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Abstra
t: High-dimensional 
lustering is a method that is used by some
ontent-based image retrieval systems to partition the data into groups; thegroups (
lusters) are then indexed to a

elerate the pro
essing of queries. Re-
ently, the Cluster Pruning approa
h was proposed as a very simple way toe�
iently and e�e
tively produ
e su
h 
lusters. While the original evaluationof the algorithm was performed within a text indexing 
ontext at a rather smalls
ale, its simpli
ity and performan
e motivated us to study its behavior in animage indexing 
ontext at a mu
h larger s
ale. We experiment with two 
ol-le
tions of 72-dimensional state-of-the-art lo
al des
riptors, the larger 
olle
tion
ontaining 189 million des
riptors. This paper summarizes the results of thisstudy and shows that while the basi
 algorithm works fairly well, three ex-tensions 
an dramati
ally improve its performan
e and s
alability, a

eleratingboth query pro
essing and the 
onstru
tion of 
lusters, making Cluster Prun-ing a promising basis for building large-s
ale systems that require a 
lusteringalgorithm.Key-words: Content-Based Image Retrieval Systems, 
lustering, multidimen-sional indexing, large s
ale
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Étude de performan
e à grande é
helle d'unindexation multidimensionnelle basée 
lustersRésumé : Le 
lustering en grandes dimensions est une méthode employée par
ertains systèmes de re
her
he d'images par le 
ontenu pour partitionner l'espa
een groupes. Les groupes sont ensuite indexés pour a

élérer le traitement des re-quêtes. Ré
emment, une appro
he dite �Cluster Pruning� a été proposée 
ommepermettant l'obtention simple, rapide et e�
a
e de 
es groupes. Alors que sonévaluation originale s'est e�e
tuée dans un 
ontexte d'indexation de textes età une é
helle réduite, sa simpli
ité et ses performan
es ont été une forte moti-vation pour étudier son 
omportement à bien plus grande é
helle, et dans un
ontexte image. Nous menons des expérimentations où sont utilisés des des
rip-teurs lo
aux d'image appartenant à l'état de l'art et de dimension 72. Noustraitons plusieurs 
olle
tions de des
ripteurs, dont la plus grande en 
ontient189 millions. Cet arti
le présente une synthèse des résultats de 
ette étude etmontre que l'algorithme original fon
tionne relativement bien. Toutefois, troisextensions simples permettent d'améliorer de manière très importante ses per-forman
es et son aptitude à passer à l'é
helle, en a

élérant tant le traitementdes requêtes que le temps de 
onstru
tion des groupes. Dotée de 
es extensions,l'appro
he �Cluster Pruning� devient alors une brique essentielle pouvant serviraux systèmes grande é
helle né
essitant la 
réation de groupes de points.Mots-
lés : Systèmes de re
her
he d'images par le 
ontenu, partitionnement,indexation multidimensionnelle, grande é
helle



A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing31 Introdu
tionRe
ently, there has been a signi�
ant burst of resear
h a
tivity on data stru
-tures and algorithms for approximate nearest neighbor sear
h in high-dimensionaldes
riptor 
olle
tions (e.g., see [4, 5, 9, 19℄). Generally speaking, all these meth-ods are based on some sort of segmentation of the high-dimensional 
olle
tioninto groups of des
riptors, whi
h are stored together on disk. At query time, anindex is then typi
ally used to sele
t the single nearest su
h group for sear
hing.The goal of the approximate sear
h is to �nd a good trade-o� between resultquality and retrieval time.1.1 Cluster-Based RetrievalSeveral of the methods that have been proposed are based on using 
lusteringalgorithms to group the data. This line of work was pioneered by Li et al. [11℄,whi
h proposed the Clindex framework, where a dynami
 sear
h algorithm 
ouldhalt pro
essing after reading a given number of 
lusters. They showed that goodapproximate results 
ould be obtained by reading a small number of 
lusters,albeit for a very small 
olle
tion. Their parti
ular 
lustering algorithm did nots
ale well in pra
ti
e, however.Traditionally, 
lustering algorithms, su
h as k-means, �nd the �natural� 
lus-ters of the data, and produ
e large 
lusters (
ontaining many des
riptors) indense areas of the high-dimensional spa
e and small 
lusters (
ontaining fewdes
riptors) in sparse areas. Sigurðardóttir et al. [18℄ showed, however, for theirparti
ular 
olle
tion, that large 
lusters are very detrimental to performan
e,and that ex
ellent approximate results 
ould be returned by simply bulk-loadingthe des
riptors into an SR-tree and using the resulting leaves to 
reate 
lustersof an even size. Indeed, when result quality was 
onsidered as a fun
tion oftime, early results were mu
h better with this simple 
lustering s
heme thanwith a traditional 
lustering algorithm.Chieri
hetti et al. [3℄ then proposed a very simple algorithm, 
alled ClusterPruning, whi
h uses the initial steps of the k-means algorithm to sele
t a numberof random 
luster leaders and assign ea
h des
riptor to a single leader. Likein [11℄, at sear
h time, the nearest b 
lusters are read and used to produ
e theapproximate results. To improve result quality, they proposed some parametersa�e
ting the size of 
lusters and the depth of the 
luster index.1.2 S
alabilityWhile the algorithm of Chieri
hetti et al. is e�
ient and e�e
tive, as predi
tedby the previous results, and their analysis is impressive, the performan
e of thealgorithm was only studied using a small s
ale text 
olle
tion. Its simpli
ity andperforman
e was a strong motivation to study its behavior in an image indexing
ontext at a larger s
ale, where se
ondary storage is needed.State-of-the-art image appli
ations typi
ally use the SIFT des
riptors [12℄or variants thereof [7, 9℄. These des
riptors have two important propertiesthat make them suitable for large-s
ale retrieval. First, they have been shownto s
ale very well with respe
t to result quality [10℄. Se
ond, ea
h image isdes
ribed by hundreds of des
riptors, making approximate queries (and thuspotentially Cluster Pruning) appropriate for these appli
ations. Be
ause ea
hRR n° 7307



A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing4image is des
ribed by hundreds of these high-dimensional des
riptors, large-s
aleindexing and retrieval is absolutely ne
essary.A major assumption made in the original design of Cluster Pruning is thatCPU 
ost is dominant during the sear
h. As a result of the de
ision to ignoredisk 
ost, the optimal segmentation is to index a 
olle
tion of n des
riptors into√
n 
lusters 
ontaining, on average,√n des
riptors ea
h; this division minimizesthe total CPU 
ost of the retrieval. While the 
al
ulation of Eu
lidean distan
esis indeed CPU intensive, disk operations are also a signi�
ant sour
e of 
ost,as shown in [18℄. It is therefore ne
essary to study, for realisti
 workloads anddata sets that need to be stored on disks, the optimal settings for the numberof 
lusters and the resulting distribution of 
luster sizes.1.3 ContributionsIn this paper, we study the performan
e of the Cluster Pruning algorithm in the
ontext of a large-s
ale image 
opyright prote
tion appli
ation. The 
opyrightprote
tion appli
ation has been studied signi�
antly in the literature (e.g., see [1,8, 9℄) and good results have been obtained using a number of lo
al des
riptorvariants. Furthermore, as queries are formed by modifying images in the image
olle
tion, there is no need for subje
tive judgment on similarity of images,greatly fa
ilitating interpretation of results.We study the e�e
t of the various parameters of the Cluster Pruning algo-rithm, in
luding index depth and 
luster size, in this disk-based setting. Ourresults 
ontradi
t some of the 
on
lusions rea
hed by Chieri
hetti et al. [3℄, dueto the large s
ale of our experimental setup. While the basi
 algorithm stillworks fairly well, we propose three key 
hanges whi
h signi�
antly improve itsperforman
e. First, a new parameter is needed to 
ontrol 
luster size on disk, tobetter balan
e IO and CPU 
osts. Se
ond, a modi�
ation, whi
h enables the useof the 
luster index during the 
lustering phase, allows 
lustering the 
olle
tionin a reasonable time. Third, by 
reating additional 
lusters and then re
luster-ing the 
ontents of the smallest 
lusters, 
luster size distribution is improvedwhi
h, in turn, improves sear
h e�
ien
y.Note that, as mentioned above, there has been mu
h re
ent resear
h a
tivityin the area of high-dimensional indexing. As a result, there are other 
ompetingapproa
hes, whi
h have similar theoreti
al properties, but may be appropriatefor di�erent appli
ations (e.g., see [4, 10, 13, 15, 19℄). In this paper, we donot attempt a 
omparison of all these approa
hes, as su
h a 
omparison wouldbe extremely time-
onsuming, but fo
us instead on understanding the perfor-man
e of one spe
i�
 approa
h, the Cluster Pruning algorithm, for a parti
ularworkload setting. There is signi�
ant overlap between the ideas behind ClusterPruning and the other approa
hes; Cluster Pruning 
an therefore be seen as agood representative for a whole family of algorithms where 
lustering is 
entral.We thus believe that our analysis represents a very valuable 
ontribution to thegeneral understanding of disk-oriented 
luster-based indexing.1.4 Outline of the PaperThe remainder of the paper is organized as follows. In Se
tion 2 we reviewthe 
opyright prote
tion appli
ation we use in our work. We then review theCluster Pruning algorithm in Se
tion 3. In Se
tion 4 we propose extensions toRR n° 7307



A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing5this algorithm for disk-based pro
essing of large 
olle
tions. In Se
tion 5 wethen run a detailed study of the impa
t of various parameters on performan
e.We dis
uss related work in Se
tion 6, before 
on
luding in Se
tion 7.2 Image Copyright Prote
tionThe appli
ation we use as a 
ase study is the well known image 
opyright pro-te
tion appli
ation (see [9, 8℄). It is very di�erent from the one studied byChieri
hetti et al., where they used about 95,000 do
ument des
riptors withmore than 400,000 dimensions. In order to set the 
ontext for the work, and forour examples, we now des
ribe this appli
ation and our experimental environ-ment.2.1 Image Colle
tions and QueriesWe use two 
olle
tions of images. The �rst 
olle
tion 
ontains 30K high-qualitynews photos, whi
h are very varied in 
ontent. The se
ond 
olle
tion, whi
hin
ludes the �rst 
olle
tion, 
ontains about 300K su
h photos.Queries are intended to simulate image theft. The standard method for thispurpose is to generate modi�ed variants of images in the 
olle
tion using theStirMark software [14℄ and use those variants as queries. The goal is then toreturn the original image as a mat
h, but no other images. For the purposesof our evaluation, 120 images were 
hosen at random from the 
olle
tion, andmodi�ed with 26 di�erent StirMark variants (the variants in
lude resizing, 
rop-ping, 
ompression, and some severe brightness modi�
ations, see [9℄ for details),resulting in 3,120 query images.2.2 Des
riptors and Query ModelEa
h image is des
ribed with many lo
al des
riptors, ea
h des
ribing a small por-tion of the image. We use the E�2 des
riptors, whi
h are a variant of SIFT [12℄,but perform signi�
antly better for this appli
ation [9℄. An E�2 des
riptor has72 dimensions, ea
h stored in a byte. Additionally, ea
h des
riptor stores theidenti�er of the image it was extra
ted from, for a total of 76 bytes. The small
olle
tion has a total of 20,445,871 des
riptors, while the large 
olle
tion has189,605,419 des
riptors. The 
olle
tions thus require 1.5GB and 13.4GB of diskstorage, respe
tively.Beyer et al. [2℄ and Shaft and Ramakrishnan [17℄ have shown that the onlyway to obtain meaningful performan
e results for large-s
ale high-dimensionalindexing, is to use real appli
ation data whi
h has been shown to s
ale well interms of retrieval quality. They have, for example, shown that the data distri-bution of most generated 
olle
tions is su
h that those 
olle
tions 
an neitheryield meaningful results [2℄, nor be e�
iently indexed [17℄. Previous work hasshown that SIFT des
riptors do indeed s
ale well to large 
olle
tions [10℄, andwe believe that our 
olle
tions are large enough for our 
on
lusions to be quitegeneral.The des
riptors from the images in the photo 
olle
tions are stored in a largedes
riptor �le, whi
h is the input to the 
lustering pro
ess. When a query �le isre
eived, ea
h of its q query des
riptors is used in a k-nearest neighbor sear
h:RR n° 7307



A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing6the 
losest 
luster representative is �rst found, the 
ontents of the 
luster fet
hedin memory and distan
es �nally 
omputed to get the k neighbors. In this paper,we use k = 20, but the results are not very sensitive to that setting for large
olle
tions. Ea
h neighbor votes for the image it was extra
ted from. Thesevotes are aggregated over the image identi�ers, and the images with the mostvotes are returned as an answer to the query.2.3 Metri
sThe 
ost of 
lustering and sear
h is measured through CPU time and IO time,but typi
ally reported together as wall-
lo
k time. The sear
h time reported
orresponds to the average time spent to perform ea
h of the 3,120 queries.Quality, on the other hand, is measured as follows. For ea
h of the 3,120 queryimages, it is 
lear whi
h image should be returned as a mat
h. We 
onsideran image a �
orre
t mat
h� when the 
orre
t image has at least twi
e as manyvotes as the image with the se
ond most votes. The per
entage of su
h 
orre
tmat
hes is our baseline quality metri
.Note that the quality results in this study are lower than reported in manyother studies, for three reasons. First, some of the StirMark variants are verydi�
ult to �nd and even an exa
t sequential s
an does not �nd all the 
or-re
t mat
hes. Se
ond, a few of the sele
ted images have near-dupli
ates in the
olle
tion, and therefore are never found as a 
orre
t mat
h using our simplemeasure. Third, our 
riteria of having twi
e as many votes is very stri
t; itis possible to �nd a mat
h with a relatively small number of votes by apply-ing post-pro
essing to the top images (e.g., see [8, 12℄), but for simpli
ity weavoid su
h post-pro
essing. The point of this study, however, is not to showthat the des
riptors are e�e
tive at image 
opyright prote
tion�this is alreadyknown [8, 9, 12℄. The main point is to investigate the performan
e of the ClusterPruning algorithm, and this simple de�nition of a 
orre
t mat
h su�
es for thatpurpose.3 The Cluster Pruning Approa
hIn this se
tion, we brie�y des
ribe the Cluster Pruning approa
h. We �rst de-s
ribe the basi
 algorithm, and then three parameters a�e
ting its behavior. Weend by dis
ussing the 
osts of the Cluster Pruning approa
h before summarizingthe results reported in [3℄.3.1 Basi
 AlgorithmAssume a 
olle
tion C = p1, . . . , pn of n points in high-dimensional spa
e. The
lusters are then formed as follows. First, a set of l =
√

n 
luster leaders is
hosen randomly from C. Then, ea
h point pi is 
ompared to all l 
lusterleaders and assigned to its 
losest leader. Finally, on
e the 
lusters have beenformed, a 
luster representative is 
hosen, per 
luster (the obvious 
hoi
es arethe 
luster leader itself, the 
entroid of the 
luster, or the medoid of the 
luster).At query time, the query point q is �rst 
ompared to the set of l 
lusterrepresentatives to �nd the nearest representative. Then, the query point is
ompared to all the points in that representative's 
luster, to determine the kRR n° 7307



A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing7nearest neighbors found in the 
luster. Those neighbors are returned as theapproximate answer to the query.The 
hoi
e of l =
√

n 
lusters is made be
ause the total number of eu
lideandistan
e 
al
ulations, whi
h is l + n/l, is minimized when l =
√

n. On average,ea
h 
luster 
ontains√n points, resulting in a total of 2√n distan
e 
al
ulations.Assuming that the set of 
luster representatives �ts in memory, but not thedes
riptor 
olle
tion, one disk read is required at sear
h time.3.2 Extended Sear
hes: The b ParameterSometimes, reading a single 
luster may not yield results of satisfa
tory quality.In su
h 
ases, it is possible to read b 
lusters to answer ea
h query; the basi
algorithm 
orresponds to b = 1. The 
ost of retrieval then 
onsists of b IOs and
(1+b)

√
n distan
e 
al
ulations. Using b, it is possible to dynami
ally 
hange thequery exe
ution strategy, for example to read more 
lusters to improve results.As b grows, however, returns are expe
ted to diminish as the nearest neigh-bors are most likely to be 
ontained within the nearest 
lusters [18℄. Unfortu-nately, a suitable 
hoi
e of b is di�
ult to determine dynami
ally, as the resultquality is not known at run-time; instead the number of 
lusters required for a
-
eptable result quality must be determined expli
itly through experimentation.3.3 Redundant Clustering: The a ParameterAlternatively, it is possible to in
rease the quality of the results by assigningea
h data point to a > 1 
lusters, and reading only b = 1 
luster at query time.Ea
h 
luster will then 
ontain, on average, a

√
n points, resulting in (a + 1)

√
neu
lidean distan
e 
al
ulations, but only one IO.The 
lustering phase is always more 
ostly with higher a (the average 
lustersize is proportional to a). Furthermore, it is not possible to 
hange the a pa-rameter on
e the 
lusters are formed, while the b parameter 
an be dynami
allymodi�ed at query time.1 The e�e
t of the a parameter on query pro
essing 
ostis more 
omplex, and is studied in Se
tion 5. In short, as a is in
reased, the sizeof the 
lusters on disk in
reases, as well as the time required to pro
ess them.3.4 Re
ursive Clustering: The L ParameterFor large 
olle
tions, √n is a large number, resulting in ex
essive CPU 
ostand potentially even signi�
ant IO 
ost. The solution suggested by Chieri
hettiet al. is to re
ursively 
luster the set of 
luster representatives, using the exa
tsame method. They introdu
e a parameter, L, to 
ontrol the number of levelsin the re
ursion; the default algorithm des
ribed above 
orresponds to L = 1.The L parameter is used as follows during the 
lustering, whi
h is performedin a bottom-up manner. First, l = nL/(L+1) 
luster leaders are now 
hosen ini-tially, resulting in l 
lusters 
ontaining on average n1/(L+1) des
riptors. Clusterassignment then pro
eeds as before, as does the 
hoi
e of 
luster representatives.On
e the 
luster representatives are formed, however, they are 
onsidered as a
olle
tion of high-dimensional points, and 
lustered using n(L−1)/(L+1) repre-sentatives. This pro
ess is repeated re
ursively, and the out
ome is an L-tier1Note that while it is possible to have both a > 1 and b > 1, su
h settings will most likelyresult in several data points being read a times and are therefore not 
onsidered.RR n° 7307



A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing8index of 
luster representatives, where ea
h representative always represents,on average, n1/(L+1) = L
√

l points at the next level. At query time, the totalnumber of distan
e 
al
ulations is (L + 1)n1/(L+1), while the number of IOs isat most L, assuming at least the top level �ts in memory.Note that the size of ea
h 
luster de
reases rapidly as L grows. This methodis thus e�e
tive at de
reasing CPU 
ost, but potentially at the expense of addi-tional IOs.Example 1 For a 
olle
tion of 1 million des
riptors, L = 1 yields a 
lusterindex of 1,000 representatives with 1,000 des
riptors per 
luster on average.Sear
hing this index, with b = 1, therefore requires 2 × 1, 000 = 2, 000 distan
e
al
ulations per query des
riptor. Using L = 2, on the other hand, yields 10,000
lusters with 100 des
riptors per 
luster, and sear
hing requires 3 × 100 = 300distan
e 
al
ulations.3.5 Cost of Cluster PruningDuring query pro
essing, Cluster Pruning in
urs 
osts for s
anning the 
lus-ter index and pro
essing 
lusters. While 
lustering 
osts do not a�e
t sear
hthroughput, they are nevertheless important, as 
luster generation must takereasonable time. We now brie�y dis
uss the impa
t of a, b, l and L on the CPUand IO 
osts of querying and 
lustering.Cost of Index S
an. Assuming the 
luster index �ts entirely in memory, the
ost of the index s
an is only CPU 
ost, whi
h is O(abL
L
√

l) (as before, either
a = 1 or b = 1).Cost of Cluster S
an. The CPU 
ost of sequentially s
anning the b 
lustersis O(abl). The IO 
ost of reading 
lusters is O(b(C +al)), where C is the 
ost ofa random IO relative to a distan
e 
al
ulation (this 
ost depends on hardware,layout on disk, et
.).Cost of Clustering. Assuming that the 
luster index �ts in memory, the 
ostof the 
lustering pro
ess is a�e
ted mostly by the a parameter. The CPU 
ost,however, 
onsists of s
anning the 
luster index for ea
h database des
riptor to�nd the 
orre
t 
luster, for a 
ost of O(naL L

√
l).3.6 Summary of Previous ResultsWhile the bulk of the results reported by Chieri
hetti et al. [3℄ were obtained us-ing a 
olle
tion of about 95,000 des
riptors with dimensionality of about 400,000,it is still instru
tive to re
all their results.Their goal was to determine the parameter settings that gave the best resultquality in the shortest time span. First, they found 
luster 
entroids to be thebest representatives, followed by the 
luster leaders. For that small 
olle
tion,

L = 1 gave the best results, followed 
losely by L = 2. Higher values of Lresulted in very poor results. They also found that for a memory-based settingusing a = 1 worked best, as then b 
ould be varied to in
rease quality, while fora disk-based setting using a = 5 and b = 1 gave the best results. Our results,on the other hand, indi
ate that for large 
olle
tions, using L > 1 and a = 1 isalways preferred.RR n° 7307



A Large-S
ale Performan
e Study of Cluster-Based High-Dimensional Indexing94 Cluster Pruning ExtensionsThe main emphasis of the original algorithm was to minimize the CPU 
ostof queries. We now propose four new design 
hoi
es that a�e
t performan
esigni�
antly, when dealing with lo
al des
riptors in a disk-based setting.4.1 Cluster Size Sele
tionThe results in [18℄ indi
ated that 
luster size is a key fa
tor in the performan
eof 
luster indexing, and that 
luster size should be heavily in�uen
ed by the
hara
teristi
s of the hard disk drive that des
riptors reside on. In the originalCluster Pruning approa
h, however, there is a large di�eren
e in 
luster sizes for
L = 1 and L = 2, and both are independent of the IO granularity of the disk.While this behavior minimizes the CPU 
ost, in
reasing L leads to very smalldes
riptor 
lusters on disk, whi
h under-utilize the IOs, and a 
orrespondinglylarge index.Instead of 
hoosing l = nL/(L+1) leaders in the �rst step, we propose to givethe desired average 
luster size and then determine the number of leaders asfollows:

l =

⌈

n

⌊desired 
luster size / des
riptor size⌋⌉ (1)Using this new number of 
luster leaders, the 
lustering pro
eeds as before.When L > 1, ea
h intermediate-level representative still represents L
√

l pointsat the next level.Example 2 Assuming a desired 
luster size of 128KB (the default IO granular-ity of the Linux operating system) ea
h 
luster should 
ontain ⌊128KB/76B⌋ =
1, 724 des
riptors. For our small 
olle
tion, the resulting number of 
luster lead-ers would be l = ⌈20, 445, 871/1, 724⌉= 11, 859.By de
oupling the size of the 
lusters from the 
hoi
e of L, we gain two majorbene�ts. First, larger 
lusters lead to a smaller index that may �t entirely inmemory. Se
ond, as ea
h 
luster is larger, fewer 
lusters may potentially beread. While CPU 
ost is sa
ri�
ed, the IO 
ost is redu
ed resulting in loweroverall query pro
essing 
ost.4.2 Choi
e of Cluster RepresentativesChieri
hetti et al. 
onsidered three potential 
hoi
es for 
luster representatives:the 
luster leaders, the 
luster 
entroids, and the 
luster medoids (the des
riptor
losest to the 
entroid). Their 
on
lusion was that the 
entroids gave the bestperforman
e, followed 
losely by the 
luster leaders.We, on the other hand, propose to use the 
luster leaders, for the followingreason. When 
luster leaders are used, the bottom level of the 
luster index isalready known before des
riptors are assigned to 
lusters. This, in turn, meansthat the upper levels of the 
luster index 
an also be 
reated before the 
lusterassignment. As a result, the entire 
luster index 
an be 
reated before 
lusterassignment and 
an therefore be used to dire
t the des
riptors to the appropriate
luster during the 
lustering phase, resulting in a very signi�
ant redu
tion of
lustering time.RR n° 7307
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ale Performan
e Study of Cluster-Based High-Dimensional Indexing10Note that this optimization is not possible with the other 
hoi
es of 
lusterrepresentatives, as those are not known until the a
tual 
lusters have been 
re-ated. While 
entroids may yield slightly better results (our initial experimentsshowed small bene�ts, if any), the di�eren
e in 
lustering time is so dramati
that it ne
essitates this 
hoi
e.When using an index during 
luster assignment, however, it is not 
lear thatthe most appropriate 
luster is always found for all des
riptors. To in
rease thelikelihood of �nding the best 
luster for ea
h des
riptor, we always 
reate theupper levels of the index using a = 3. While this setting does in
rease the indexsize, it 
an still easily �t in memory.4.3 Balan
ed Size DistributionIn [18℄, it was shown that the largest natural 
lusters of a des
riptor 
olle
tionmight be as large as 5�20% of the 
olle
tion, while many 
lusters were verysmall. Small 
lusters still require an IO operation, while 
ontributing little tothe result quality. Large 
lusters result in both a more expensive IO operationand additional CPU 
ost. Both small and large 
lusters, therefore, redu
e querypro
essing performan
e. Furthermore, large 
lusters tend to get sele
ted moreoften for pro
essing than the average 
luster, whi
h impa
ts query pro
essingeven further.In theory, the random leader sele
tion pro
ess should generate equally sized
lusters. In pra
ti
e, however, the reality is that several 
lusters are signi�
antlysmaller then the desired size and a few large 
lusters are an order of magnitudelarger than the average 
luster. While the 
luster size distribution is mu
h betterbalan
ed than for an algorithm whi
h generates natural des
riptor 
lusters, itis still possible to improve the distribution.We propose a simple, yet surprisingly e�e
tive method to balan
e the sizedistribution. We intentionally 
hoose X% additional 
luster representatives inthe initial step of the algorithm. At the end of the 
luster 
reation pro
esswe then eliminate the 
orresponding number of the smallest 
luster leaders byre
lustering their des
riptors into the l remaining 
lusters. In addition to theobvious advantage of eliminating the smallest 
lusters, the 
hoi
e of additionalleaders turns out to redu
e the size of the largest 
lusters as the leaders nowbetter represent the des
riptor distribution.We have 
hosen not to re
luster the largest 
lusters. The reason is thatsin
e large 
lusters typi
ally o

ur in dense areas of the des
riptor spa
e, it islikely that re
lustering a large 
luster would simply move all the des
riptors toa single 
luster (or a few), resulting in that 
luster be
oming equally large asthe removed one, or even larger.4.4 Handling Multiple Query Des
riptorsAs ea
h query is represented by a few hundred des
riptors, it is possible tooptimize query pro
essing signi�
antly. Instead of pro
essing query des
riptorsone by one, resulting in (potentially repeated) random IOs, all des
riptors are
onsidered in a bat
hed mode. First, all query des
riptors are 
ompared tothe 
luster index to determine whi
h 
lusters are needed. Se
ond, only those
lusters are read, in order, and their des
riptors 
ompared only to the querydes
riptors that found the 
orresponding 
luster among its b 
losest 
lusters.RR n° 7307
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ale Performan
e Study of Cluster-Based High-Dimensional Indexing11Clustering Sear
h Time (se
) Corre
t Mat
hes (%)
L Time (min) L = 1 L = 2 L = 1 L = 21 1,287.0 2.09 1.41 76.2 74.72 64.7 2.10 1.42 75.5 75.2Table 1: Impa
t of L on 
lustering and sear
h performan
e (small 
oll., 128KB
lusters, b = 5, a = 1).This method is more e�
ient, as 
lusters are read on
e and the IOs are largelysequential.It is, of 
ourse, possible to go even further and pro
ess multiple query imagesat the same time, but we do not 
onsider su
h optimizations in this study.5 Performan
e ExperimentsIn this se
tion, we �rst analyze in detail the e�e
ts of the various parametersusing the smaller des
riptor 
olle
tion. Then we 
ompare the performan
e of the
lustering and sear
h algorithms for the small and the large 
olle
tions, usingsettings determined from the experiments.All experiments were run on DELL PowerEdge 1850 ma
hines equipped withtwo 3.2GHz Intel Pentium 4 pro
essors, 2GB of DDR2-memory, 1MB CPU
a
he, and two 140GB 10Krpm SCSI disks. The ma
hines run CentOS 5.0Linux (2.6.18 kernel) and the ext3 �le system. The software was implementedin C++ and 
ompiled using g++ 4.1.2.5.1 Impa
t of Cluster Index DepthWe start by studying the impa
t of L on the performan
e of the 
lustering andsear
h algorithms. In the Cluster Pruning algorithm, the 
hoi
e of L during
lustering and sear
h 
an be independent; in fa
t Chieri
hetti et al. used L = 1during 
luster 
onstru
tion and L ≥ 1 during sear
h [3℄.In this experiment, we generated l = 11, 859 
lusters with an average size of128KB (1,724 des
riptors), using L = 1 and L = 2, and then sear
hed b = 5
lusters for ea
h query des
riptor, both using L = 1 and L = 2. Table 1summarizes the results. As the �rst 
olumn of the table shows, 
luster 
reationis mu
h more e�
ient using L = 2, taking only about 5% of the time required for

L = 1. The next two 
olumns, for sear
h time, show that sear
hing a two-levelindex is also signi�
antly faster than sear
hing a single level index, although thedi�eren
e is mu
h less pronoun
ed.The last two 
olumns show the sear
h quality. Not surprisingly, the bestquality is obtained through 
lustering and sear
hing using L = 1, whi
h returns76.2% of the 
orre
t mat
hes (re
all that our de�nition of a 
orre
t mat
h isvery stri
t). The most e�
ient 
ombination, using L = 2 for 
lustering andsear
h, returns 75.2% of the 
orre
t mat
hes. The di�eren
e is only 30 images,or less than 1% of the query set size. Given the tremendous e�
ien
y gains,whi
h will only be
ome more important as the 
olle
tions grow larger, the lossof quality is a

eptable. We therefore only 
onsider 
lustering and sear
hingwith L = 2 in the rest of this se
tion.RR n° 7307
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l Average Cluster Size Creation Time(
lusters) (KB) (des
.) (min)2,964 512 6,898 23.35,928 256 3,449 38.211,859 128 1,724 66.023,719 64 862 97.847,438 32 431 146.0Table 2: Impa
t of average 
luster size on 
lustering time (small 
oll., L = 2,

a = 1).Note, again, that when studying the performan
e impa
t of L, Chieri
hettiet al. 
lustered the 
olle
tion using L = 1 but sear
hed it using L = 2 [3℄. Thisis indeed the worst 
ombination, a

ording to our results.5.2 Impa
t of Average Cluster SizeWe now study the impa
t of the l parameter determining the number of 
lusters
reated, thus a�e
ting the average 
luster size. Table 2 shows the 
lustering timefor a range of 
luster sizes. As expe
ted, having more (smaller) 
lusters resultsin a longer 
lustering pro
ess, as ea
h des
riptor must be 
ompared to a greaternumber of representatives.The impa
t on sear
h time and result quality, however, is more 
omplex. Theexpe
tation is that sear
hing smaller 
lusters will be faster, but that the resultsmay be poorer, in parti
ular with very small 
lusters. On the other hand, whilein
reasing average 
luster size will initially yield better results, the expe
tationis that a �law of diminishing returns� will redu
e the additional bene�ts beyonda 
ertain point.Figure 1 shows the average time required to sear
h for ea
h query image. Asthe �gure shows, sear
hing is most e�
ient for the smallest 
luster sizes. For
lusters of 32KB and 64KB the di�eren
e is negligible as the 
ost of sele
tingfrom the large number of 
luster 
an
els out the redu
ed 
ost of reading ands
anning the 
lusters. As 
lusters grow, however, the di�eren
es be
ome morepronoun
ed.Interestingly, s
anning two 
lusters (b = 2) with average size of 128KB is lesstime-
onsuming than s
anning one 
luster (b = 1) of 256KB; the same holds for256KB 
lusters and 512KB 
lusters. This is be
ause, with the smaller 
lusters,it is more likely that at least one of the 
lusters is in memory. Thus, readingadditional 
lusters impa
ts e�
ien
y more positively than having larger 
lusters.Figure 2, on the other hand, shows the result quality of the sear
h, for thesame values of l and b. Note that, for 
larity, the y-axis fo
uses on the range from60% to 80% of 
orre
t mat
hes. This �gure again 
on�rms our intuition andshows that most of the quality is a
hieved with 
lusters of 64�128KB. Combiningthe two �gures and Table 2, we 
on
lude that the best 
ombination of 
lusteringtime, sear
h performan
e and result quality is a
hieved using an average 
lustersize of 64KB or 128KB; we use 128KB in the remainder of our study.
RR n° 7307
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Figure 1: Impa
t of average 
luster size on sear
h time (small 
oll., L = 2,
a = 1).Note that the original algorithm at L = 2 would have 
reated about 74,000
lusters of about 16KB ea
h; as our results show, those 
lusters would be fartoo small and many.5.3 Impa
t of Redundan
yWe now turn to the trade o� between the a and b parameters. As mentionedabove, the expe
tation is that they should yield results of similar quality. Thisis 
on�rmed by our results (not shown); for a > 1, only about 10 more mat
hesare found than for the 
orresponding b.With respe
t to sear
h performan
e, the intuition is that using a should beslightly more e�
ient as it requires fewer (but larger) random disk operations,while using b is more �exible as b 
an be de
ided at query time. Our results,however, do not 
on�rm this intuition. Figure 3 shows the impa
t of a and
b on sear
h performan
e for two di�erent memory settings. Consider �rst theresults when the main memory allo
ation is 2GB. As expe
ted, the results areidenti
al for a = b = 1, as this is the same 
on�guration. On
e a > 1, however,the performan
e be
omes mu
h worse than for 
orresponding settings of b. Theprimary reason for this di�eren
e is that when a > 1 
lusters be
ome mu
hlarger and therefore fewer 
an be 
a
hed in memory. Thus, ea
h query mustread most of its 
lusters from disk, while bu�ering performan
e is a�e
ted lessby b.To study the performan
e in a fair setting, we therefore redu
ed the memoryallo
ated to the operating system to 750MB and repeated the experiment. WithRR n° 7307
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t of average 
luster size on result quality (small 
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ale Performan
e Study of Cluster-Based High-Dimensional Indexing15this setting, both parameters are impa
ted by the bu�er management perfor-man
e, but varying b is still more e�
ient. We believe there are three mainreasons for this. First, even though few 
lusters �t in memory, 
lusters are stillsmaller and the bu�er manager is therefore more likely to �nd them in memory.Se
ond, be
ause ea
h query 
onsists of hundreds of des
riptors, whi
h read btimes more 
lusters, and be
ause 
lusters are read in sequen
e, disk reads area
tually less random than expe
ted. By varying a, on the other hand, fewer butlarger 
lusters are read, and disk reads are spread over a larger area of the disk.Third, sin
e 
lusters are often larger than the IO granularity of the operatingsystem, ea
h �logi
al� IO may result in many �physi
al� IOs. This o

urs moreoften with the larger 
lusters generated using a > 1, whi
h helps to explain thenegative impa
t of a.5.4 Impa
t of Cluster Size DistributionThe general idea for improving 
luster size distribution is to intentionally 
hoose
X% extra leaders at the start of the 
lustering pro
ess. On
e the 
olle
tionhas been 
lustered, we then remove the X% smallest 
lusters and insert their
ontents into the nearest remaining 
lusters. Figure 4 shows the resulting datadistribution. The x-axis indi
ates how many additional 
lusters are 
reatedinitially (per
entage of the desired number of 
lusters). The y-axis shows thenumber of des
riptors that fall into a given 
luster size 
ategory; re
all that theaverage size of 
lusters is 1,724 des
riptors. As the �gure shows, more than 10%of the data is initially (X = 0) either in very large or very small 
lusters, whileonly about 35% of the data is in the range from 1,000 to 2,000. As X in
reases,the largest and smallest 
lusters shrink, and 
ontain about 4% when X = 100,while 60% of the data then falls within the range from 1,000 to 2,000.Figure 5 shows the impa
t of varying X on the 
lustering time, sear
h time,and result quality, 
ompared to X = 0. As expe
ted, 
lustering time in
reasesas X is in
reased due to the additional distan
e 
al
ulations, and nearly doubleswhen X = 100. Sear
h time, on the other hand, de
reases due to the better sizedistribution of the 
lusters. Most importantly, however, result quality is onlya�e
t very slightly, as the number of 
orre
t mat
hes only 
hanges by ±10.5.5 Impa
t of S
aleThe previous experiments have studied the impa
t of various parameters ata moderate s
ale (although a 
olle
tion of 20 million des
riptors is, after all,quite large 
ompared to the typi
al 
olle
tions studied in the literature). Wehave 
on
luded that for optimal performan
e, we should set L = 2 and a = 1,generate 
lusters with average size of 128KB, and use b to improve result quality(optionally generating and then removing some extra 
lusters). We now applythese settings to a 
olle
tion that is an order of magnitude larger and study theperforman
e of the 
lustering and sear
h algorithms with this larger 
olle
tion.Note that in order to get a fair 
omparison of disk a
tivity, we 
ompared thesear
h time of the large 
olle
tion to the sear
h time of the small 
olle
tion withthe 750MB 
on�guration.Sin
e the 
olle
tion is about 9.3 times larger, and 
luster size is the same,there will be about 9.3 times as many 
lusters; as the depth of the index is thesame, there will be about √9.3 times more 
luster representatives at ea
h level.RR n° 7307
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Figure 4: Data distribution for varying X (small 
oll., 128KB 
lusters, L = 2,
a = 1). Clustering QueryDes
riptors Time Time Mat
hesColle
tion (millions) (min) (se
) (%)Small 20.4 64.7 3.95 74.6Large 189.6 2,344.7 8.82 74.3Di�eren
e ≈9.3x ≈36x ≈2.2x ≈1xTable 3: Comparison of the small and large 
olle
tions (128KB 
lusters, L = 2,
b = 3, a = 1).We therefore expe
t that the 
luster 
reation will take about 9.3

√
9.3 ≈ 28 timesmore time, while the sear
h should be a�e
ted mu
h less. We also hope thatthe result quality will be largely una�e
ted.Table 3 shows the results of the experiment. As the table shows, 
lustering isabout 36 times more time-
onsuming, whi
h is 
lose to the expe
tation. Sear
h-ing is just over 2 times slower, mostly due to the additional 
ost of s
anning theindex, but potentially also due to a slightly worse 
luster size distribution. Mostimportantly, however, the table shows that only 10 images are lost when goingto the larger 
olle
tion, whi
h is a redu
tion of about 0.3%. As ea
h des
riptoris 
ompared to only 3 × 1, 724 = 5, 172 des
riptors on average, when b = 3, orabout 0.003% of the 
olle
tion, this is an ex
ellent result.
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Figure 5: Relative performan
e for varying X (small 
oll., 128KB 
l., L = 2,
a = 1).5.6 Summary of ResultsSeveral lessons 
an be drawn from the above experiments. First, multilevel 
lus-tering is ne
essary when indexing large 
olle
tions. It allows for very e�
ient
lustering when the index is 
reated before assigning des
riptors to 
lusters.Note that at even larger s
ales, when s
anning the index be
omes 
ostly, in-
rementing the depth of the hierar
hy may be 
onsidered. Se
ond, partitioningthe 
olle
tion into I/O sized 
lusters is best for e�
ien
y. This, together witha more balan
ed distribution of 
lusters sizes redu
es the time spent on I/Os.Third, reading more than one 
luster at sear
h time yields the best result qual-ity. It also absorbs the ina

ura
ies of assignments of points to 
lusters and
ompensates for the losses in pre
ision due to the multiple levels of the hierar-
hy. Furthermore, 
ompared to large 
lusters, it in
reases the 
han
es of �ndinga 
luster in memory, avoiding I/Os. All in all, these extensions help ClusterPruning to s
ale very well to quite large data sets.6 Related WorkWhile there has been signi�
ant work on 
lustering data, the fo
us has typi
allybeen on identifying the natural 
lusters of the 
olle
tion, rather than 
reatinga 
luster index for query pro
essing. Aside from [11℄, using 
lustering for im-age retrieval has been investigated by the 
omputer-vision 
ommunity. Oneseminal approa
h to image retrieval, Video-Google [19℄, uses k-means to groupdes
riptors into visual words, whi
h are then indexed using information retrievalRR n° 7307
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ale Performan
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hniques; in this 
ase, the 
lusters are not used dire
tly for query pro
essing.Philbin et al. [16℄ 
on
luded, mu
h like Chieri
hetti et al., that for this appli-
ation result quality is enhan
ed when varying the extent of the sear
h and/orthe redundan
y of the 
lustering.Building on Video-Google, Nistér and Stewénius observed that the retrievalquality was in
reased when the visual vo
abulary is signi�
antly enlarged (toseveral millions) [13℄. When k is very large, however, standard k-means fails.They thus proposed a hierar
hi
al k-means approa
h, whi
h is quite similar toCluster Pruning, but builds 
lusters top-down. They �rst 
luster data into asmall number of partitions (typi
ally 10) with the standard k-means. Then,they re
ursively build the next level of the 
luster tree by applying again a
k-means within ea
h of the partitions independently, top-down. Eventually, it
reates an L-levels hierar
hy of k 
lusters per level. The 
luster within whi
ha query point falls is found by des
ending the tree. To 
ompensate for assign-ment errors, data points may be assigned to more than one leaf. Nistér andStewénius do not study the various options dis
ussed in the Cluster Pruningapproa
h. They subsequently addressed quality issues, by using multiple (15�20) 
lusterings together to ensure quality, requiring one disk IO per 
luster forea
h query des
riptor [6℄.A

elerating the 
lustering of the data 
olle
tion in the Video-Google 
ontextis also the goal of Philbin et al. [15℄. Their 
lustering pro
ess is �at, similar tostandard k-means. They basi
ally redu
e the number of representatives ea
hpoint must be 
ompared to, boosting the assignment and trading-o� speed for(a small loss in) a

ura
y. They start by pre
omputing a large set of 
lusterrepresentatives that get indexed into several randomized kd-trees. They assigna data point to its approximate 
losest representative by �rst probing ea
h kd-tree with the point to 
luster. They re
ord the x best leaves for ea
h tree, sortedon the distan
es to the separating hyperplanes. Then, the data point is assignedto the representative with the smallest su
h distan
e.Overall, these methods [19, 16, 13, 15℄ have mu
h in 
ommon with Clus-ter Pruning yet have quite spe
i�
 properties. First, they never use the datain 
lusters, but rather the mapping between data points and 
luster 
enters.Therefore, they are free to 
reate poorly balan
ed 
lusters, and 
an rely on tf�idf s
hemes from information retrieval to 
ompensate for di�eren
es in 
luster
ardinalities. Se
ond, they also 
reate a very large number of 
lusters sin
e this,in turn, 
reates very sparse lists, as needed for e�
ient pro
essing of invertedlists. Last, they are mostly main memory oriented. Therefore, an open ques-tion is whether Cluster Pruning and the extensions we propose here would bee�e
tive for appli
ations like Video-Google.7 Con
lusionsMany 
ontent-based image retrieval systems and te
hniques rely on 
lustering topartition data, either for pre-pro
essing or for data retrieval. Re
ently, the Clus-ter Pruning algorithm was proposed as a very simple, yet e�e
tive, approa
h forrapidly produ
ing 
lusters of a

eptable quality. Its simpli
ity and performan
ewas a strong motivation to study its behavior in a large-s
ale image indexing
ontext.RR n° 7307
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ale Performan
e Study of Cluster-Based High-Dimensional Indexing19Building on Cluster Pruning, we have proposed three extensions whi
h in-
rease its performan
e at large s
ale. The �rst extension 
omes from the obser-vation that disks 
an not be ignored and taking into a

ount the IO granularityis a key fa
tor to performan
e. This suggests to 
reate 
lusters that 
ontain,on average, enough data to entirely �ll the operating system IO granule. These
ond extension 
omes from the observation that good sear
h performan
e isobtained when 
lusters are better balan
ed. This 
an be a
hieved simply by
reating extra 
lusters and re
lustering the data in the smallest 
lusters. Third,many 
lustering algorithms have a high 
ost at 
luster 
onstru
tion time be
ausethey 
annot use any index to fa
ilitate the assignment of points to 
luster repre-sentatives. With Cluster Pruning, however, representatives are randomly pi
kedbeforehand. Therefore, we propose to use these representatives in a multi-levelindex to dire
t the assignment of data to 
lusters, dramati
ally redu
ing the
lustering time.Overall, we believe that, with our modi�
ations, Cluster Pruning is a goodbasis for building large-s
ale systems that require a 
lustering algorithm. Notonly is the algorithm fast, but it appears to produ
e 
lusters of a

eptablequality, even at large s
ale.Referen
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