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Abstract

In the very active �eld of complex networks, research advances have largely been stimulated by the
availability of empirical data and the increase in computational power needed for their analysis. These
works have led to the identi�cation of similarities in the structures of such networks arising in very di�erent
�elds, and to the development of a body of knowledge, tools and methods for their study.

While many interesting questions remain open on the subject of static networks, challenging issues arise
from the study of dynamic networks. In particular, the measurement, analysis and modeling of social
interactions are �rst class concerns.

In this article, we address the challenges of capturing physical proximity and social interaction by means
of a wireless network. In particular, as a concrete case study, we exhibit the deployment of a wireless sensor
network applied to the measurement of Health Care Workers’ exposure to tuberculosis infected patients
in a service unit of the Bichat-Claude Bernard hospital in Paris, France. This network has continuously
monitored the presence of all HCWs in all rooms of the service during a 3 month period.

We both describe the measurement system that was deployed and some early analysis on the measured
data. We highlight the bias introduced by the measurement system reliability and provide a reconstruction
method which not only leads to a signi�cantly more coherent and realistic dataset but also evidences phe-
nomena a priori hidden in the raw data. By this analysis, we suggest that a processing step is required prior
to any adequate exploitation of data gathered thanks to a non-fully reliable measurement architecture.
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1. Introduction

Complex networks [12] appear in many contexts:
sociology, computer networks, biology, medicine,
etc. Their study has shown a rapid growth since
the end of the 90s when it was revealed [2, 4, 8,
11, 13, 15] that most real-world complex networks
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o�er common non-trivial properties. This obser-
vation has generated a substantial amount of at-
tention during the last decade. While a large part
of these works have dealt with static networks, a
growing area of research is focused on the dynamic
aspects of those networks. The introduction of the
temporal dimension is motivated by the fact that
most real-world complex networks bear an intrin-
sic evolution whose analysis and modeling is fun-
damental to the understanding of the underlying
phenomenon.

In numerous �elds of study, be it epidemiology,
sociology or even the study of computer networks
such as Delay Tolerant Networks, the central rela-
tional concept is the social interaction or the phys-

Preprint submitted to Elsevier August 30, 2010



ical proximity. Getting a grasp of these relation-
ships is a complex task which is generally ful�lled
through audits and interviews, two human-centric
approaches. As in the �rst case, an experimenter
monitors and reports the observable interactions
whereas in the second one data is compiled thanks
to the imperfect memory of the subject, it is obvi-
ous that both methods not only su�er from a lack of
exhaustivity but also deliver data which reliability
heavily depends on human factors. These two mea-
surement properties, lack of reliability and lack of
exhaustivity, lead to severe limitations in the above-
mentioned �elds of study.

More recently, with the advances in pervasive
networks, wireless devices have o�ered a new and
promising opportunity to gather data on social in-
teractions and physical proximity. As a an exam-
ple, if phone calls are construed as instances of
social interactions, phone records owned by tele-
com companies represent precious sets of data to
be analyzed. Surprisingly, not only the commu-
nication but the mere ability to communicate can
be interpreted in term of physical proximity. In
the context or wireless technologies, a communi-
cation between two devices is only feasible when
both are in range. This relation between radio and
physical proximity has been used in several exper-
iments [1, 6, 10] in order to measure physical in-
teractions and proximity through the exchange of
radio packets between laptops, cell phones or ded-
icated instruments. Thanks to the embedding of
communications devices, which allow passive, peri-
odic and automatic measurement, this type of de-
ployment o�ers the opportunity to attempt nearly
exhaustive measurement campaigns.

Although o�ering exhaustivity, this measurement
method does not provide reliability. Indeed, as the
radio medium is pervasive, the relation between ra-
dio distance { perceived in term of signal attenua-
tion { and physical distance is far from being pre-
dictable. It varies in time and space in a pseudo-
random way due to physical phenomenon such as
fading and shadowing. In consequence, the mea-
surements gathered during such deployments are
noisy and must be considered carefully. In par-
ticular, they can not be exploited without being
�rst cleaned and the original interaction informa-
tion being reconstructed. This step is fundamental
as analyses and evaluations performed on raw mea-
surements can lead to results and conclusions that
vary drastically from the ones obtained given the
real interactions.

Unfortunately, analyses and evaluations are too
often based on raw measurements without consid-
ering the error induced by the measurement sys-
tem [10] itself. We assess that this methodological
shortcut takes root in an over-con�dence in comput-
ing devices. The assumption that a measurement
is not only exhaustive but also reliable due to its
nature of computer-gathered data reveals an utter
misconception of the measurement apparatus’ lim-
its. For the sake of analyses validity, the challenge
is thus to process unreliable data using an estimate
of the system induced error in order to acquire an
accurate picture of the original interactions.

In this paper, we address this issue through a case
study, the deployment of a Wireless Sensor Net-
work (WSN) to measure in situ interactions within
a medical context. This project was motivated by
the study of the Health Care Workers (HCWs) ex-
posure to tuberculosis in their work environment,
as described in Section 3. Sections 4 and 5 present
the WSN that was set up to record the presence
of HCWs within patient rooms in a speci�c ser-
vice care unit of the Bichat Hospital (Paris France).
An important characteristic of this measurement
campaign is its exhaustivity : it was performed in
a closed environment, over a closed population
and during a long and continuous period of time.
That is, the presence of all HCWs of the unit was
monitored, every 5 seconds, in all patient rooms of
the unit, 24 hours a day, 7 days a week, during a
three month period. It represents both a huge and
unique data set describing a complex dynamic in-
teraction network. After describing the raw data
that were gathered during the deployment in Sec-
tion 6, we emphasize on the bias introduced by the
measurement system in Section 7 and show that the
versatility of the radio medium leads to noisy and
unreliable data. We present in Section 8 a method
to reconstruct a presence signal using the available
data and describe the results in Section 9. We
�nally conclude and present future works in Sec-
tion 10.

2. Contributions

In our opinion, this article presents several con-
tributions in the �eld of physical proximity mea-
surement using wireless devices:

� it describes a WSN deployment for physical
proximity measurement performed in a closed
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environment, over a closed population and
during a long and continuous period of time;

� it assesses, through an analysis of the raw data,
the unreliability of this measurement process;

� it investigates methods to quantify the mea-
surement’s error;

� it proposes a method to eliminate false posi-
tives and false negatives in the measured data
and to recover the original interaction informa-
tion.

3. The TubExpo project

This work was motivated by the AFFSET
TubExpo project. This project aims at evaluating
the exposure of health care workers to tuberculosis
in their work environment.

3.1. The health care context: Tuberculosis
Despite the progresses in treatment and preven-

tion, tuberculosis remains a disease in expansion
and represents the third cause of death by infectious
pathologies in the world. Emerging countries are
the most a�ected, as the VIH epidemic participates
to the tuberculosis ampli�cation. In France, the
impact of tuberculosis is globally decreasing (9.2
cases for 100000 inhabitants in France) but with
large regional disparities. The french situation is
paradoxical, with a hygiene level of a developed
country but a strong and increasing tuberculosis
incidence among the migrating populations. For
this reason, the french superior council for public
hygiene (CSHPF) has recently recommended the
launch of studies about the tuberculosis infection
and its transmission factors [7].

In the health care context, if the transmis-
sion between patients has been largely documented
and is globally controlled, the health care workers
(HCWs) exposure remains obscure. HCWs taking
care of tuberculosis-infected patients are particu-
larly exposed to the disease, and, if infected, may
become important transmission vectors as they ex-
pose both colleagues and patients to the risk of in-
fection. In October 2003, six cases of HCW tuber-
culosis infection were reported in �ve hospitals of
Paris [5].

Data on the tuberculosis transmission has gen-
erally been acquired in a social community con-
text. Individual factors associated to the contam-
ination of HCWs in their work environment are

not precisely known [14]. Knowledge acquisition
on the transmissibility of the tuberculosis bacilli
in the hospital environment is limited by two fac-
tors: individual contamination evaluation and ex-
posure measurement. The evaluation of these two
factors is complicated as they are impacted by sev-
eral sub-factors. For the exposure measurement,
several parameters must be considered: the tuber-
culosis bacilli concentration in the environing air,
the intensity and frequency of contacts between in-
fected patients and HCWs and, �nally, the preven-
tion methods used to restrain the transmission.

3.2. Visit Measurement: methods
Among these various parameters, the TubExpo

project focuses especially on the evaluation of both
contacts intensity and frequency between tubercu-
losis infected patients and HCWs inside the Service
of Infectious and Tropical Diseases (SMIT) of the
Bichat-Claude Bernard hospital in Paris, France.

In order to measure the exposure of HCWs to the
tuberculosis bacilli, the time spent by the HCWs in
each patient room of the unit was monitored during
a three months period. As individuals infected or
suspected to be infected by tuberculosis are subject
to strong isolation rules, we made the hypothesis
that the exposure area was limited to their rooms.
Obviously, a �rst limit of the measurement validity
is the respect of these isolation rules by the infected
patients.

Two di�erent methods were envisaged in order to
measure the HCWs presence in patient rooms: the
�rst one is based on manual audits whereas the sec-
ond makes use of a wireless sensor network (WSN).

3.2.1. Method 1: Audits
Performing audits is a classical method to gather

data on social interactions or work habits, espe-
cially in a health care context. Given the human
nature of such a measurement, there is no false pos-
itive as a visit is never recorded if it did not actually
occured. Moreover, this method does not involve
any technical aspect and is simple to deploy. How-
ever, as a manual recording, this approach is partial
because it does not o�er a continuous observation.
The experimenter has to be present in the unit for
the visit to be recorded. As an example, no audit
was performed during the night. It is also subject
to observations and interpretations: simultaneous
visits in di�erent rooms can hardly be handled by a
single experimenter. Finally, it is time and human
resource consuming.
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Figure 1: Cumulative distribution of audit durations.

In our case, 48 visits were manually recorded by
an experimenter who recorded the relevant room
and HCW id, the time of arrival and the dura-
tion of each visit. The average duration of a visit
was of 3min 26s, the shortest 10s and the longest
18min. The distribution of durations corresponding
to these audits is given in Figure 1.

Obviously, the knowledge of 48 visits over the
course of the three months long experiment does not
provide any relevant information per se. However,
having access to a frame of reference for attested
visits can be insightful when correlated with other
data, as we will show in Section 7.

3.2.2. Method 2: WSN
In order to continuously and exhaustively mon-

itor the presence of HCWs in patient rooms, the
second method we used was to deploy a wireless
sensor network in the unit of the hospital. This
WSN consisted of devices placed in patient rooms
and devices handled by the HCWs. Compared to
audits, this method o�ers exhaustivity: it is oper-
ating 24 hours a day, 7 days a week, independently
of the presence of an experimenter. However, con-
trarily to what could be primarily thought, its reli-
ability is subject to many factors and the resulting
data should not be considered as a perfect image
of the interactions reality. As an example, a �rst
error factor, but not the only one, is the human
factor and the acceptance of the deployment by the
HCWs. Obviously, measurements can not occur if
HCWs forget or refuse to handle their sensor de-
vice. It is worth noting that within the context
of the TubExpo project, only one of the unit’s 63
HCWs refused to be enrolled in the experiment and
that all rooms were equipped.

4. A WSN for presence detection

In this deployment, each room of the SMIT
unit in the Bichat-Claude Bernard hospital (Paris,
France) was equipped with a sensor node whose
task was to continuously listen to the radio medium.
More precisely, these �xed sensor nodes were placed
at a 2m height, under the TV, and plugged to the
power line (Figure 2). They were thus provided
with an unlimited energy resource.

Figure 2: Location of a �xed sensor node in a patient room.

In parallel, each HCW was given an autonomous
sensor node they had to carry during their presence
in the unit. These mobile sensor nodes were pro-
grammed to periodically transmit a radio packet
containing their identity. They were under the
HCWs responsibility without the possibility to re-
�ll their battery during the whole deployment du-
ration. This induced strong energy constraints on
their functioning.

Contrarily to previous interactions measurement
applications [1, 6, 10], we chose to deploy an asym-
metric network where only the �xed sensor nodes,
i.e. the ones installed in the patient rooms, were re-
ceiving packets and recording interactions. Briey,
we can advance three main reasons to justify this
choice:

� simplicity: in such an asymmetric network, a
sensor node does not need to switch between
transmission and reception modes, therefore
avoiding synchronization issues among oth-
ers and largely simplifying the sensor node
�rmwares.

� energy consumption: as the �xed nodes were
not energy constrained, they could perma-
nently stay in reception mode and no activity
scheduling or duty-cycling policy was required.
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On the contrary, HCW-carried sensor nodes
were strongly energy constrained and their ra-
dio I/O operations had to be limited to the
minimum.

� privacy respect: as we were only interested in
the presence of HCWs in patient rooms, we
did not need to record the proximity of HCWs
between each other. Doing so would not only
have required additional privacy respect proce-
dures but also a stronger defense of the project
in front of privacy & work protection commit-
tees.
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Figure 3: A map of the Service of Infectious and Tropi-
cal Diseases (SMIT) at the Bichat-Claude Bernard hospital
(Paris, France) together with the �xed sensor node locations
(red circles).

The deployed sensor network is depicted in Fig-
ure 3. The SMIT is composed of 32 patient rooms
which are split in two T shaped aisles. The SMIT
owns 63 HCWs, all but one carrying a mobile sen-
sor node. The network was thus composed of 94
sensor nodes that have operated continuously dur-
ing the three months experiment period. To our
knowledge this experiment is the �rst proximity in-
teraction study performed over a complete closed
population during a so long continuous period of
time: all but one HCWs of the unit carried a sen-
sor node, each room of the unit was monitored and
HCWs were not supposed to leave the unit during
their duty.

5. Hardware and protocol details

5.1. Hardware
The deployment was conducted using WSN430

sensor nodes [9]. Their internal architecture is clas-
sical and similar to commercially-available sensor
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Figure 4: A simplistic schematic of a WSN430 node.

nodes. Very basically, they are composed of a
micro-controller, a RF chipset, a ash memory, sev-
eral crystals, a lithium-ion battery and an on-board
PCB antenna (Figure 4). The micro-controller be-
longs to the TI MSP430 family. The RF chipset is
a TI CC1100 operating at the 868MHz frequency,
with a 2-FSK modulation and a 119Kbps baud-rate.
The ash memory storage size is 1Mb. Figure 5 il-
lustrates a WSN430 node in its plastic packaging.

Figure 5: A WSN430 sensor node.

5.2. Neighbor discovery protocol
Proximity detection was achieved through the

periodical emission of Hello packets. This strat-
egy has the merit of simplicity and has been used
in other deployments [3]. It is quite similar to
the Bluetooth base-band layer inquiry method used
in [10]. However, contrarily to these previous works,
we did not implement any random access scheme to
the radio medium but rather set up a deterministic
TDMA scheme. Under this scheme, the timeline
is divided in windows of W seconds and each win-
dow is split in W

100 time slots. Each mobile sensor
node owns a time slot it uses to transmit its Hello
packet. Synchronization of the mobile nodes was
performed at the experiment startup.

As described in [3], the performance of this very
simple neighbor discovery protocol, and thus the
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quality of the proximity detection, largely relies on
the dimensioning of the protocol parameters. In
our case, the parameters are the window duration
W , the transmission power T and reception level
thresholds fRig. The parameters values were cho-
sen after a pre-deployment dimensioning phase dur-
ing which di�erent scenarios were explored and sev-
eral parameter value sets experimented. The �nal
values are given in Section 5.4. We also based our
choices on the HCWs recommendations and their
work habits observation. For example, it appeared
quickly that most of the HCW presences in patient
rooms were brief, around a few minutes, requiring
a short W duration to ensure some reliability in the
discovery process. As a comparison, the 120s pe-
riod used in [10] is far too long to detect most of
the HCWs presences in patient rooms.

5.3. Versatility of the radio medium
Three other major observations were made dur-

ing this pre-deployment dimensioning phase:

� the system su�ers an important packet loss,
even at short ranges;

� the relation between radio signal attenuation
and physical distance is weak;

� the radio signal attenuation is not predictable
and can largely vary.

Figure 6 illustrates the two �rst claims. It depicts
the relation between distance and the Received Sig-
nal Strength (RSSI) and the packet loss that the
system experienced during a pre-deployment exper-
iment involving 22 sensor nodes. The third claim
can be observed in Figure 7 where the RSSI and its
standard variation is plot against time for three ra-
dio links. From all these results, it appears clearly
that the RSSI value is not stable in time nor in
space. These variations are due to well-known fad-
ing and shadowing e�ects but also to the human
body which o�ers strong attenuation properties.
For example, depending on the HCW attitude and
their position in the room, RSSI variations up to
20dBm can be observed. Under these conditions,
it is very tricky to di�erentiate a contact with a
HCW in front but outside a room from a contact
with a HCW inside a room but with their body
between the mobile device and the �xed one.

The impact of the packet loss and the RSSI vari-
ability on the measurement reliability is obvious:
it leads to false-negatives, in-room presences that

are not recorded, but also false-positives, as when
a HCW is facing the �xed sensor node from outside
the room. From this pre-deployment phase, we can
already draw some conclusions:

� a correct dimensioning of the neighbour proto-
col is required to limit the measurement system
error;

� the measurements collected by such a deploy-
ment are partially erroneous and should not
serve for application analysis or evaluation
without being somehow corrected.

5.4. Protocol dimensioning

RSSI level 4 3 2 1
dBm � �60 � �65 � �70 � �75

Table 1: RSSI Thresholds.

W Transmission power
5s 0dBm

Table 2: Proximity detection parameters.

The high system loss rate combined to the usually
brief presence of HCWs in rooms required the use
of a short W value to ensure reliability in the prox-
imity detection system. Moreover, due to the high
variations in the received signal strength, the prox-
imity detection could not be performed using a sin-
gle RSSI threshold only. Instead, we had to record
more information on the received signal strength as-
sociated to each contact, i.e. each received packet.
Given the sensor node memory constraints { their
storage size is 1Mb only { and the deployment dura-
tion, recording the exact reception strength was not
an option. Instead, we de�ned four reception levels,
corresponding to four signal strength intervals, and
recorded each contact together with its reception
level. The protocol parameters and the reception
levels that were �nally used in the deployment are
given in Tables 1 and 2.

6. Raw Data { Observations

The resulting data consists of 16; 066; 096 con-
tacts over a period of 98 days between 56 HCWs {
6 of the mobile sensors failed to report any data {
and 32 rooms. A contact c = (t; m; f; r) indicates
that �xed sensor f received a signal from mobile
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Figure 6: Average RSSI (left) and packet delivery ratio (right) versus sink-sensor relative distance.

Figure 7: RSSI (left) and RSSI standard deviation (right) variations over time for three radio links.

sensor m with a RSSI r 2 [1; 4], 1 being the weak-
est and 4 being the strongest, at time t.

As the measurement of contacts was made dis-
cretely, we extend the notion of contact to the one
of visit v = (t; d; m; f; r) where d is the maximal
duration of the contact. In other words, if a signal
from m is received by f with RSSI � r every 5 sec-
onds between t and t + d, we consider that there is
a visit of RSSI r during all that period.

Looking at the data, we note that the number
of contacts per �xed sensor is heterogeneous (Fig-
ure 8). The apparent absence of data for some
rooms is due to the fact that their are no rooms
numbered 7, 13 and 18 in the service, as shown on
Figure 3. By observing the distribution of number
of contacts, we were able to isolate rooms 14 and
17 from the other rooms for having an abnormally

high number of contacts. It appeared that these
room are next to the room where unused mobile
sensors were stocked at night (Figure 3) and there-
fore were continuously receiving radio packets from
those sensors even though no HCW was present in
the room.

Out of the 30 remaining rooms (Figure 8), the
number of contacts span from less than 100; 000 to
more than 1; 000; 000. Moreover, when decompos-
ing this number by RSSI level, it is noticeable that
there is no global trend : room 8 has about 100; 000
contacts of RSSI 4 (more than 10% of its contacts)
whereas room 6 has less than 5; 000 (less than 5%
of its contacts).

The distribution of contacts per mobile sensor
(Figure 8) is heterogeneous as well. 4 sensors have
been seen less than 1; 000 times whereas all 52 oth-

7



 1

 10

 100

 1000  10000  100000  1e+06

ro
om

s

contacts

 1000

 10000

 100000

 1e+06

 1e+07

 5  10  15  20  25  30  35

co
nt

ac
ts

rooms

rssi = 1
rssi = 2
rssi = 3
rssi = 4

 1

 10

 100

 10  100  1000  10000  100000  1e+06

m
ob

ile
 s

en
so

rs

contacts

 10

 100

 1000

 10000

 100000

 1e+06

 10  20  30  40  50  60

co
nt

ac
ts

mobile sensors

rssi = 1
rssi = 2
rssi = 3
rssi = 4

 1

 10

 100

 100  1000  10000  100000

da
ys

contacts

 100

 1000

 10000

 100000

 1e+06

 10  20  30  40  50  60  70  80  90

co
nt

ac
ts

day

rssi = 1
rssi = 2
rssi = 3
rssi = 4

Figure 8: Number of contacts received by �xed sensors, mobile sensors, deployment day and the reversed cumulative distribu-
tions of level 4 contacts.

ers were seen at least 10; 000 times (taking into
account all RSSIs). These di�erences can be ex-
plained by the intrinsic heterogeneity of HCWs, as
nurses do not have the same behaviour as doctors,
interns or social assistants.

The distribution of contacts per day of deploy-
ment (Figure 8) displays a heterogeneous behav-
ior at a daily level although weekly trends are evi-
denced with a lower activity towards the end of the
week. Moreover, activity varies from one week to
another, e.g.. weeks 7 & 8 (days 49 through 62)
have a low activity whereas week 2 (days 7 through
14) has a higher activity. It is interesting to notice
that the former two weeks were o�cial holidays in

France, probably with less HCWs present in the
service.

In the rest of the article, we focus on a subset of
the data consisting of the interactions between all
HCWs and 63 patients monitored for being poten-
tially infected by tuberculosis.

7. Error model

7.1. False negatives

Packet loss. We call intercontact the duration be-
tween two consecutive contacts between a same cou-
ple (�xed, mobile) of sensors. This duration repre-
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Figure 9: Distributions of visits durations (left) and intercontacts (right).

sents the time during which a HCW is absent from
a room before re-entering.

By observing the distributions of both visits and
intercontacts durations (Figure 9), we notice that
90% of all visits last at most 10s and that moreover
30% of intercontacts last less than 15s. Those two
observations are blatantly erroneous and can be ex-
plained by the volatility of the radio medium. Loss
of packets induces false negatives in the measure-
ment.

Assuming a uniform and stationary packet loss,
we propose a method to evaluate the probability
p of receiving a packet based on the intercontacts
distribution and further con�rmed by the audits.

Probability of measuring a contact. It is legitimate
to suppose that there exists a minimal intercontact
duration which corresponds to the fact that a HCW
does not exit a room only to re-enter a few seconds
later. We suppose that this duration is at least
equal to 20s.

As a consequence, we can consider that intercon-
tacts of less than 20s are due to a packet loss, and
thus the probability of measuring an intercontact
of 5k seconds is exactly the probability of losing
k consecutive packets. Hence, assuming a uniform
and stationary loss, (1 � p)k. Using the measured
data, we estimate p � 0:13.

Validation using the audits. By comparing the au-
dits and the data obtained during the same period,
we can evaluate p as being the fraction of measured
presence per e�ective presence. We estimate by this
method that p � 0:145 which is coherent with the
value obtained by the observation of short intercon-
tacts.

7.2. False positives

The existence of a contact does not guarantee an
actual presence in the room. Due to the nature of
the radio medium, the signal from a HCW walking
in front of an opened door or in an adjacent room
might be received with a higher strength than that
of a HCW in the room but turning its back to the
�xed sensor. Although the probability of having
a false positive might be small, it is important to
keep in mind that because of the great number of
contacts, a lot of false positives might arise. We
assume that the probability of measuring a false
positive is uniform and stationary, hence the prob-
ability of having k consecutive contacts decreases
exponentially with k.

8. Reconstruction method

Due to these observations, reconstructing the
original signal is a necessity, as the measured data
does not represent actual social interactions. We
thus propose the following reconstruction protocal,
illustrated in Figure 10:

� reveal false negatives:

{ determine the minimal intercontact dura-
tion di;

{ aggregate successive contacts separated
by at most di seconds;

� delete false positives:

{ determine the minimal visit duration dv

{ remove all visits of less than dv seconds

9
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Figure 11: Right derivative of the reversed cumulative distribution of intercontacts durations in di�erent rooms. The vertical
line indicates 180s.

Figure 10: Illustration of the reconstruction protocol.

8.1. Minimal intercontact duration

As explained before, short intercontacts are solely
a consequence of the packet loss. By observing
the distributions of intercontacts durations for each
room, we note on Figure 11 a change of behavior
(inection of the derivative of the reversed cumula-
tive distribution function) around 180s. The change
represents the fact that longer intercontacts are not
only due to packet loss but also to the HCW be-
havior and thus to actual intercontacts. Hence, we
consider di = 180.

8.2. Minimal visit duration

We �rst aggregate all contacts separated by at
most di seconds and plot, for each duration d and
each room r the fraction of the total presence du-
ration in room r due to visits of duration d as a
function of the proportion of visits of duration d in
this room. This represents the relationship between
contributions in terms of duration and number of
visits of each duration. On Figure 12 we observe
that the visits of 5 seconds, highlighted on the �g-
ure and contained in the right bow area, display

 0.0001
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 0.01

 0.1

 1

 0.0001  0.001  0.01  0.1  1

"5"
"10"

Figure 12: Contributions of visits, per room and duration,
to the total of visits and durations.

a totally di�erent contribution than that of other
durations, and we conclude that the minimal visit
duration is at least 10 seconds. Given that there
is no clear separation between the contributions of
visits of more than 10s, we assume dv = 10.

9. Results

9.1. Intercontacts

After reconstruction, we obtain the distribution
of intercontacts given in Figure 13. Its apparent
irregularity, which was not present beforehand, is
explained by the work schedule of HCW and in par-
ticular by the fact that the maximum work (respec-
tively rest) period per day is around 8h (resp. 16h).
Thus, for example, there are very few intercontacts
which duration is more than 8h and less than 16h.

10



 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 100  1000  10000  100000  1e+06  1e+07
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  8  16  24  32  40  48  56  64  72  80  88  96

Figure 13: Distribution of intercontacts durations after reconstruction (left) and zoom on the �rst 100 hours (right).
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Figure 14: Distribution of visits durations after reconstruc-
tion.

This observation reinforces the idea that the re-
construction method is correct, as it brings out ret-
rospectively a real behavior which was not explicit
in the original distribution and which is not due to
a reconstruction bias.

9.2. Visits

The distribution of visits durations (Figure 14)
clearly highlights the presence of outliers, i.e. vis-
its which durations are abnormally high. These 23
outliers are divided as follow: 19 visits of doctors in
room 19 (next to a room used by doctors for com-
puter work), 3 visits of a nurse in room 14 (next
to the room where sensors were stocked when not
used) and one visit of a nurse in room 8 (adjacent
to the room where HCW stayed while not in the pa-
tient rooms). Given that those outliers’ existence
can be explained by the service’s topography or by
the negligence of a HCW (forgetting a blouse in a
room, for example), we consider that they are not
a reconstruction error and propose their deletion
from the dataset.

9.3. Some statistics

In order to exhibit the di�erences induced by the
reconstruction we present in Table 3 a compari-
son of several statistics on the number and dura-
tions of visits to selected patients before and af-
ter reconstructing the presence signal. It makes no
doubt that any further exploitation of the HCW vis-
its data will be altered depending on wether they
would have been based on the raw measures or the
reconstructed interactions.

10. Conclusion

The data collected within the framework of the
TubExpo project is huge and unique in nature, con-
sisting in the record of the HCWs presence in all
patient rooms of the SMIT unit, 24 hours a day, 7
days a week, during a three months period and on
a 5s basis. Using this data set, we have highlighted
the bias introduced by the measurement system,
mainly caused by the radio medium versatility, and
we have argued that this bias can lead to major
miss-interpretation of the data and/or wrong model
behaviors. In order to correctly exploit the data
and recover from measurement errors, we have de-
vised a method that can be used to reconstruct the
original interactions information and which uncov-
ers phenomena which were not visible on the raw
data.

Now that the issue of measurement reliability has
been clearly identi�ed, many points remain as fu-
ture extensions of this work. Alternate reconstruc-
tion algorithms can be investigated and in partic-
ular, an individual analysis leading to a specializa-
tion of the reconstruction parameters to the dif-
ferent sensor nodes appears as a promising strat-
egy. Further developments will also be oriented
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Patient Nb of visits shortest (s) longest (s) average duration (s) std dev median (s)
25 1089 75 5 10 30 640 5.50 140.13 2.02 151.38 5 100
26 3860 368 5 10 40 3850 6.74 283.65 3.79 421.94 5 135
27 1849 169 5 10 60 2155 7.59 233.58 5.67 329.85 5 115
28 1148 120 5 10 50 2415 6.96 309.25 4.52 411.68 5 170
29 7639 684 5 10 55 3160 7.26 277.76 4.73 327.60 5 175
30 11157 1151 5 10 60 3600 7.47 252.72 4.92 370.92 5 125
31 1911 143 5 10 60 2175 6.94 162.55 5.44 251.00 5 95
32 2105 166 5 10 30 985 5.54 126.96 2.16 155.41 5 75
33 5392 441 5 10 35 1255 5.79 156.35 2.60 184.00 5 100
34 3231 365 5 10 80 1600 7.79 201.03 6.69 225.85 5 135

Table 3: Various statistics before (left) and after (right) reconstruction for a subset of the patients

towards analyzing the TubExpo data set with re-
spect to additional health care information related
to the patients that was collected during the exper-
imentation. We have to address more sophisticated
models both from the clinical/health care perspec-
tive, e.g. epidemic models, health care strategies or
public health policies, and from the network analy-
sis perspective in order to answer the fundamental
questions that have originally motivated this work.
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