Pruning algorithm in Section Bl In Section Hl we propose extensions to

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indexing5

this algorithm for disk-based processing of large collections. In Section B we
then run a detailed study of the impact of various parameters on performance.
We discuss related work in Section [, before concluding in Section [

2 TImage Copyright Protection

The application we use as a case study is the well known image copyright pro-
tection application (see [9, ®]). It is very different from the one studied by
Chierichetti et al., where they used about 95,000 document descriptors with
more than 400,000 dimensions. In order to set the context for the work, and for
our examples, we now describe this application and our experimental environ-
ment.

2.1 Image Collections and Queries

We use two collections of images. The first collection contains 30K high-quality
news photos, which are very varied in content. The second collection, which
includes the first collection, contains about 300K such photos.

Queries are intended to simulate image theft. The standard method for this
purpose is to generate modified variants of images in the collection using the
StirMark software [14] and use those variants as queries. The goal is then to
return the original image as a match, but no other images. For the purposes
of our evaluation, 120 images were chosen at random from the collection, and
modified with 26 different StirMark variants (the variants include resizing, crop-
ping, compression, and some severe brightness modifications, see [9] for details),
resulting in 3,120 query images.

2.2 Descriptors and Query Model

Each image is described with many local descriptors, each describing a small por-
tion of the image. We use the Eff? descriptors, which are a variant of SIFT [T2],
but perform significantly better for this application [9]. An Eff?> descriptor has
72 dimensions, each stored in a byte. Additionally, each descriptor stores the
identifier of the image it was extracted from, for a total of 76 bytes. The small
collection has a total of 20,445,871 descriptors, while the large collection has
189,605,419 descriptors. The collections thus require 1.5GB and 13.4GB of disk
storage, respectively.

Beyer et al. [2] and Shaft and Ramakrishnan [I7] have shown that the only
way to obtain meaningful performance results for large-scale high-dimensional
indexing, is to use real application data which has been shown to scale well in
terms of retrieval quality. They have, for example, shown that the data distri-
bution of most generated collections is such that those collections can neither
yield meaningful results [2], nor be efficiently indexed [I7]. Previous work has
shown that SIFT descriptors do indeed scale well to large collections [10], and
we believe that our collections are large enough for our conclusions to be quite
general.

The descriptors from the images in the photo collections are stored in a large
descriptor file, which is the input to the clustering process. When a query file is
received, each of its ¢ query descriptors is used in a k-nearest neighbor search:

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indexing6

the closest cluster representative is first found, the contents of the cluster fetched
in memory and distances finally computed to get the k neighbors. In this paper,
we use k = 20, but the results are not very sensitive to that setting for large
collections. Each neighbor votes for the image it was extracted from. These
votes are aggregated over the image identifiers, and the images with the most
votes are returned as an answer to the query.

2.3 Metrics

The cost of clustering and search is measured through CPU time and IO time,
but typically reported together as wall-clock time. The search time reported
corresponds to the average time spent to perform each of the 3,120 queries.
Quality, on the other hand, is measured as follows. For each of the 3,120 query
images, it is clear which image should be returned as a match. We consider
an image a “correct match” when the correct image has at least twice as many
votes as the image with the second most votes. The percentage of such correct
matches is our baseline quality metric.

Note that the quality results in this study are lower than reported in many
other studies, for three reasons. First, some of the StirMark variants are very
difficult to find and even an exact sequential scan does not find all the cor-
rect matches. Second, a few of the selected images have near-duplicates in the
collection, and therefore are never found as a correct match using our simple
measure. Third, our criteria of having twice as many votes is very strict; it
is possible to find a match with a relatively small number of votes by apply-
ing post-processing to the top images (e.g., see [8, [[2]), but for simplicity we
avoid such post-processing. The point of this study, however, is not to show
that the descriptors are effective at image copyright protection—this is already
known [8,9,[T2]. The main point is to investigate the performance of the Cluster
Pruning algorithm, and this simple definition of a correct match suffices for that
purpose.

3 The Cluster Pruning Approach

In this section, we briefly describe the Cluster Pruning approach. We first de-
scribe the basic algorithm, and then three parameters affecting its behavior. We
end by discussing the costs of the Cluster Pruning approach before summarizing
the results reported in [3].

3.1 Basic Algorithm

Assume a collection C' = py,...,p, of n points in high-dimensional space. The
clusters are then formed as follows. First, a set of | = \/n cluster leaders is
chosen randomly from C. Then, each point p; is compared to all | cluster
leaders and assigned to its closest leader. Finally, once the clusters have been
formed, a cluster representative is chosen, per cluster (the obvious choices are
the cluster leader itself, the centroid of the cluster, or the medoid of the cluster).

At query time, the query point ¢ is first compared to the set of [cluster
representatives to find the nearest representative. Then, the query point is
compared to all the points in that representative’s cluster, to determine the k&

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indexing?

nearest neighbors found in the cluster. Those neighbors are returned as the
approximate answer to the query.

The choice of I = /n clusters is made because the total number of euclidean
distance calculations, which is [+ n/l, is minimized when [= /n. On average,
each cluster contains v/n points, resulting in a total of 21/n distance calculations.
Assuming that the set of cluster representatives fits in memory, but not the
descriptor collection, one disk read is required at search time.

3.2 Extended Searches: The b Parameter

Sometimes, reading a single cluster may not yield results of satisfactory quality.
In such cases, it is possible to read b clusters to answer each query; the basic
algorithm corresponds to b = 1. The cost of retrieval then consists of b IOs and
(1+b)+/n distance calculations. Using b, it is possible to dynamically change the
query execution strategy, for example to read more clusters to improve results.

As b grows, however, returns are expected to diminish as the nearest neigh-
bors are most likely to be contained within the nearest clusters [I8]. Unfortu-
nately, a suitable choice of b is difficult to determine dynamically, as the result
quality is not known at run-time; instead the number of clusters required for ac-
ceptable result quality must be determined explicitly through experimentation.

3.3 Redundant Clustering: The a Parameter

Alternatively, it is possible to increase the quality of the results by assigning
each data point to a > 1 clusters, and reading only b = 1 cluster at query time.
Each cluster will then contain, on average, a\/n points, resulting in (a + 1)\/n
euclidean distance calculations, but only one I0.

The clustering phase is always more costly with higher a (the average cluster
size is proportional to a). Furthermore, it is not possible to change the a pa-
rameter once the clusters are formed, while the b parameter can be dynamically
modified at query time] The effect of the a parameter on query processing cost
is more complex, and is studied in Section Bl In short, as a is increased, the size
of the clusters on disk increases, as well as the time required to process them.

3.4 Recursive Clustering: The L Parameter

For large collections, 1/n is a large number, resulting in excessive CPU cost
and potentially even significant IO cost. The solution suggested by Chierichetti
et al. is to recursively cluster the set of cluster representatives, using the exact
same method. They introduce a parameter, L, to control the number of levels
in the recursion; the default algorithm described above corresponds to L = 1.
The L parameter is used as follows during the clustering, which is performed
in a bottom-up manner. First, [= nZ/(Z+1 cluster leaders are now chosen ini-
tially, resulting in [clusters containing on average n'/(Z+1) descriptors. Cluster
assignment then proceeds as before, as does the choice of cluster representatives.
Once the cluster representatives are formed, however, they are considered as a
collection of high-dimensional points, and clustered using n(*=1/(E+1) prepre-
sentatives. This process is repeated recursively, and the outcome is an L-tier

INote that while it is possible to have both a > 1 and b > 1, such settings will most likely
result in several data points being read a times and are therefore not considered.

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indexing8

index of cluster representatives, where each representative always represents,
on average, n'/(EtD) = {/1 points at the next level. At query time, the total
number of distance calculations is (L + 1)n'/ (241 while the number of 10s is
at most L, assuming at least the top level fits in memory.

Note that the size of each cluster decreases rapidly as L grows. This method
is thus effective at decreasing CPU cost, but potentially at the expense of addi-
tional 1Os.

Example 1 For a collection of 1 million descriptors, L = 1 yields a cluster
index of 1,000 representatives with 1,000 descriptors per cluster on average.
Searching this index, with b = 1, therefore requires 2 x 1,000 = 2,000 distance
calculations per query descriptor. Using L = 2, on the other hand, yields 10,000
clusters with 100 descriptors per cluster, and searching requires 3 x 100 = 300
distance calculations.

3.5 Cost of Cluster Pruning

During query processing, Cluster Pruning incurs costs for scanning the clus-
ter index and processing clusters. While clustering costs do not affect search
throughput, they are nevertheless important, as cluster generation must take
reasonable time. We now briefly discuss the impact of a, b, [and L on the CPU
and IO costs of querying and clustering.

Cost of Index Scan. Assuming the cluster index fits entirely in memory, the
cost of the index scan is only CPU cost, which is O(abL V1) (as before, either
a=1lorb=1).

Cost of Cluster Scan. The CPU cost of sequentially scanning the b clusters
is O(abl). The IO cost of reading clusters is O(b(C +al)), where C'is the cost of
a random IO relative to a distance calculation (this cost depends on hardware,
layout on disk, etc.).

Cost of Clustering. Assuming that the cluster index fits in memory, the cost
of the clustering process is affected mostly by the a parameter. The CPU cost,
however, consists of scanning the cluster index for each database descriptor to
find the correct cluster, for a cost of O(naL V/1).

3.6 Summary of Previous Results

While the bulk of the results reported by Chierichetti et al. [3] were obtained us-
ing a collection of about 95,000 descriptors with dimensionality of about 400,000,
it is still instructive to recall their results.

Their goal was to determine the parameter settings that gave the best result
quality in the shortest time span. First, they found cluster centroids to be the
best representatives, followed by the cluster leaders. For that small collection,
L = 1 gave the best results, followed closely by L = 2. Higher values of L
resulted in very poor results. They also found that for a memory-based setting
using a = 1 worked best, as then b could be varied to increase quality, while for
a disk-based setting using @ = 5 and b = 1 gave the best results. Our results,
on the other hand, indicate that for large collections, using L > 1 and a = 1 is
always preferred.

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indexing9

4 Cluster Pruning Extensions

The main emphasis of the original algorithm was to minimize the CPU cost
of queries. We now propose four new design choices that affect performance
significantly, when dealing with local descriptors in a disk-based setting.

4.1 Cluster Size Selection

The results in [I8] indicated that cluster size is a key factor in the performance
of cluster indexing, and that cluster size should be heavily influenced by the
characteristics of the hard disk drive that descriptors reside on. In the original
Cluster Pruning approach, however, there is a large difference in cluster sizes for
L =1 and L = 2, and both are independent of the IO granularity of the disk.
While this behavior minimizes the CPU cost, increasing L leads to very small
descriptor clusters on disk, which under-utilize the IOs, and a correspondingly
large index.

Instead of choosing | = n’/(I+1) leaders in the first step, we propose to give
the desired average cluster size and then determine the number of leaders as
follows:

n
=]_
“_desired cluster size | descriptor sizej—‘ (L)

Using this new number of cluster leaders, the clustering proceeds as before.
When L > 1, each intermediate-level representative still represents /1 points
at the next level.

Example 2 Assuming a desired cluster size of 128KB (the default 10 granular-
ity of the Linuzx operating system) each cluster should contain |128 KB/76B]| =
1,724 descriptors. For our small collection, the resulting number of cluster lead-
ers would be | = [20,445,871/1,724] = 11, 859.

By decoupling the size of the clusters from the choice of L, we gain two major
benefits. First, larger clusters lead to a smaller index that may fit entirely in
memory. Second, as each cluster is larger, fewer clusters may potentially be
read. While CPU cost is sacrificed, the IO cost is reduced resulting in lower
overall query processing cost.

4.2 Choice of Cluster Representatives

Chierichetti et al. considered three potential choices for cluster representatives:
the cluster leaders, the cluster centroids, and the cluster medoids (the descriptor
closest to the centroid). Their conclusion was that the centroids gave the best
performance, followed closely by the cluster leaders.

We, on the other hand, propose to use the cluster leaders, for the following
reason. When cluster leaders are used, the bottom level of the cluster index is
already known before descriptors are assigned to clusters. This, in turn, means
that the upper levels of the cluster index can also be created before the cluster
assignment. As a result, the entire cluster index can be created before cluster
assignment and can therefore be used to direct the descriptors to the appropriate
cluster during the clustering phase, resulting in a very significant reduction of
clustering time.

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indexingl0

Note that this optimization is not possible with the other choices of cluster
representatives, as those are not known until the actual clusters have been cre-
ated. While centroids may yield slightly better results (our initial experiments
showed small benefits, if any), the difference in clustering time is so dramatic
that it necessitates this choice.

When using an index during cluster assignment, however, it is not clear that
the most appropriate cluster is always found for all descriptors. To increase the
likelihood of finding the best cluster for each descriptor, we always create the
upper levels of the index using a = 3. While this setting does increase the index
size, it can still easily fit in memory.

4.3 Balanced Size Distribution

In [18], it was shown that the largest natural clusters of a descriptor collection
might be as large as 5-20% of the collection, while many clusters were very
small. Small clusters still require an IO operation, while contributing little to
the result quality. Large clusters result in both a more expensive IO operation
and additional CPU cost. Both small and large clusters, therefore, reduce query
processing performance. Furthermore, large clusters tend to get selected more
often for processing than the average cluster, which impacts query processing
even further.

In theory, the random leader selection process should generate equally sized
clusters. In practice, however, the reality is that several clusters are significantly
smaller then the desired size and a few large clusters are an order of magnitude
larger than the average cluster. While the cluster size distribution is much better
balanced than for an algorithm which generates natural descriptor clusters, it
is still possible to improve the distribution.

We propose a simple, yet surprisingly effective method to balance the size
distribution. We intentionally choose X% additional cluster representatives in
the initial step of the algorithm. At the end of the cluster creation process
we then eliminate the corresponding number of the smallest cluster leaders by
reclustering their descriptors into the [remaining clusters. In addition to the
obvious advantage of eliminating the smallest clusters, the choice of additional
leaders turns out to reduce the size of the largest clusters as the leaders now
better represent the descriptor distribution.

We have chosen not to recluster the largest clusters. The reason is that
since large clusters typically occur in dense areas of the descriptor space, it is
likely that reclustering a large cluster would simply move all the descriptors to
a single cluster (or a few), resulting in that cluster becoming equally large as
the removed one, or even larger.

4.4 Handling Multiple Query Descriptors

As each query is represented by a few hundred descriptors, it is possible to
optimize query processing significantly. Instead of processing query descriptors
one by one, resulting in (potentially repeated) random IOs, all descriptors are
considered in a batched mode. First, all query descriptors are compared to
the cluster index to determine which clusters are needed. Second, only those
clusters are read, in order, and their descriptors compared only to the query
descriptors that found the corresponding cluster among its b closest clusters.

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indezingll

Clustering Search Time (sec) | Correct Matches (%)
Time (min) | L=1 | L=2| L=1 L=2
1 1,287.0 2.09 1.41 76.2 74.7
64.7 2.10 1.42 75.5 75.2

Table 1: Impact of L on clustering and search performance (small coll., 128KB
clusters, b =5, a = 1).

This method is more efficient, as clusters are read once and the I0s are largely
sequential.

It is, of course, possible to go even further and process multiple query images
at the same time, but we do not consider such optimizations in this study.

5 Performance Experiments

In this section, we first analyze in detail the effects of the various parameters
using the smaller descriptor collection. Then we compare the performance of the
clustering and search algorithms for the small and the large collections, using
settings determined from the experiments.

All experiments were run on DELL PowerEdge 1850 machines equipped with
two 3.2GHz Intel Pentium 4 processors, 2GB of DDR2-memory, 1IMB CPU
cache, and two 140GB 10Krpm SCSI disks. The machines run CentOS 5.0
Linux (2.6.18 kernel) and the ext3 file system. The software was implemented
in C++ and compiled using g-++ 4.1.2.

5.1 Impact of Cluster Index Depth

We start by studying the impact of L on the performance of the clustering and
search algorithms. In the Cluster Pruning algorithm, the choice of L during
clustering and search can be independent; in fact Chierichetti et al. used L =1
during cluster construction and L > 1 during search [3].

In this experiment, we generated [= 11,859 clusters with an average size of
128KB (1,724 descriptors), using L = 1 and L = 2, and then searched b = 5
clusters for each query descriptor, both using L = 1 and L = 2. Table [
summarizes the results. As the first column of the table shows, cluster creation
is much more efficient using L = 2, taking only about 5% of the time required for
L = 1. The next two columns, for search time, show that searching a two-level
index is also significantly faster than searching a single level index, although the
difference is much less pronounced.

The last two columns show the search quality. Not surprisingly, the best
quality is obtained through clustering and searching using L = 1, which returns
76.2% of the correct matches (recall that our definition of a correct match is
very strict). The most efficient combination, using L = 2 for clustering and
search, returns 75.2% of the correct matches. The difference is only 30 images,
or less than 1% of the query set size. Given the tremendous efficiency gains,
which will only become more important as the collections grow larger, the loss
of quality is acceptable. We therefore only consider clustering and searching
with L = 2 in the rest of this section.

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indexingl2

l Average Cluster Size | Creation Time
(clusters) (KB) (desc.) (min)
2,964 512 6,898 23.3
5,928 256 3,449 38.2
11,859 128 1,724 66.0
23,719 64 862 97.8
47,438 32 431 146.0

Table 2: Impact of average cluster size on clustering time (small coll., L = 2,
a=1).

Note, again, that when studying the performance impact of L, Chierichetti
et al. clustered the collection using L = 1 but searched it using L = 2 [3]. This
is indeed the worst combination, according to our results.

5.2 Impact of Average Cluster Size

We now study the impact of the [parameter determining the number of clusters
created, thus affecting the average cluster size. Table@shows the clustering time
for a range of cluster sizes. As expected, having more (smaller) clusters results
in a longer clustering process, as each descriptor must be compared to a greater
number of representatives.

The impact on search time and result quality, however, is more complex. The
expectation is that searching smaller clusters will be faster, but that the results
may be poorer, in particular with very small clusters. On the other hand, while
increasing average cluster size will initially yield better results, the expectation
is that a “law of diminishing returns” will reduce the additional benefits beyond
a certain point.

Figure[ll shows the average time required to search for each query image. As
the figure shows, searching is most efficient for the smallest cluster sizes. For
clusters of 32KB and 64KB the difference is negligible as the cost of selecting
from the large number of cluster cancels out the reduced cost of reading and
scanning the clusters. As clusters grow, however, the differences become more
pronounced.

Interestingly, scanning two clusters (b = 2) with average size of 128KB is less
time-consuming than scanning one cluster (b = 1) of 256KB; the same holds for
256KB clusters and 512KB clusters. This is because, with the smaller clusters,
it is more likely that at least one of the clusters is in memory. Thus, reading
additional clusters impacts efficiency more positively than having larger clusters.

Figure Bl on the other hand, shows the result quality of the search, for the
same values of [and b. Note that, for clarity, the y-axis focuses on the range from
60% to 80% of correct matches. This figure again confirms our intuition and
shows that most of the quality is achieved with clusters of 64-128KB. Combining
the two figures and Table[, we conclude that the best combination of clustering
time, search performance and result quality is achieved using an average cluster
size of 64KB or 128KB; we use 128KB in the remainder of our study.

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indexingl3

[[
Cluster Size: 512KB —&—
256KB —o—
128KB ——
64KB —eo—
32KB

(62}
I

N

Search Time per Image (sec)
w

2 a
q 4
1r 3
O | | |
1 2 3 4 5

Figure 1: Impact of average cluster size on search time (small coll.,, L = 2,
a=1).

Note that the original algorithm at L = 2 would have created about 74,000
clusters of about 16KB each; as our results show, those clusters would be far
too small and many.

5.3 Impact of Redundancy

We now turn to the trade off between the a and b parameters. As mentioned
above, the expectation is that they should yield results of similar quality. This
is confirmed by our results (not shown); for a > 1, only about 10 more matches
are found than for the corresponding b.

With respect to search performance, the intuition is that using a should be
slightly more efficient as it requires fewer (but larger) random disk operations,
while using b is more flexible as b can be decided at query time. Our results,
however, do not confirm this intuition. Figure Bl shows the impact of a and
b on search performance for two different memory settings. Consider first the
results when the main memory allocation is 2GB. As expected, the results are
identical for a = b = 1, as this is the same configuration. Once a > 1, however,
the performance becomes much worse than for corresponding settings of b. The
primary reason for this difference is that when a > 1 clusters become much
larger and therefore fewer can be cached in memory. Thus, each query must
read most of its clusters from disk, while buffering performance is affected less
by b.

To study the performance in a fair setting, we therefore reduced the memory
allocated to the operating system to 750MB and repeated the experiment. With

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indezingl4

80 T T T
S
wn
Q
=
(&)
<
s
B
o
S Cluster Size: 512KB —<—
65 I 256KB —o— |
128KB —&—
64KB —o—
32KB —&—
60 | | |
1 2 3 4 5

Figure 2: Impact of average cluster size on result quality (small coll., L = 2
a=1).

[
2.00GB:a —&—
7 - b —8—
0.75GB: a

b

Search Time per Image (sec)

0 ! ! !
1 2 3 4 5

a&b

Figure 3: Impact of a and b on search time (small coll., 128 KB clusters, L = 2).

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indexingl5

this setting, both parameters are impacted by the buffer management perfor-
mance, but varying b is still more efficient. We believe there are three main
reasons for this. First, even though few clusters fit in memory, clusters are still
smaller and the buffer manager is therefore more likely to find them in memory.
Second, because each query consists of hundreds of descriptors, which read b
times more clusters, and because clusters are read in sequence, disk reads are
actually less random than expected. By varying a, on the other hand, fewer but
larger clusters are read, and disk reads are spread over a larger area of the disk.
Third, since clusters are often larger than the IO granularity of the operating
system, each “logical” IO may result in many “physical” I0s. This occurs more
often with the larger clusters generated using a > 1, which helps to explain the
negative impact of a.

5.4 Impact of Cluster Size Distribution

The general idea for improving cluster size distribution is to intentionally choose
X% extra leaders at the start of the clustering process. Once the collection
has been clustered, we then remove the X% smallest clusters and insert their
contents into the nearest remaining clusters. Figure Hl shows the resulting data
distribution. The z-axis indicates how many additional clusters are created
initially (percentage of the desired number of clusters). The y-axis shows the
number of descriptors that fall into a given cluster size category; recall that the
average size of clusters is 1,724 descriptors. As the figure shows, more than 10%
of the data is initially (X = 0) either in very large or very small clusters, while
only about 35% of the data is in the range from 1,000 to 2,000. As X increases,
the largest and smallest clusters shrink, and contain about 4% when X = 100,
while 60% of the data then falls within the range from 1,000 to 2,000.
Figure Bl shows the impact of varying X on the clustering time, search time,
and result quality, compared to X = 0. As expected, clustering time increases
as X is increased due to the additional distance calculations, and nearly doubles
when X = 100. Search time, on the other hand, decreases due to the better size
distribution of the clusters. Most importantly, however, result quality is only
affect very slightly, as the number of correct matches only changes by +10.

5.5 Impact of Scale

The previous experiments have studied the impact of various parameters at
a moderate scale (although a collection of 20 million descriptors is, after all,
quite large compared to the typical collections studied in the literature). We
have concluded that for optimal performance, we should set L =2 and a = 1,
generate clusters with average size of 128KB, and use b to improve result quality
(optionally generating and then removing some extra clusters). We now apply
these settings to a collection that is an order of magnitude larger and study the
performance of the clustering and search algorithms with this larger collection.
Note that in order to get a fair comparison of disk activity, we compared the
search time of the large collection to the search time of the small collection with
the 750MB configuration.

Since the collection is about 9.3 times larger, and cluster size is the same,
there will be about 9.3 times as many clusters; as the depth of the index is the
same, there will be about /9.3 times more cluster representatives at each level.

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indezingl6

100
;\é‘
~ 80
c
Q
3
£ 60 .
2
A
g
© - .
8 40
3 > 4000 m—
ERP! 3000 - 4000 wewmm |
2 2000 - 3000
1000 - 2000 ——
<1000
0
0O 10 20 30 40 50 60 70 80 90 100
X (%)
Figure 4: Data distribution for varying X (small coll., 128KB clusters, L = 2,
a=1).
Clustering | Query
Descriptors Time Time | Matches
Collection | (millions) (min) (sec) (%)
Small 20.4 64.7 3.95 74.6
Large 189.6 2,344.7 8.82 74.3
Difference ~9.3x ~36x ~2.2x ~1x

Table 3: Comparison of the small and large collections (128KB clusters, L = 2,
b=3,a=1).

We therefore expect that the cluster creation will take about 9.3v/9.3 ~ 28 times
more time, while the search should be affected much less. We also hope that
the result quality will be largely unaffected.

Table Blshows the results of the experiment. As the table shows, clustering is
about 36 times more time-consuming, which is close to the expectation. Search-
ing is just over 2 times slower, mostly due to the additional cost of scanning the
index, but potentially also due to a slightly worse cluster size distribution. Most
importantly, however, the table shows that only 10 images are lost when going
to the larger collection, which is a reduction of about 0.3%. As each descriptor
is compared to only 3 x 1,724 = 5,172 descriptors on average, when b = 3, or
about 0.003% of the collection, this is an excellent result.

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indezingl7?

[[[[[
Clustering Time —8—
Total Search Time —e—
Correct Matches —<¢—

:O)

15

Performance (relative to X

0 ! ! ! ! ! ! ! ! !
0O 10 20 30 40 50 60 70 80 90 100

X (%)

Figure 5: Relative performance for varying X (small coll., 128KB cl., L = 2,
a=1).

5.6 Summary of Results

Several lessons can be drawn from the above experiments. First, multilevel clus-
tering is necessary when indexing large collections. It allows for very efficient
clustering when the index is created before assigning descriptors to clusters.
Note that at even larger scales, when scanning the index becomes costly, in-
crementing the depth of the hierarchy may be considered. Second, partitioning
the collection into I/O sized clusters is best for efficiency. This, together with
a more balanced distribution of clusters sizes reduces the time spent on I/Os.
Third, reading more than one cluster at search time yields the best result qual-
ity. It also absorbs the inaccuracies of assignments of points to clusters and
compensates for the losses in precision due to the multiple levels of the hierar-
chy. Furthermore, compared to large clusters, it increases the chances of finding
a cluster in memory, avoiding I/Os. All in all, these extensions help Cluster
Pruning to scale very well to quite large data sets.

6 Related Work

While there has been significant work on clustering data, the focus has typically
been on identifying the natural clusters of the collection, rather than creating
a cluster index for query processing. Aside from [IT], using clustering for im-
age retrieval has been investigated by the computer-vision community. One
seminal approach to image retrieval, Video-Google [19], uses k-means to group
descriptors into visual words, which are then indexed using information retrieval

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indexingl8

techniques; in this case, the clusters are not used directly for query processing.
Philbin et al. [I6] concluded, much like Chierichetti et al., that for this appli-
cation result quality is enhanced when varying the extent of the search and/or
the redundancy of the clustering.

Building on Video-Google, Nistér and Stewénius observed that the retrieval
quality was increased when the visual vocabulary is significantly enlarged (to
several millions) [I3]. When k is very large, however, standard k-means fails.
They thus proposed a hierarchical k-means approach, which is quite similar to
Cluster Pruning, but builds clusters top-down. They first cluster data into a
small number of partitions (typically 10) with the standard k-means. Then,
they recursively build the next level of the cluster tree by applying again a
k-means within each of the partitions independently, top-down. Eventually, it
creates an L-levels hierarchy of k clusters per level. The cluster within which
a query point falls is found by descending the tree. To compensate for assign-
ment errors, data points may be assigned to more than one leaf. Nistér and
Stewénius do not study the various options discussed in the Cluster Pruning
approach. They subsequently addressed quality issues, by using multiple (15—
20) clusterings together to ensure quality, requiring one disk IO per cluster for
each query descriptor [6].

Accelerating the clustering of the data collection in the Video-Google context
is also the goal of Philbin et al. [TH]. Their clustering process is flat, similar to
standard k-means. They basically reduce the number of representatives each
point must be compared to, boosting the assignment and trading-off speed for
(a small loss in) accuracy. They start by precomputing a large set of cluster
representatives that get indexed into several randomized kd-trees. They assign
a data point to its approximate closest representative by first probing each kd-
tree with the point to cluster. They record the z best leaves for each tree, sorted
on the distances to the separating hyperplanes. Then, the data point is assigned
to the representative with the smallest such distance.

Overall, these methods [19, 16, I3, [[5] have much in common with Clus-
ter Pruning yet have quite specific properties. First, they never use the data
in clusters, but rather the mapping between data points and cluster centers.
Therefore, they are free to create poorly balanced clusters, and can rely on ¢f-
idf schemes from information retrieval to compensate for differences in cluster
cardinalities. Second, they also create a very large number of clusters since this,
in turn, creates very sparse lists, as needed for efficient processing of inverted
lists. Last, they are mostly main memory oriented. Therefore, an open ques-
tion is whether Cluster Pruning and the extensions we propose here would be
effective for applications like Video-Google.

7 Conclusions

Many content-based image retrieval systems and techniques rely on clustering to
partition data, either for pre-processing or for data retrieval. Recently, the Clus-
ter Pruning algorithm was proposed as a very simple, yet effective, approach for
rapidly producing clusters of acceptable quality. Its simplicity and performance
was a strong motivation to study its behavior in a large-scale image indexing
context.

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indexingl9

Building on Cluster Pruning, we have proposed three extensions which in-
crease its performance at large scale. The first extension comes from the obser-
vation that disks can not be ignored and taking into account the IO granularity
is a key factor to performance. This suggests to create clusters that contain,
on average, enough data to entirely fill the operating system IO granule. The
second extension comes from the observation that good search performance is
obtained when clusters are better balanced. This can be achieved simply by
creating extra clusters and reclustering the data in the smallest clusters. Third,
many clustering algorithms have a high cost at cluster construction time because
they cannot use any index to facilitate the assignment of points to cluster repre-
sentatives. With Cluster Pruning, however, representatives are randomly picked
beforehand. Therefore, we propose to use these representatives in a multi-level
index to direct the assignment of data to clusters, dramatically reducing the
clustering time.

Overall, we believe that, with our modifications, Cluster Pruning is a good
basis for building large-scale systems that require a clustering algorithm. Not
only is the algorithm fast, but it appears to produce clusters of acceptable
quality, even at large scale.

References

[1] S.-A. Berrani, L. Amsaleg, and P. Gros. Approximate searches: k-neighbors
+ precision. In Proc. CIKM, New Orleans, LA, USA, 2003.

[2] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest
neighbor” meaningful? Lecture Notes in Comp. Science, 1540:217-235,
1999.

[3] F. Chierichetti, A. Panconesi, P. Raghavan, M. Sozio, A. Tiberi, and E. Up-
fal. Finding near neighbors through cluster pruning. In Proc. PODS, Bei-
jing, China, 2007.

[4] M. Datar, P. Indyk, N. Immorlica, and V. Mirrokni. Locality-sensitive
hashing using stable distributions. MIT Press, 2006.

[5] M. Douze, H. Jégou, H. Singh, L. Amsaleg, and C. Schmid. Evaluation
of GIST descriptors for web-scale image search. In Proc. CIVR, Island of
Santorini, Greece, 2009.

[6] F. Fraundorfer, H. Stewénius, and D. Nistér. A binning scheme for fast
hard drive based image search. In Proc. CVPR, Minneapolis, MN, USA,
2007.

[7] Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive representation
for local image descriptors. In Proc. CVPR, Washington, DC, USA, 2004.

[8] Y. Ke, R. Sukthankar, and L. Huston. Efficient near-duplicate detection
and sub-image retrieval. In Proc. ACM Multimedia, New York, NY, USA,
2004.

[9] H. Lejsek, F. H. Asmundsson, B. P. Jénsson, and L. Amsaleg. Scalability
of local image descriptors: a comparative study. In Proc. ACM Multimedia,
Santa Barbara, CA, USA, 2006.

RR n°® 7307

A Large-Scale Performance Study of Cluster-Based High-Dimensional Indexing20

[10] H. Lejsek, F. H. Asmundsson, B. P. Jonsson, and L. Amsaleg. NV-tree:
An efficient disk-based index for approximate search in very large high-
dimensional collections. IEEE TPAMI, 31(5), 2009.

[11] C. Li, E.Y. Chang, H. Garcia-Molina, and G. Wiederhold. Clindex: Clus-
tering for approximate similarity search in high-dimensional spaces. IEEE
Trans. on Knowl. and Data Engineering, 14(4), 2002.

[12] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 60(2):91-110, 2004.

[13] D. Nistér and H.K Stewénius. Scalable recognition with a vocabulary tree.
In Proc. CVPR, New York, NY, USA, 2006.

[14] F. A. P. Petitcolas et al. A public automated web-based evaluation service
for watermarking schemes: StirMark benchmark. In Proc. of Electronic
Imaging, Security and Watermarking of Multimedia Contents III, San Jose,
CA, USA, 2001.

[15] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object re-
trieval with large vocabularies and fast spatial matching. In Proc. CVPR,
Mineapolis, MN, USA, 2007.

[16] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quanti-
zation: Improving particular object retrieval in large scale image databases.
In Proc. CVPR, Anchorage, AK, USA, 2008.

[17] U. Shaft and R. Ramakrishnan. Theory of nearest neighbors indexability.
ACM Transactions on Database Systems, 31(3):814-838, 2006.

[18] R. Sigurdardottir, H. Hauksson, B. P. Jonsson, and L. Amsaleg. A case
study of the quality vs. time trade-off for approximate image descriptor
search. In Proc. IEEE EMMA workshop, Tokyo, Japan, 2005.

[19] J. Sivic and A. Zisserman. Video google: A text retrieval approach to
object matching in videos. In Proc. ICCV, Nice, France, 2003.

RR n°® 7307

/<

Centre de recherche INRIA Rennes — Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes @etance)

Centre de recherche INRIA Bordeaux — Sud Ouest : Domainedsitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble — Rhéne-Alpes : 655, ele I'Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille — Nord Europe : Parc Sciani#i de la Haute Borne - 40, avenue Halley - 59650 Villeneuveatj
Centre de recherche INRIA Nancy — Grand Est : LORIA, Techfepé Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lesdyabedex
Centre de recherche INRIA Paris — Rocquencourt : Domaineotiee¥au - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Saclay — Tle-de-France : ParcyQsiversité - ZAC des Vignes : 4, rue Jacques Monod - 91892D@edex
Centre de recherche INRIA Sophia Antipolis — Méditerran804, route des Lucioles - BP 93 - 06902 Sophia Antipolis €ede

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 hesbay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

	Introduction
	Cluster-Based Retrieval
	Scalability
	Contributions
	Outline of the Paper

	Image Copyright Protection
	Image Collections and Queries
	Descriptors and Query Model
	Metrics

	The Cluster Pruning Approach
	Basic Algorithm
	Extended Searches: The b Parameter
	Redundant Clustering: The a Parameter
	Recursive Clustering: The L Parameter
	Cost of Cluster Pruning
	Summary of Previous Results

	Cluster Pruning Extensions
	Cluster Size Selection
	Choice of Cluster Representatives
	Balanced Size Distribution
	Handling Multiple Query Descriptors

	Performance Experiments
	Impact of Cluster Index Depth
	Impact of Average Cluster Size
	Impact of Redundancy
	Impact of Cluster Size Distribution
	Impact of Scale
	Summary of Results

	Related Work
	Conclusions

