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Queries on Xml Streams with Bounded

Delay and Concurrency

Olivier Gauwin 1,2,3, Joachim Niehren 1,3, Sophie Tison 2,3

Abstract

Query answering algorithms on Xml streams check answer candidates on the
fly in order to avoid the unnecessary buffering whenever possible. The delay and
concurrency of a query are two measures for the degree of their streamability.
They count the maximal number of stream elements during the life time for
some query answer, and respectively, the maximal number of simultaneously
alive answer candidates of a query. We study queries defined by deterministic
nested word automata, which subsume large streamable fragments of XPath
subject to schema restrictions by DTDs modulo P-time translations. We show
that bounded and k-bounded delay and concurrency of such automata-defined
queries are all decidable in polynomial time in the size of the automaton. Our
results are obtained by P-time reduction to the bounded valuedness problem
for recognizable relations between unranked trees, a problem that we show to
be decidable in P-time.

Keywords: streaming, tree automata, Xml, databases, XPath.

1. Introduction

Streaming algorithms are relevant for Xml databases and data exchange,
whenever large data collections that cannot be stored in main memory are to
be processed. Instead data is communicated over streams and processed on the
fly. Recently, Xml streaming algorithms were proposed for schema validation
[49] (membership in tree languages), one-pass typing [36] (annotating nodes of
trees by types), and query answering [33, 22, 8, 9, 25].

An Xml streaming algorithm inputs a linearization of an Xml document (as
a series of events) on an external stream, computes its output incrementally, and
writes it to an external output device. The document on the stream is processed
in a single reading pass. A central quality criterion of streaming algorithms is
memory efficiency. In the best case, the required space should be independent
of the size of the input document. Furthermore, the time complexity should be
polynomial in the size of the query, in the space that is required, and in the size
of the output that is produced. We refer to [26] for a discussion of streamability
notions for query languages that capture all these aspects.
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Streaming algorithms for a given Xml query compute the answer set of the
query on the fly. They can be understood as some kind of pushdown transduc-
ers that operate on linearizations of Xml documents. Their space complexity
depends on the number of states, the size of the pushdown which of is often
bounded by the depth of the tree, and the maximal number of answer candi-
dates stored in main memory simultaneously.

Bounded Concurrency and Delay

The concurrency of an n-ary node-selection query is the maximal number
of simultaneously alive answer candidates while processing the stream [5]. An
answer candidate is alive at an event of the input stream, if it can still be
selected in some continuation of the stream and rejected in some other. Hence
the selection and rejection of this candidate cannot be decided at this event.
Note that the notions of aliveness and concurrency do only depend on the query
and not on the particular query answering algorithm. The concurrency of a
monadic query is a lower bound for the space requirement of any streaming
algorithm that answers the query on realistic machine [25, 26], or on unrestricted
machine models for restricted query languages [5].

The delay of a query is a lower bound for waiting times on query answers,
i.e., the maximal number of events between visiting and selecting an answer
element on the stream. Queries with bounded delay permit high quality query
answering algorithms, where the waiting time for query answers is bounded.
We will see that bounded delay implies bounded concurrency for monadic node
selection queries (but not for binary queries).

Relevance for XPath Queries.

We illustrate the relevance of bounded and k-bounded delay and concurrency
in practice at a sample of XPath queries on Xml documents. These documents
represent bibliographies satisfying the following Dtd:

B -> P* P -> T A* T -> #PCDATA A -> #PCDATA

This schema definition states that a bibliography (B) is a list of publications
(P), that a publication is a pair of a title (T) and a list of authors (A), and that
titles and authors are data values. Publications can thus be abstracted into flat
unranked trees such as for instance:

P(T(’found. of databases’),A(’abiteboul’),A(’hull’),A(’vianu’))

The corresponding Xml stream is a list of opening tags, closing tags, and data
values, i.e. the following word:

<P> <T> ’found. of databases’ </T> <A> ’abiteboul’ </A>

<A> ’hull’ </A> <A> vianu </A> </P>

We start with three queries (Q1, Q2, Q3) with increasing bounded delay and
then present two queries with infinite delay (Q4 and Q5). The first query Q1

selects all title nodes of publications. Q1 satisfies delay(t) = concur(t) = 0 for
all bibliographies t:

Q1: //P/T
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A streaming algorithm for Q1 can select all T-nodes of bibliographies t immedi-
ately at opening time (i.e. when reading the opening tag <T>), so with delay 0.
All other nodes can be immediately rejected at opening time, so the concurrency
is 0 too.

The next query Q2 selects all publications whose title contains the substring
’XML’. Q2 satisfies delay(t) ≤ 2 and concur(t) ≤ 1 for all bibliographies t:

Q2: //P[T[contains(.,’XML’)]]

In order to decide the selection of a P-node of a bibliography t, the subsequent
T-node must be opened, and then the subsequent data value must be read. The
delay of t is thus bounded by 2. At any time point at most one title node must
be stored so the concurrency is at most 1.

Next, we consider the query Q3 that selects all co-authors of ’abiteboul’
in some publication with at most 10 authors. It satisfies for all bibliographies t
that delay(t) ≤ 28 and concur(t) ≤ 9:

Q3: //P[count(A)<=10 and A[text()=’abiteboul’]]/

A[not(text()=’abiteboul’)]

In order to decide the selection of an A-node in a bibliography t, in the worst
case one might have to inspect the data values of 9 follow-up A-nodes. The delay
thus contains at most 9 opening A-nodes, 9 closing A-nodes, and 10 data value
nodes, and it thus bounded by 28. The number of candidates that are to be
stored at the same time point may be at most 9 since at most 9 A-nodes may
be undecided simultaneously, so the concurrency is bounded by 9.

We now consider the query Q4 that selects all co-authors of ’abiteboul’

in some publication. Here both the delay and concurrency are unbounded for
varying bibliographies, i.e., supt delay(t) = supt concur(t) = ∞:

Q4: //P[A[text()=’abiteboul’]]/A[not(text()=’abiteboul’)]

Since the number of authors of a publication may be unbounded a priori, the
delay of selection may be unbounded and also the concurrency. This illustrates
that many practically streamable queries do not have bounded concurrency. In
this case however, it is often possible to rewrite the query as done for Q4 in Q3

or else the schema in order to restrict node selection to documents admissible
in practice.

Query Q5 selects all publications whose last author is ’abiteboul’. It sat-
isfies supt delay(t) = ∞, even though concur(t) ≤ 1 for all bibliographies t.

Q5: //P[A[text()=’abiteboul’ and not(following-sibling::A)]]

This is an example of a query with a unbounded delay but small concurrency.
The converse is false for monadic queries, where bounded delay always im-
plies bounded concurrency. This fact may be relevant in cases where deciding
bounded delay is more costly than deciding bounded concurrency.

All queries above except for Q3 and Q5 belong to the finitely streamable
fragment of Forward XPath distinguished in [25, 26] where the branching width
of the path expression is bounded by 3 (modulo considering data values as
tags) and can thus be compiled in polynomial time to deterministic nested word
automata (dnwas) [4]. What is needed to capture Q3 and Q5 in addition is a
streamable extension of these fragments of XPath with next-sibling axis.
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It should also be noticed that flat unranked trees are essentially words since
they contain no relevant nesting structure so that one can remove all closing
tags. Therefore it is natural to start our study of streaming algorithms for
queries defined by deterministic finite automata (dfas) on words, and only to
move to queries on nested words (trees) defined by dnwas in a second step.

Contributions.

In this paper, we show that bounded delay and bounded concurrency are
both decidable in P-time for n-ary queries and schemas defined by dnwas [4,
2, 3]. Queries by dnwas subsume large streamable fragments of XPath [25, 26]
with schema restrictions defined by dnwas, and thus with extended Dtds with
restrained competition [38, 36].

It should also be noticed that schema restrictions may be essential to reduce
delay and concurrency, as they permit to restrict the set of possible continua-
tions of Xml streams. The choice of dnwas as automata notion for unranked
trees is equally justified by their generality: dnwas subsume bottom-up deter-
ministic tree automata that operate on bottom-up binary encodings of unranked
trees (currying) and on top-down deterministic tree automata operating on top-
down encodings of unranked trees (first-child next-sibling encoding). These
relationships are worked out in the appendix in more details.

In the subcase of dfa queries on words (or flat unranked trees), we can
reduce bounded delay and concurrency of dfa-queries on words in P-time to
bounded ambiguity of finite automata, which can be decided in cubic time
[57, 1]. The algorithm for dfa queries on words, however, cannot be lifted
to dnwa queries on trees in any straightforward manner, mainly since dnwas
have stacks in contrast to dfas. In particular, it seems not sufficient to replace
bounded ambiguity of nfas by bounded ambiguity of nwas or of tree automata
on ranked trees. Instead, we propose another solution by reduction to bounded
valuedness of bottom-up tree transducers for ranked trees.

A central idea of our reduction is to define aliveness of automata queries on
unranked trees by recognizable relations between unranked trees [11]. More pre-
cisely, we define the aliveness for a dnwa query A by a possibly non-deterministic
nwa B of size polynomial in the size of A. The most surprising point here is
polynomiality, in particular since the direct construction of a dnwa for aliveness
from [29] produced dnwas of exponential size. Instead, we propose to construct
a non-deterministic nwa B by an existential fo-logic formula over basic reco-
gnizable relations depending on A. The restriction to existential fo-formula is
crucial to obtain a definition in P-time. Indeed, we conjecture that B cannot
always be constructed deterministically from A without growing exponentially.

As an intermediate result of its own interest, we show that bounded valued-
ness of recognizable relations between unranked trees is decidable in P-time.
This result can be reduced in P-time to the analogous result for recognizable
relations between ranked trees [56] via binary encoding of unranked trees. We
then present a further P-time reduction to bounded valuedness of bottom-up
tree transducers for ranked trees, which can be decided in P-time [52].

We also show for fixed k that k-boundedness of nwa-recognizable relations
can be decided in P-time. Our decision procedure relies on direct automata
construction. Note that it is open whether the more general problem of k-
bounded valuedness of bottom-up tree transducers is decidable in P-time. The
best algorithm so far is in coNP-time [53].
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We added some new results to the Lata conference version [28] of the present
article. First, we showed that k-bounded delay and concurrency for fixed k can
be decided in P-time (Theorem 6), by proving that k-bounded valuedness of
binary recognizable relations is decidable in P-time (Theorem 7). Second, we
proved the exptime-hardness of deciding whether a binary recognizable relation
has k-bounded valuedness, when k is variable (Theorem 9). Third, we added
the result that bounded delay implies bounded concurrency for monadic queries
(Proposition 6). Fourth, we now show in the case of words, how to compute the
delay efficiently, and thus how to decide k-bounded delay efficiently (Theorem
4). Examples and complete proofs were added.

Related Work

While usual evaluation algorithms store the whole Xml document in main
memory [31, 43], on-the-fly evaluation algorithms on Xml streams start pro-
cessing input data before it is completely received [49, 7, 18, 44, 34, 58]. The
ideal of on-the-fly algorithms with optimal memory management [6] lead to the
idea of earliest query answering (Eqa), whose objective is to keep only alive
answer candidates in main memory [12, 5, 29]. The memory consumption of
Eqa algorithms thus directly depends on the concurrency of the query.

Many evaluation algorithms for XPath fragments on Xml streams subscribe
to the idea of Eqa [5, 42, 32, 41, 46]. However, it turned out recently [9, 25],
that Eqa is infeasible, even for small fragments of XPath, for which satisfiability
or universality cannot be decided in P-time. As a consequence, Benedikt et al.
[9] propose streaming algorithms for a restricted fragment of XPath, where
queries can never look forward, so that node selection can always be decided
immediately (i.e., the delay is zero).

Gauwin et al. [29] present an Eqa algorithm for queries defined by dnwas
or equivalently, by deterministic visibly pushdown automata [3], streaming tree
automata [27], or pushdown forest automata [39]. Berlea’s Eqa algorithm for
queries defined by pushdown forest automata [12] assumes infinite alphabets,
which removes the algorithmic hardness of Eqa for non-deterministic automata,
but limits its relevance at the same time.

Recognizable relations for ranked trees [56, 19] were applied for instance, in
order to decide the first-order theory of ground tree transducers [21]. The clo-
sure operations of tree automata correspond to the first-order closure properties
of recognizable relations. Recognizable relations for unranked trees were intro-
duced in [10, 11]. They showed that all recognizable relations between unranked
trees can be defined in the first-order logic of unranked trees with two extension
operators, downwards and to the right. Note however, that their results are
restricted to recognizable relations between trees over the same signature, while
we need different signatures in the current article. Furthermore, the problem of
bounded valuedness of recognizable relations is not studied there.

Outline.

We recall needed known boundedness results for word or tree automata
and transducers in Section 2. In Section 3, we recall how to map queries on
relational structures to canonical languages of annotated elements of the domain
of the structure. This mapping is well-known from the relationship between
logic and automata for words or trees. In Section 4, we discuss streaming
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algorithms for query answering and recall the notions of concurrency and delay.
In Section 5, we show how to decide bounded delay and concurrency for dfa-
queries in words (aka flat unranked trees) by reduction to bounded ambiguity
of nfas. This section is not essential for our main results on more general
dnwa queries on unranked trees, but illustrates the nature of the problems and
provides some stronger results for this special case. In Section 6, we formulate
our main results for dnwa-defined queries (Theorem 6). In Section 7, we discuss
bounded valuedness problems for recognizable relations between unranked trees.
In Section 8, we show how to define delay and concurrency as recognizable
relations in P-time.

2. Bounded Ambiguity and Valuedness

We recall some results from the literature that we will make use of later on.
They concern the bounded ambiguity for automata on words and trees and the
bounded valuedness of tree transducers. The classes of trees considered there
are all ranked, but these results will be used to prove properties of relations over
unranked trees.

2.1. Bounded Ambiguity of Finite Automata

A finite automaton (nfa) over Σ is a tuple A = (stat , init , rul ,fin) where
init , fin and stat are finite sets with init ,fin ⊆ stat , and rul ⊆ stat2 × (Σ∪{ǫ})

contains rules that we write as q
a
→ q′ or q

ǫ
→ q′ where q, q′ ∈ stat and a ∈ Σ.

Whenever necessary, we will index the components of A by A. Let the size of
A count all states and rules, i.e. |A| = |statA|+ |rulA|. We also sometimes use
the notation A[init=I] (resp. A[fin=I]) for the automaton obtained from A by
setting its initial (resp. final) states to I.

Let eve(w) = {0} ∪ dom(w) be the set of all positions of w and the start
event 0. A run of A on a word w is a function r : eve(w) → statA so that

r(0) ∈ initA and r(π−1)
ǫ ∗
→

a
→

ǫ ∗
→ r(π) is justified by rul for all π ∈ dom(w)

with a = labw(π). A run is successful if r(|w|) ∈ finA. The language L(A) ⊆ Σ∗

is the set of all words that permit a successful run by A.
An nfa is called productive, if all its states are used in some successful run.

This is the case if all states are reachable from some initial state, and if for all
states, some final state can be reached.

An nfa A is deterministic or a dfa if it has at most one initial state, no
epsilon rules, and for every pair (q, a) there exists at most one rule q

a
→ q′ ∈ rulA.

Note that for every word w there exists at most one run by a dfa A.
The ambiguity ambA(w) is the number of successful runs of A on w. This

measures the degree of non-determinism of nfas A. Clearly, ambA(w) ≤ 1 for
all w ∈ Σ∗ if A is a dfa. Let N be the set of natural numbers and N0 the set
of non-negative integers. Given k ∈ N, we call the ambiguity of A k-bounded if
ambA(w) ≤ k for all w ∈ Σ∗. It is bounded, if it is bounded by some k.

Theorem 1 (Stearns and Hunt 85, Weber and Seidl 86). For nfas bounded
ambiguity and k-bounded ambiguity with fixed k can be decided in P-time.

Decidability of k-bounded ambiguity for fixed k is shown by Theorem 4.1 of
Stearns and Hunt [55]. They don’t report the precise polynomial though. The
result on bounded ambiguity was shown by Weber and Seidl [57]. Here we can
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obtain a decent polynomial as follows. They define p
w
→ q by A if there exists a

run of A[init={p}] on w that ends in q and show that an nfa A has unbounded
ambiguity iff there exists a word w ∈ Σ+ and distinct states p 6= q such that
p

w
→ p, p

w
→ q, and q

w
→ q by A. This can be tested in O(|A|3) as shown very

recently by [1].
In the case of words, we will see that we can reduce (k)-bounded delay and

concurrency of queries defined by dfas to (k)-bounded ambiguity of nfas.

2.2. Bounded Valuedness of Tree Transducers

In a first step, we generalize the results on bounded ambiguity to standard
tree automata for binary trees [19], and in a second to bounded valuedness of
tree transducers.

Let Σr = Σ0 ⊎ Σ2 be a ranked alphabet with constants in Σ0 and binary
function symbols in Σ2. The set of binary trees T bin

Σr
is the least set of unranked

trees over Σr that contains all constants c ∈ Σ0 and pairs f(t1, t2) where f ∈ Σ2

and t1, t2 ∈ T bin
Σr

. The nodes of a ranked tree t are defined by: nod(c) = {ǫ}
and nod(f(t1, t2)) = {ǫ} ∪ {1·π | π ∈ nod(t1)} ∪ {2·π | π ∈ nod(t2)}.

A tree automaton (nta) with signature Σr is a tuple of three finite sets
A = (stat ,fin, rul) such that fin ⊆ stat and rul ⊆ ∪i∈{0,2}stat

i+1 × Σi. We
denote rules in rul as f(q1, q2) → q and c → q where q1, q2, q ∈ stat , f ∈ Σ2

and c ∈ Σ0. A run of A on a tree t ∈ T bin
Σr

is a function r : nod(t) → stat

mapping nodes to states, such that for all π ∈ nod(t), if labt(π) = f ∈ Σ2 then
rule f(r(π·1), r(π·2)) → r(π) belongs to rul , and if labt(π) = c ∈ Σ0 then rule
c → r(π) belongs to rul . A run r is successful if r(ǫ) ∈ fin. Automaton A
recognizes the language of binary trees Lbin(A) ⊆ T bin

Σr
that permit a successful

run by A.
An nta is called bottom-up deterministic or a dta if no two of its rules have

the same left-hand side. We call it top-down deterministic or a d↓nta if the set
of final states fin contains at most one element, and if for every f ∈ Σ2 and
state q ∈ stat there is at most one rule matching f(q1, q2) → q in rul .

The ambiguity ambA(t) is the number of successful runs of A on t. Clearly,
ambA(t) ≤ 1 for all t ∈ T bin

Σr
if A is bottom-up or top-down deterministic.

Bounded and k-bounded ambiguity of ntas are defined as for dfas, and were
proved to be decidable in P-time by Seidl in [51] and [50] respectively (for
fixed k).

Theorem 2 (Seidl 89). Bounded ambiguity and k-bounded ambiguity for fixed
k of tree automata on ranked trees (ntas) in P-time.

These results for trees generalize those for words in a straightforward man-
ner. However we don’t know, in the case of trees, how to reduce (k)-bounded
delay and concurrency of queries defined by dtas to (k)-bounded ambiguity of
ntas. Instead, we will need even stronger results on bounded valuedness of tree
transducers.

Given a binary relation R ⊆ S × S′ and an element s ∈ S, let #R(s) be the
number of s′ ∈ S′ such that (s, s′) ∈ R. The valuedness of R is the maximal
such number val(R) = maxs∈S #R(s). We call R k-bounded if val(R) ≤ k, and
bounded if it is k-bounded for some k ∈ N0.

Let Σr = Σ2 ∪ Σ0 and ∆r = ∆2 ∪ ∆0 be binary signatures. A bottom-up
tree transducer with input signature Σr and output signature ∆r is a triple
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a

b c d

e

(a) A unranked tree t ∈ TΣ

a

b

⊥ c

⊥ d

e

⊥ ⊥

⊥

⊥

(b) The binary tree fcns(t) ∈ T bin
Σ⊥

Figure 1: Top-down binary encoding

T = (stat ,fin, rul) that consists of a finite set of states stat , a subset of final
state fin ⊆ stat , and a finite set of rules rul of the following forms:

f(q1(x1), q2(x2)) → q(g(x1, x2)) or a → q(b)

where x1, x2 are two fixed variables, q1, q2, q ∈ stat , a ∈ Σ0, f ∈ Σ2, b ∈ ∆0 and
g ∈ ∆2. Note that tree transducers usually admit more general rules [52], but
these simpler rules suffice for our usage of tree transducers. The size of T is the
sum of the numbers of its rules and states. Its semantics is a binary relation
JT K ⊆ T bin

Σr
× T bin

∆r
defined in the obvious manner.

Theorem 3 (Seidl 92). Bounded valuedness of relations JT K between ranked
trees defined by bottom-up tree transducers T can be decided in P-time in the
size of T .

This result was proved by Seidl in [52]. Note that it is not known for fixed
k whether k-valuedness can be decided in P-time. The best existing algorithm
is in coNP-time (Theorem 2.2 of [53]).

Note also that every dta A can be mapped to some bottom-up tree trans-
ducer T in linear time, such that JT K relates trees t ∈ Lbin(A) to successful runs
by A on t. It then holds that T is k-valued if and only if A is k-unambiguous.
This shows that deciding k-ambiguity of ntas can be reduced to k-valuedness
of bottom-up tree transducers, but not necessarily vice versa.

2.3. Translation to Unranked Trees

Since dealing with Xml we are mostly interested in unranked trees. We will
use the top-down encoding that is also called first-child next-sibling encoding
[35] or Rabin’s encoding [45] in order to lift boundedness results from ranked to
unranked trees. In the appendix, we will also use a bottom-up encoding called
Currying [15], in order to illustrate the generality of our results.

We define the set TΣ of unranked trees over Σ to be the least set that contains
all pairs a(t1, . . . , tm) consisting of a letter a ∈ Σ and a tuple (t1, . . . , tm) of
unranked trees in TΣ where m ≥ 0. Clearly, T bin

Σr
⊆ TΣr

for every binary
signature Σr.

Given an unranked alphabet Σ, let Σ⊥ = Σ ⊎ {⊥} be the ranked alphabet
where all symbols of Σ are binary and ⊥ is the unique constant. The encoding
is defined by a function fcns : TΣ → T bin

Σ⊥
is illustrated in Figure 1(b). nta A

over Σ⊥ defines a language of unranked trees modulo the fcns encoding L(A) =
{t ∈ TΣ | fcns(t) ∈ Lbin(A)}.
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3. Queries and Canonical Languages

We abstract databases into relational structures in order to reason about
words and trees in a common framework. In particular, we recall the notion of
canonical languages for n-ary queries, first-order queries, and n-ary queries in
words and trees.

3.1. Queries for Relational Structures
We define queries for relational structures by canonical languages of anno-

tated relational structures. In the case of words and trees, this will enable
definitions of queries by deterministic finite automata.

A relational signature ∆ consists of a finite set of relation symbols r ∈ ∆ each
with a fixed arity ar(r) ∈ N0. A relational structure s over ∆ consists of a non-
empty finite set dom(s) called the domain of s and relations rs ⊆ dom(s)ar(r)

interpreting all symbols r ∈ ∆. We write S∆ for the set of structures over ∆.

Definition 1. Let ∆ be a relational signature and n ∈ N0. A schema over ∆ is
a subset S ⊆ S∆. An n-ary query with schema S is a function Q with domain
dom(Q) = S, which maps all structures s ∈ S to a set of tuples of elements
Q(s) ⊆ dom(s)n. A Boolean query is a query of arity 0.

Below, we will define queries in words, where the schema dom(Q) is a class
of relational structures of words in Σ∗, and queries in unranked trees where
the schema is a class of relational structures of unranked trees TΣ. Further
restrictions on these domains can be defined by automata or Xml schemas.

3.2. Canonical Languages
Boolean queries with domain S∆ can be identified with schemas LQ = {s |

() ∈ Q(s)}. But how can we define languages of structures for more general
n-ary queries?

In order to do so, we fix an ordered set of distinct variables Vn = {x1, . . . , xn}
and define extended relation signatures ∆n = ∆ ∪ Vn such that every variable
becomes a monadic relation symbol. For every structure s ∈ S∆ and tuple
τ = (π1, . . . , πn) ∈ dom(s)n we define an annotated structure s ∗ τ ∈ S∆n

as
follows:

dom(s ∗ τ) = dom(s)
rs∗τ = rs for all r ∈ ∆
xs∗τ
i = {πi} for all 1 ≤ i ≤ n

We call a structure s̃ ∈ S∆n
canonical if xs̃ is a singleton for all x ∈ Vn. Clearly,

all annotated structures s∗τ are canonical. Conversely, every canonical structure
s̃ is equal to some annotated structure s ∗ τ . We therefore define the canonical
language of n-ary queries as follows:

Definition 2. The canonical language LQ of an n-ary query Q is the following
set of annotated structures:

LQ = {s ∗ τ | τ ∈ Q(s)}

Note that the canonical language of a Boolean query indeed coincides with
the schema LQ = {s | () ∈ Q(s)}. Note however, that the domain of a query
is only partially specified by the canonical language. What is missing in the
canonical language is the difference between structures s verifying s 6∈ dom(Q)
and structures s such that Q(s) = ∅. In order to fix this problem, we identify a
query Q by the pair (LQ, dom(Q)) of its canonical language and its domain.

9



3.3. First-Order Queries

We define logical operations for n-ary queries Q,Q′ with the same schema
S: conjunction Q ∧ Q′, negation ¬Q, existential quantification ∃xi.Q for all
1 ≤ i ≤ n, and cylindrification cθQ for functions θ : {1, . . . ,m} → {1, . . . ,m}
with {1, . . . , n} ⊆ θ({1, . . . ,m}). All these queries have the same domain, say
S, and satisfy for all structures s ∈ S:

conjunction Q ∧Q′(s) = Q(s) ∩Q′(s)
negation ¬Q(s) = dom(s)n −Q(s)
quantification ∃xi.Q(s) = {(π1, . . . , πi−1, πi+1, . . . , πn) | ∃πi. (π1, . . . , πn)∈Q(s)}
cylindrification cθQ(s) = {(πθ(1), . . . , πθ(m)) ∈ dom(s)m | (π1, . . . , πn) ∈ Q(s)}

Note that ∃xi.Q is a query of arity n−1, and cθQ of arity m ≥ n, while all others
have arity n. While projection deletes component in all tuples, cylindrification
permits extension by new components, plus copying and permutation, but no
deletion.

We next define formulas of first-order logics over a relational signature ∆
as usual, where y ranges of an infinite vocabulary of variables V, r ∈ ∆, and
m = ar(r):

φ ::= r(y1, . . . , ym) | φ1 ∧ φ2 | ¬φ | ∃y.φ

Every fo formula φ with at most m free variables ỹ = (y1, . . . , ym) ∈ Vm defines
an m-ary query Qφ(ỹ) whose domain contains all ∆-structures.

Qφ1∧φ2(ỹ) = Qφ1(ỹ) ∧Qφ2(ỹ) Q¬φ(ỹ) = ¬Qφ(ỹ)

Q(∃z.φ)(ỹ) = ∃z.Qφ(ỹ,z) Qr(y1,...,yn)(yθ(1),...,yθ(m))
= cθr

Here, we identify relation symbol r with the query of arity ar(r) that satisfies
r(s) = rs for all structures s ∈ S.

3.4. Queries on Words

Non-empty words over a finite alphabet Σ can be identified with relational
structures. We write w·w′ ∈ Σ∗ for the concatenation of two words w,w′ ∈ Σ∗,
and ǫ ∈ Σ∗ for the empty word. The domain of the structure of a word w =
a1· . . . ·am is the set of its positions:

dom(w) = pos(w) = {1, . . . ,m}

Note that the domain of all non-empty words is non-empty. Indeed, we define
structures only for non-empty words in Σ+ in order to avoid anomalies later on.

The structure of a word w ∈ Σ+ has signature ∆ = {laba | a ∈ Σ} ∪ {≤}
with the following interpretations where w = a1· . . . ·am:

labwa = {i | ai = a, 1 ≤ i ≤ m}
≤w= {(i, j) | 1 ≤ i ≤ j ≤ m}

An n-ary query Q in words has some schema dom(Q) ⊆ Σ+ and selects n-tuples
of positions in words in dom(Q). Suppose that we fix dom(Q) = Σ+. We can
then define a monadic query by the following fo formula with a single free
variable x1:

φ(x1) =df ∃x2(x1 ≤ x2 ∧ laba(x2))

10



For every word w in the schema, the query Qφ(x1) defined by this formula selects
all positions before some a-labeled positions.

Given a word w = a1· . . . ·am ∈ Σ∗ and a tuple τ = (π1, . . . , πn) ∈ dom(w)n,
we can identify the annotated structure w∗τ with the following annotated word
over Σ× 2Vn :

(a1, {xi | πi = 1})· . . . ·(am, {xi | πi = m})

For instance we identify (a·a·b) ∗ (2, 1) with the word (a, {x2})·(a, {x1})·(b, ∅).
The canonical language of an n-ary query Q in words over ∆ thus can be iden-
tified with a language LQ of annotated words with alphabet Σ× 2Vn .

3.5. Queries on Unranked Trees

We can identify unranked trees in TΣ with structures over the relational sig-
nature ∆ = {laba | a ∈ Σ}∪{ch∗,ns∗}, where all labeling relations are monadic
and all others binary. The domain of the structure of t = b(t1, . . . , tm) ∈ TΣ is
the set of its nodes:

dom(t) = nod(t) = {ǫ} ∪ {i·π | π ∈ nod(ti)}

The relations of the structure of t are defined as follows where a ∈ Σ:

labta = {ǫ | a = b} ∪ {i·π | π ∈ labtia , 1 ≤ i ≤ m}
(ch∗)t = {(π, π·π′) | π·π′ ∈ nod(t)}
(ns∗)t = {(π·i, π·j) | 1 ≤ i ≤ j, π·j ∈ nod(t)} ∪ {(ǫ, ǫ)}

The word w = a·b·a·c·a, for instance, can be encoded by the tree t = d(a, b, a, c, a),
where d ∈ Σ is an arbitrary symbol. Note that nod(t) = {ǫ} ∪ dom(w).

Queries Q in unranked trees of TΣ are queries with some domain dom(Q) ⊆
TΣ. They select tuples of nodes Q(t) ⊆ nod(t)n for all trees t ∈ dom(Q). For
instance, if we fix the schema to TΣ then we can define a query for all trees that
selects all nodes with a-labeled descendants by the following fo formula with
one free variable x1:

φ(x1) =df ∃x2 (ch∗(x1, x2) ∧ laba(x2))

In analogy to the case of words, the canonical language of an n-ary query Q in
unranked trees over Σ can be identified with a language of unranked trees over
the alphabet Σ× 2Vn where Vn = {x1, . . . , xn}.

4. Streaming Algorithms for Query Answering

We discuss fundamental concepts of streaming algorithms for query answer-
ing. In particular, we introduce the notion of bounded delay and bounded
concurrency and discuss their relevance for streamability.

4.1. Linearizations of Structures

A streaming algorithm that answers a query Q in some class of structures S
reads a linearization of a structure s ∈ S from the input stream, and computes
a collection of answers Q(s) incrementally.

Since words are linear structures, they can be put onto a stream in the naive
manner. A streaming algorithm for words in Σ+ can be understood as a one-
way automaton, that reads the letters of a word w ∈ Σ+ from the left to the

11



right. It assigns states to all events eve(w) = {0}∪dom(w), i.e., to all positions
of w and to the start event 0. The set of events is totally ordered with least
element 0. We write domη(w) = {1, . . . , η} for the set of positions of w visited
before the event η.

Unranked trees need linearization in order to be put onto a stream. For
every set Set, we define a set of tagged opening and closing parenthesis:

Ŝet = {op, cl} × Set

An opening parenthesis (op, a) corresponds to the Xml tag <a> and a closing
parenthesis (cl, a) to the Xml tag </a>. For every tree t ∈ TΣ we define the
nested word nw(t) ∈ Σ̂ by linearization as follows:

nw(a(t1, . . . , tn)) = (op, a)·nw(t1)· . . . ·nw(tn)·(cl, a)

This word is well-nested in that every opening parenthesis is properly closed.
For instance, if t = a(b, c(d), f) then nw(t) = (op, a)·(op, b)·(cl, b)·(op, c)·(op, d)·
(cl, d)·(cl, c)·(op, f)·(cl, f)·(cl, a). The events of the nested word nw(t) can be
identified with element of the following set:

eve(t) = {start} ∪ n̂od(t)

Let ≤ be the total order on eve(t) corresponding to the total order of eve(nw(t))

and pred(e) ∈ eve(t) be the immediate predecessor of an event η ∈ n̂od(t).
For instance, pred(op, 2·1) = (cl, 1) for the tree t = a(b, c(d), f). We write
domη(t) = {π ∈ nod(t) | (op, π) ≤ η} for the set of all nodes visited until event
η.

4.2. Earliest Selection and Bounded Delay

The delay of a query is the maximal life time of some query answer. In
order to define the delay formally, we must say what it means that an event
is sufficient for the selection of an answer candidate, or equivalently, we must
define the earliest event that is sufficient for its selection.

We consider the cases of words and trees in simultaneously, where either
S = Σ∗ is the set of all words or S = TΣ the set of all unranked tree over Σ. Let
Q be an n-ary query in S, s ∈ S a structure, and η ∈ eve(s) an event of s. A
complete candidate until event η is a tuple τ ∈ domη(s)

n. Given two structures
s1, s2 ∈ S and an event η ∈ eve(s1) ∪ eve(s2), we say that the prefixes of the
linearizations of s1 and s2 until η coincide, if:

eqη(s1, s2) ⇔

{
domη(s1) = domη(s2) ∧
∀a ∈ Σ. ∀π ∈ domη(s1). (lab

s1
a (π) ⇔ labs2a (π))

Definition 3. We call an event η sufficient for selection of a complete candidate
τ until η in structure s by query Q, and write (τ, η) ∈ selQ(s), if τ will be selected
by Q in all possible continuations of the stream beyond η:

(τ, η) ∈ selQ(s) ⇔ τ ∈ domη(s)
n ∧ ∀s′ ∈ dom(Q). eqη(s, s

′) ⇒ τ ∈ Q(s′)

Note that allowed continuations are only those that extend the current prefix
of the linearization of the structure to a member of dom(Q). Note also that the
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start event may be sufficient to select the empty tuple () in Boolean queries
where n = 0, while it is never sufficient for selection if n ≥ 1 since otherwise
τ 6∈ domη(s)

n. Let

latest((π1, . . . , πn)) = min{η ∈ eve(s) | π1, . . . , πn ∈ domη(s)}

be the minimal event, where all elements of the tuple have been visited. The
delay of an n-ary query Q for a tuple τ ∈ dom(s) is the number of events η
following latest(τ) such that η is insufficient for selection, i.e. (τ, η) 6∈ selQ(s).

delayQ(s, τ) = |{η ∈ eve(s) | latest(τ) ≤ η, (τ, η) 6∈ selQ(s)}|

A query Q has k-bounded delay if delayQ(s, τ) ≤ k for all s ∈ dom(Q) and
τ ∈ Q(s). It has bounded delay if it has k-bounded delay for some k ≥ 0.
Having bounded delay means that every Eqa algorithm will output selected
tuples a constant time after completion. This is a guarantee on the quality of
service.

4.3. Earliest Rejection and Bounded Concurrency

The concurrency of a query is the maximal number of concurrently alive
answer candidates at every time point [5]. In order to define the concurrency
formally, we have to define aliveness of answer candidates. Intuitively, a candi-
date is alive at an event at which it can neither be safely rejected nor selected.

Recall that the concepts of earliest selection and rejection are closely related
to the idea of Eqa. An Eqa algorithm for a query Q is a streaming algorithm
that inputs a linearization of a structure on the stream, and decides selection
and rejection of answer candidates at every time point (without knowing the rest
of the stream). This way, it needs to keep in main memory only alive candidates,
which are neither safe for selection nor rejection. As an example, consider the
monadic query Q2 that selects all positions in words w ∈ {a, b, c}∗ that are
labeled by a and followed by b·b. When applied to w2 = a·a·b·b·a·b·b·c·a·b·a·b,
this query returns Q2(w2) = {(2), (5)}. A streaming algorithm can enumerate
these answers by using a sliding window of length 3. Position 1 for instance can
be rejected when having seen the labels of positions 1 and 2, while position 2
can be selected when having seen the labels of positions 2, 3, and 4.

In order to formalize the concept of earliest rejection for n-ary queries, we
have to deal with partial answer candidates for a given structure s. We fix a
constant • that represents unknown components, and define partial tuples τ of
positions until η ∈ eve(s) as members of (domη(s) ⊎ {•})n. So far, we have
only studied complete answer candidates, which do not contain any unknown
component. We write compl(τ, s, η) for the set of complete candidates, in which
all unknown components of τ have been instantiated with elements π ∈ dom(s)−
domη(s).

Definition 4. We call a partial candidate τ rejected at event η ∈ eve(s), if no
completion of τ by nodes in the future of η can be selected by Q.

(τ, η) ∈ rejQ(s) ⇔

{
τ ∈ (domη(s) ⊎ {•})n ∧
∀s′ ∈ dom(Q). eqη(s, s

′) ⇒ ∀τ ′ ∈ compl(τ, s′, η). τ ′ /∈ Q(s′)
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We call a partial candidate τ ∈ (domη(s)∪{•})
n alive at η if τ is neither rejected

nor selected at η.

(τ, η) ∈ aliveQ(s) ⇔

{
τ ∈ (domη(s) ∪ {•})n and
(τ, η) 6∈ rejQ(s) and (τ, η) 6∈ selQ(s)

The concurrency of a query Q on a structure s ∈ dom(Q) at event η ∈ eve(s) is
the number of alive partial candidates τ until η, so that η is neither sufficient
for selection or rejection of τ .

concurQ(s, η) = |{τ ∈ (domη(s) ∪ {•})n | (τ, η) ∈ aliveQ(s)}|

We choose to include the empty tuple •n in the concurrency, because in our
algorithm it is processed like any other partial tuple4. Hence Boolean queries
have concurrency at most 1, and for monadic queries it is at most |dom(s)|+1.
Concurrency 0 means that the query is empty.

Lemma 5. For all monadic queries Q, structures s ∈ dom(Q), and events
η ∈ eve(s):

concurQ(s, η) ≤ sup
s′∈dom(Q),τ∈Q(s′)

delayQ(s
′, τ) + 1

The lemma fails for queries of higher arities, where the delay between the
tuple components may be unbounded even though the delay of selection of
complete tuples is bounded. In this case, the set of alive partial tuples may
grow without bound, even though the set of alive complete tuples is bounded.
For instance consider the query Q with Q(t) = nod(t)2 for all trees t ∈ TΣ. This
query has delay 0, since every pair of nodes can be selected immediately, once
its last component has been visited. Nevertheless, all partial tuples (π, •) with
π ∈ domη(t) are alive at all events η, so that the concurrency of this query is
not bounded.

Proof. Let s′ ∈ S and k ∈ N0 ∪ {∞}. In the case of words (where S = Σ∗),
we define domk

η(s
′) by {π′ | η − k ≤ π′ ≤ η}, and in the case of trees (where

S = TΣ), we define domk
η(s

′) as {π′ | predk(η) ≤ (op, π′) ≤ η}.
Let Q be a monadic query. Let d = sups′∈dom(Q),τ∈Q(s′)delayQ(s

′, τ) be the
number in the lemma, and s ∈ dom(Q) be a structure with event η ∈ eve(s).
We claim for all π ∈ dom(s) that:

π 6∈ domd
η(s) ⇒ ((π), η) 6∈ aliveQ(s)

To see this, we first note that if π 6∈ domη(s) then π is not alive at η. Now let

us consider π ∈ domη(s)− domd
η(s). We distinguish two cases.

1. In the first case, there exists a continuation s′ ∈ dom(Q) with eqη(s, s
′)

such that (π) ∈ Q(s′). This continuation s′ satisfies delayQ(s
′, (π)) ≤ d,

so that π ∈ domη(s) − domd
η(s) yields ((π), η) ∈ sel(s). This contradicts

aliveness.

4Note that the notion of concurrency used in the introduction did not take the empty tuple
into account. This just differs the concurrency from 1.
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2. Otherwise, all continuations s′ of s beyond η satisfy (π) 6∈ Q(s′), so that
((π), η) ∈ rej(s). This equally implies non-aliveness.

This proves the claim, which yields for all partial tuples τ :

(τ, η) ∈ aliveQ(s) ⇒ τ ∈ domd
η(s) ∪ {•}

Hence, concurQ(s, η) ≤ d+ 1 by definition of concurrency.

We say that the concurrency of a query Q is bounded if there exists k ≥ 0
such that concurQ(s, η) ≤ k for all structures s ∈ dom(Q) and η ∈ eve(s). Note
that queries with unbounded concurrency cannot be processed in streaming
manner with bounded memory.

Proposition 6. A monadic query with k-bounded delay has (k+1)-bounded
concurrency.

Proof. This is an immediate consequence of Lemma 5.

The converse does not hold. As a counter example, consider the monadic
query which selects the first letter of all words whose last letter is a b. This query
has concurrency bounded by 1, since the first letter is the only alive candidate
before the end, but unbounded delay.

4.4. Schema Elimination

Domain restrictions of queries by schemas are relevant to Eqa, since they
constrain the possible continuations of a stream. As an example, reconsider the
monadic query Q2 that selects all positions in words w that are labeled by a
and followed by b·b, but now with domain restricted by schema (a|b)∗·c·(a·b)∗.
If the word w on the stream is assumed to satisfy the schema, then no position
that follows a c symbol on the stream can be selected.

Eqa for queries Q with schema restriction can be reduced to Eqa for queries
without. In order to do so, we define a query σQ with dom(σQ) = S such that
selQ = selσQ

. We set σQ(s) = Q(s) if s ∈ dom(Q) and dom(s)n otherwise.
Similarly for rejection, we define a query ρQ with dom(ρQ) = S by ρQ(s) = Q(s)
if s ∈ dom(Q) and ∅ otherwise.

Lemma 7. selQ = selσQ
and rejQ = rejρQ

.

Proof. Straightforward from the definitions. Let τ ∈ domη(s)
n:

(τ, η) ∈ selσQ
iff τ ∈ domη(s)

n ∧ ∀s′ ∈ S. eqη(s, s
′) ⇒ τ ∈ σQ(s

′)
iff τ ∈ domη(s)

n ∧ ∀s′ ∈ dom(Q). eqη(s, s
′) ⇒ τ ∈ Q(s′)

(τ, η) ∈ rejρQ
iff

{
τ ∈ (domη(s) ∪ {•})n ∧
∀s′ ∈ S. eqη(s, s

′) ⇒ ∀τ ′ ∈ compl(τ, s′, η). τ ′ 6∈ ρQ(s
′)

iff

{
τ ∈ (domη(s) ∪ {•})n ∧
∀s′ ∈ dom(Q). eqη(s, s

′) ⇒ ∀τ ′∈compl(τ, s′, η). τ ′ 6∈ Q(s′)

However, given automata A and B with L(A) = L(Q) and L(B) = S, we
cannot build an automaton recognizing σQ or ρQ without a blowup in O(2n) in
the general case, since we have to extend the alphabet of B from Σ to Σ× 2Vn .
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5. Bounded Delay and Concurrency for Word Automata

We consider the case, where queries in words are defined by two deterministic
finite automata, that recognize the canonical language of the query and its
schema respectively. We obtain P-time decision procedures for bounded delay
and concurrency by reduction to bounded ambiguity of non-deterministic finite
automata.

5.1. Defining n-ary Queries

We can define queries by two automata, one for the canonical language and
another for the schema. We call an nfa canonical if and only if its language is.

Definition 8. Let A be a canonical nfa with alphabet Σ × 2Vn and B an nfa
with alphabet Σ, such that w ∈ L(B) for all w ∗ τ ∈ L(A). The query Q(A,B)

defined by the pair (A,B) is the unique n-ary query with domain L(B) and
canonical language L(A). If L(B) = Σ+ then we write QA instead of Q(A,B).

Automaton B is needed in order to distinguish those words on which the
query is not defined from those where the query returns the empty set. Note
that if Q(A,B)(w) 6= ∅ then w ∈ L(B).

Let the type of a word w with alphabet Σ×2Vn be a function typew : Vn → N0

that counts how many times a variable appears in labels, i.e., for x ∈ Vn:

typew(x) = |{π ∈ dom(w) | labw(a,V )(π) with x ∈ V }|

We say that a word w has type 1Vn if typew(x) = 1 for all x ∈ Vn. All words
over Σ × 2Vn of type 1Vn have the form w ∗ τ , and vice versa. We next show
that all states of productive canonical nfas have unique types. This was already
noticed in Lemma 3 of [14]:

Lemma 9. If A is a productive canonical nfa and q ∈ statA then all words
recognized by A[fin = {q}] have the same type.

Proof. Since A is productive, there exists a word w ∈ L(A[init = {q}]). Assume
that there exist words w1, w2 ∈ L(A[fin = {q}]) with different types. Hence,
the words w1·w and w2·w must have different types, since typew1·w = typew1

+
typew 6= typew2

+ typew = typew2·w. This is impossible, though, since L(A) is
canonical, so that typew2·w(x) = typew1·w(x) = 1 for all x ∈ Vn

We can thus define the type of a state q of a productive canonical nfa in
a unique manner, via the type of some word w that evaluates to this state.
type(q) will denote this type. Furthermore, as the automaton is canonical and
productive, this type is determined by the set {x ∈ Vn | typew(x) = 1}. So we
can identify the type of a state with a subset of Vn.

Reconsider the query Qφ(x1) in words with alphabet {a, b} from Section 3.4,
which selects all positions labeled by a or eventually succeeded by an a. In
Figure 2, we illustrate an automaton for the canonical language of this query
graphically. Its states have the following types: ∅ for q0 (no variables seen before
entering in this state), and {x1} for q1 and q2 (x1 seen before entering in these
states).

Query answering for dfas is the algorithmic problem that receives as input
two dfas A and B defining an n-ary query and a word w ∈ L(B) defining a valid
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q0

q1

q2

(a, {x1})

(b, {x1})

(a, ∅)

(a, ∅)
(b, ∅)

(b, ∅)

(a, ∅)
(b, ∅)

Figure 2: A dfa for the canonical language of Qφ(x1)
where φ = ∃x2. (x1 ≤ x2 ∧ laba(x2)).

database, and returns as output Q(A,B)(w). The objective is to find all tuples
τ of positions in w such that w ∗ τ ∈ L(A). The naive algorithm enumerates all
tuples τ ∈ dom(w)n and runs A deterministically on w ∗ τ . This algorithm first
resolves the choice of τ non-deterministically, before running the deterministic
automaton A.

Determinism for canonical automata will turn out to be essential for P-
time streaming algorithms and decision complexity (e.g. the safety property
below). It should be noticed that canonical nfas can always be determinized
without changing the query they define. This would fail when defining queries by
selection automata, i.e. nfas over Σ with a set of selection states as considered
in [24, 40].

5.2. Computing Delays of Queries

We show how to decide whether a query has bounded delay and how to
compute this delay in polynomial time. We consider the case with schemas,
since subsequent schema elimination as proposed in Section 4.4 would yield
polynomial bounds only for queries with fixed arity n. Moreover, these bounds
for fixed n would be larger than those obtained by the following construction.

For every language L ⊆ Σ+ we define a language of annotated words L⊗ ∅
with alphabet Σ × 2Vn such that all letters of words in L are annotated by ∅,
i.e., L⊗ ∅ = {(a1, ∅)· . . . ·(ak, ∅) | a1· . . . ·ak ∈ L}

Definition 10. If dfas A and B define a query then we call a state (p, q) ∈
statA×statB safe for selection by Q(A,B) if L(B[init={q}])⊗∅ ⊆ L(A[init={p}]).

Figure 3 illustrates an automaton for the query that selects all a-nodes that
are succeeded by b·b. In this example, we assume the universal schema B with a
single state, so that A is isomorphic to P(A,B). The types and safety properties
of all states are indicated in the figure.

We next show that safe states capture sufficiency for selection. In order to
do so, we construct a dfa P(A,B) which runs A and B in parallel. Its alphabet
is Σ× 2Vn as for A, while B has alphabet Σ.

statP(A,B) = statA × statB
initP(A,B) = initA × initB
finP(A,B) = finA × finB

p
(a,V )
→ p′ ∈ rulA q

a
→ q′ ∈ rulB

(p, q)
(a,V )
→ (p′, q′) ∈ rulP(A,B)
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p0 p1 p2 p3

(a, ∅)
(b, ∅)

(a, {x1}) (b, ∅) (b, ∅)

(a, ∅)
(b, ∅)

unsafesel unsafesel unsafesel safesel
∅ {x1} {x1} {x1}

Figure 3: Automaton A for the query selecting a-nodes followed by b·b. There are two
reachable unsafe states of type {x1} = V1, p1 and p2. The restriction of A to these two
states is acyclic, so the selection delay of QA is bounded. It is bounded by 2, since the longest
path in this part of the automaton has 2 nodes.

Building P(A,B) requires time in O((|Σ|+n)·|A|·|B|), if we suppose for instance
that variables in V are stored in a vector of n bits.

Lemma 11. Let A and B be productive dfas that define a query, and r a run
of P(A,B) on w ∗ τ and η ∈ eve(w). Then state r(η) is safe for selection by
Q(A,B) if and only if (τ, η) ∈ selQ(A,B)

(w).

Proof. Sufficiency for selection (τ, η) ∈ selQ(A,B)
(w) is equivalent to τ ∈ domη(w)

n

and ∀w′ ∈ L(B) : eqη(w,w
′) ⇒ w′ ∗ τ ∈ L(A). Let w = w0·w1 such that

|w0| = η. Since τ ∈ domη(w)
n, we have w ∗ τ = (w0 ∗ τ)·(w1 ⊗∅). Furthermore,

eqη(w,w
′) is equivalent to ∃w′

1. w
′ = w0·w

′
1. Now r(η) is the state that the

unique run of P(A,B) on w0 ∗ τ reaches (determinism). For (p, q) = r(η) we
have:

∀w′ ∈ L(B) : eqη(w,w
′) ⇒ w′ ∗ τ ∈ L(A)

⇔ ∀w′
1. w0·w

′
1 ∈ L(B) ⇒ (w0 ∗ τ)·(w

′
1 ⊗ ∅) ∈ L(A)

⇔ ∀w′
1. w

′
1 ∈ L(B[init = {q}]) ⇒ w′

1 ⊗ ∅ ∈ L(A[init = {p}]) (determinism)
⇔ L(B[init = {q}])⊗ ∅ ⊆ L(A[init = {p}])
⇔ r(η) safe for selection by Q(A,B)

Conversely, assume that r(η) = (p, q) is safe for selection by Q(A,B). Since we
assumed A and B to be productive, this implies that type(p) = Vn, so that
τ ∈ domη(w)

n. We can thus decompose w = w0·w1 such that |w0| = η as
above, and apply the above equivalence, in order to conclude from safety for
selection, that ∀w′ ∈ L(B) : eqη(w,w

′) ⇒ w′ ∗ τ ∈ L(A), and thus sufficiency
for selection.

The parallel automaton P(A,B) is canonical, since L(A) = L(P(A,B)),
but may contain non-productive states, even if A and B are productive. For
instance, consider productive automata A and B that define the query Q with
dom(Q) = {a, a·a}, Q(a) = {1} and Q(a·a) = ∅. We will be interested only
in the productive part of the canonical automaton P(A,B), for which unique
types exist.

Lemma 12. If A and B are productive, then all safe states of Q(A,B) that are
reachable in P(A,B) are productive and have type Vn.

Proof. To see this, suppose that (p, q) is safe and reachable. Since B is pro-
ductive, there exists a word w ∈ L(B[init={q}]). Safety proves that w ⊗ ∅ ∈
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L(A[init = {p}]). Thus, w ∈ P(A,B)[init = {(p, q)}], so that (p, q) is produc-
tive. Since A is canonical, P(A,B) is canonical, so that type(p)⊎ type(w⊗ ∅) =
Vn.

Proposition 13. Let Q(A,B) be defined by productive dfas A and B, and let
Pu be the restriction of nfa P(A,B) to productive unsafe states of type Vn.

1. The delay of Q(A,B) is bounded if and only if the digraph of nfa Pu is
acyclic.

2. In this case, the delay of Q(A,B) is equal to the length of the longest path
in Pu.

Proof. Let P = P(A,B) and Pu the restriction of P to productive unsafe states
of type Vn. Let q be a state of Pu for which a cycle exists. Since all states of
Pu are productive in P, there exists a word v1 ∈ L(P[fin = {q}]). Since Pu has
a cycle, there exists a nonempty word v2 ∈ L(P[init = {q},fin = {q}]). Again,
since P is productive, there exists a word v3 ∈ L(P[init = {q}]). It follows for
all m ≥ 0, that v = v1·(v2)

m·v3 ∈ L(P). Since L(P) = L(A), word v has the
form w ∗ τ for some word w ∈ Σ∗ and τ ∈ dom(w)n. By Lemma 11, none of
the events in |v2|

m is sufficient for the selection of τ in w since the run of P on
v maps all of them to unsafe states. This shows that the selection delay of τ in
v is at least m and thus unbounded.

For the converse, we suppose that Pu is acyclic and show that the delay of
Q(A,B) is bounded by the length of the longest path in statPu . Let w and τ
be such that w ∗ τ ∈ L(A) and r be the successful run of A that accepts this
word. Let η be an arbitrary event that contributes to the delay of τ , i.e., an
event with τ ∈ domη(w) and (τ, η) /∈ selQ(A,B)

(w). The first condition yields

that type(r(η)) = 1Vn and the second condition that r(η) is unsafe for selection
by Lemma 11. Thus, r(η) ∈ statPu . Since Pu is acyclic, it follows that states
r(η) are distinct for distinct events η that contribute to the delay. Furthermore,
all these states belong to the same path of Pu, such that delayQ(A,B)

(w, τ) is

bounded by the length of the longest path in Pu.
If Pu is acyclic, let r a longest path in Pu and let w a word such that w ∗ ∅

labels r. Since all states of P are reachable and productive, there exists w1 ∗ τ
which reaches in P the first state of r; similarly, there exists a word w2 such
that w2 ∗ ∅ labels a path from the last state of r to a final state of P. Then
delayQ(w1·w·w2, τ) is the length (here, the number of states) of r.

Hence we get a first algorithm for determining the delay. The remaining
question is the complexity of this computation. To obtain an efficient algorithm,
we rely on the following characterization of unsafe states.

Lemma 14. Let A,B be productive dfas that define a query. A reachable state
(p0, q0) of P(A,B) is unsafe for selection by Q(A,B) if and only a state (p, q)
can be reached from (p0, q0) such that:

(U1) either p /∈ finA and q ∈ finB,

(U2) or there exists a transition q
a
→ q′ ∈ rulB but no transition p

(a,∅)
→ p′ ∈ rulA

for all p′ ∈ statA.

Proof. Let P = P(A,B). We start with a claim about propagation of unsafety.
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Claim 15. Reachable states of P that can reach unsafe states are unsafe.

To see this, let (p1, q1) be a reachable state and (p2, q2) be an unsafe state
that is reached from (p1, q1) by some word v1, i.e. v1 ∈ P[init = {(p1, q1)},fin =
{(p2, q2)}]. Since (p2, q2) is unsafe, there exists a word w ∈ L(B[init = {q2}])
such that w ⊗ ∅ /∈ L(A[init = {p2}]). We distinguish two cases.

1. If v1 matches w1 ⊗ ∅ then w1·w ∈ L(B[init = {q1}]) and (w1·w) ⊗ ∅ /∈
L(A[init = {p2}]), so that (p1, q1) is unsafe.

2. If v1 does not match w1 ⊗ ∅ then type(p1) 6= Vn so that (p1, q1) is unsafe
by Lemma 12, since (p1, q1) is reachable in P and since A and B are
productive.

Based on this claim, we can now show both directions of the lemma.

“⇐” By Claim 15 it is sufficient to show that all states (p, q) satisfying (U1)
or (U2) are unsafe. In case of (U1) where p /∈ finA and q ∈ finB , the
empty word contradicts the safety of (p, q), since ǫ ∈ L(B[init = {q}]) but
ǫ ⊗ ∅ /∈ L(A[init = {p}]). In case of (U2), there exists some transition

q
a
→ q′ ∈ rulB but no transition p

(a,∅)
→ p′ ∈ rulA for all p′ ∈ statA. Since

B is productive, there exists a word w ∈ L(B[init = {q2}]). The word
a·w now contradicts safety of (p, q) since a·w ∈ L(B[init = {p}]) but
(a·w)⊗ ∅ 6∈ L(A[init = {q}]).

“⇒” We show that all unsafe states (p0, q0) can reach some state (p, q) that
satisfies (U1) or (U2). If (p0, q0) is unsafe then there exists a word w ∈ Σ∗

such that w ∈ L(B[init = {q0}]) and w⊗∅ /∈ L(A[init = {p0}]). Let w0 be
the longest prefix of w such that there exists a run of P[init = {(p0, q0)}]
on w0. Let (p, q) be the state reached by this run after reading w0, and
let w1 be the suffix of w such that w = w0·w1. State (p, q) is thus reached
from (p0, q0). It remains to show that (p, q) satisfies (U1) or (U2).

1. If w1 = ǫ then p ∈ finB and q /∈ finA, so that (p, q) satisfies (U1).

2. If w1 matches a·w2 then there cannot exist any transition p
(a,∅)
→ p′

since w0 was chosen of maximal length. There exists a transition
q

a
→ q′ for some q′ though. Hence, (p, q) satisfies (U2).

Lemma 16. The set of reachable safe states for selection for an n-ary query
Q(A,B) can be computed in time O((|Σ|+ n) · |A| · |B|) from dfas A and B.

Proof. Instead of the set of reachable safe states, we compute the set of reachable
unsafe states. A Datalog program testing the reachability of states satisfying
(U1) or (U2), which characterizes unsafety for reachable states by Lemma 14,
can be defined as follows:

p′ /∈ finA q′ ∈ finB

unsafesel(p, q).
∀p′.p

(a,∅)
→ p′ /∈ rulA q

a
→ q′ ∈ rulB

unsafesel(p, q).

(p, q)
(a,V )
→ (p′, q′) ∈ rulP(A,B)

unsafesel(p, q) :- unsafesel(p
′, q′).
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p0 p1 p2 p3

ok(a, ∅)
(b, ∅)

(a, {x1}) (b, ∅) (b, ∅)

(a, ∅)
(b, ∅)

ǫ
ǫ

(a, ∅)
(b, ∅)

unsafesel unsafesel unsafesel
{x1} {x1} {x1}

Figure 4: nfa D(A,B) for the dfa A in Figure 3 with trivial universal B. The ambiguity of
D(A,B) is 2 (on word (a, {x1})·(b, ∅) for instance), such as the delay of Q(A,B).

This program P can be computed in time O((|Σ|+ n) · |A| · |B|), while being of
size O(|A| · |B|). It is a ground Datalog program, so its least fixed point lfp(P )
can be computed in time O(|A| · |B|) (see Proposition 36 in the appendix).

Theorem 4. The delay of queries Q(A,B) in words with alphabet Σ and arity
n ∈ N0 defined by dfas A and B can be computed in time O((|Σ|+n) · |A| · |B|).

In particular, we can decide in the same time, whether a query Q(A,B) has
bounded delay or k-bounded delay, even if k belongs to the input.

Proof. We first render B productive and construct the dfa P(A,B). Second, we
compute all reachable safe states by Lemma 16 and derive the sub-automaton
Pu, that restricts P(A,B) to productive unsafe states of type Vn. By Proposition
13, the delay of Q(A,B) is ∞ if and only if Pu contains a cycle. Otherwise, we
compute the delay by counting the length of the longest path of Pu. All of these
operations can be performed in time O((|Σ|+ n) · |A| · |B|).

5.3. Reduction to Bounded Ambiguity

There exist an alternative method by which to decide bounded delay, which
is by reduction to bounded ambiguity of nfas. The interest is more general
than the concrete constructions above, in that it can also be applied to bounded
concurrency.

The idea is to turn the dfa P(A,B) it into an nfa D(A,B) such that
ambD(A,B)(w ∗ τ) = delayQ(A,B)

(w, τ) for all τ ∈ Q(A,B)(w).

We constructD(A,B) from P(A,B) by adding a new state ok and ǫ-transitions
from all unsafe states of type Vn to ok. Figure 4 presents the result of this ope-
ration on the automaton in Figure 3.

statD(A,B) = statP(A,B) ⊎ {ok}, initD(A,B) = initP(A,B), finD(A,B) = {ok}

r ∈ rulP(A,B)

r ∈ rulD(A,B)

unsafesel(p, q) p has type Vn

(p, q)
ǫ
→ ok ∈ rulD(A,B)

a ∈ Σ

ok
(a,∅)
→ ok ∈ rulD(A,B)

Proposition 17. For all τ ∈ Q(A,B)(w): delayQ(A,B)
(w, τ) = ambD(A,B)(w∗τ).
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Proof. Consider a run r of D(A,B) on a canonical word w ∗ τ with τ ∈ Q(w).
We can show inductively on r that the ambiguity of D(A,B) on w is exactly
the number of states used in r that are not safe for selection. The initial state
is unique as A is deterministic, so at the beginning the ambiguity is 1. When
reading a new letter, if the associated state q is not unsafe or has not type Vn,
then there is only one way to continue the run, via a rule of P(A,B). If it is
unsafe with type Vn, then there are two possibilities: either by using the run of
P(A,B), or by firing the ǫ-transition. Both runs will succeed (as ok is universal),
so in this case the ambiguity is increased by one. Hence ambD(A,B)(w ∗ τ) is
the number of unsafe states used in the run of P(A,B), and also of A, on w ∗ τ .
From the definitions of delay (here the type Vn ensures that we start counting
at latest(τ)), safe states and by Lemma 11, this is exactly delayQ(A,B)

(w, τ).

Proposition 17 provides a P-time reduction from bounded delay to bounded
ambiguity and from k-bounded delay to k-bounded ambiguity. The results from
the literature reported in Theorem 1 thus show that all these problems can be
decided in P-time under the assumption that k is fixed.

It should be noticed that Theorem 4 obtained by a direct automaton con-
struction is slightly stronger. First, it allows to compute the optimal bound
in P-time, second, does not require to k in order to decide k-boundedness in
P-time, and third yields small polynomials.

5.4. Deciding Bounded Concurrency

We show how to reduce in P-time bounded concurrency to bounded ambi-
guity and k-bounded concurrency to k-bounded ambiguity. We notice that we
do not know how to obtain any more direct algorithm in this case.

The concurrency of a query counts the number of simultaneously alive par-
tial candidates. In addition to sufficiency for selection, aliveness depends on
sufficiency for rejection. We thus need a notion of safe states for rejection.

Definition 18. A pair of states (p, q) of P(A,B) is safe for rejection byQ(A,B) if
no final state can be reached from (p, q), i.e., if L(P(A,B)[init = {(p, q)}]) = ∅.

We saw in the proof of Theorem 4 how to compute safe states for selection,
so now we need a method to compute safe states for rejection.

Lemma 19. The set of safe states for rejection by Q(A,B) for nfas A and B
can be computed in time O(|A| · |B|).

Proof. We compute the set of all unsafe states for rejection. In order to do
so, it is sufficient to compute the set of all states of P(A,B) from which some
final state can be reached. This can be done by the following ground Datalog
program:

p′ ∈ finA q′ ∈ finB

unsaferej(p, q).
p

(a,V )
→ p′ ∈ rulA q

a
→ q′ ∈ rulB

unsaferej(p, q) :- unsaferej(p
′, q′).

This program can be constructed in time O(|A| · |B|) from A and B. By Propo-
sition 36, the lfp(P ) can be computed in time O(|A| · |B|).
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p0 p1 p2 p3

ok(a, ∅)
(b, ∅)

(a, ∅) (b, ∅) (b, ∅)

(a, ∅)
(b, ∅)(a, {y})

(b, {y})

unsafesel unsafesel unsafesel
unsaferej unsaferej unsaferej unsaferej

Figure 5: nfa C(A,B) for query dfa A in Figure 3 and trivial universal B. Even though
non-deterministic, the ambiguity of C(A,B) is 1, equally to the concurrency of Q(A,B).

We define an nfa C(A,B) such that ambC(A,B)(w∗η) = concurQ(w, η). The
situation is a little different than for D(A,B), in that C(A,B) runs on words
annotated by events rather than tuples. We fix a new variable y /∈ Vn that will
denote the event of interest, and define the alphabet of C(A,B) to be Σ× 2{y}.
The idea of nfa C(A,B) is to guess a partial candidate τ , until the event marker
y comes, and to test whether τ is alive at that event, and to accept in case of
success.

statC(A,B)=statA×statB ⊎ {ok}
initC(A,B)=initA×initB
finC(A,B)={ok}

(p, q)
(a,V )
→ (p′, q′) ∈ rulP(A,B)

(p, q)
(a,∅)
→ (p′, q′) ∈ rulC(A,B)

(p, q)
(a,V )
→ (p1, q1)∈rulP(A,B) unsafesel(p1, q1) unsaferej(p1, q1)

(p, q)
(a,{y})
→ ok ∈ rulC(A,B)

Both rules guess a set of variables V and check that the current position is the
denotation of all variables in V , by running automaton A with V in the input
letter. The second rule inputs the event marker, and goes into the ok-state,
if automaton P(A,B) could move to states that are unsafe for both selection
and rejection, so that the current partial candidate is alive. Note that, using
Lemmas 16 and 19, C(A,B) can be computed in polynomial time. For illustra-
tion, consider Figure 5 which shows the automaton C(A,B) obtained from the
automaton A in Figure 3 and the trivial universal automaton B.

Given a word w = a1· . . . ·am and a position 1 ≤ η ≤ m we write w|η for the
word (a1, ∅)·(aη−1, ∅)·(aη, {y}).

Proposition 20. concurQ(A,B)
(w, η) = ambC(A,B)(w|η), for all w ∈ L(B) and

η ∈ dom(w).

Proof. Let w ∈ L(B) and η ∈ dom(w). Suppose that τ1 and τ2 are different
partial tuples that are alive at η. Let r1 and r2 be the runs of A on the prefixes
of w∗τ1 resp. w∗τ2 until η. Since τ1 and τ2 are different, there exists a position
i such that the prefixes of length i < η of w ∗ τ1 and w ∗ τ2 have different types.
Since A is canonical, this implies that both runs assign states of different types
to position i, so that r1(i) 6= r2(i).

Let a1· . . . ·aη be the prefix of w until position η. By construction of C(A,B),
both runs ri restricted to {1, . . . , η−1} are also runs of C(A,B) on word v =
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(a1· . . . ·aη−1) ⊗ ∅. These runs can be extended to successful runs of C(A,B)
on w|η = v·(aη, {y}) by mapping position η to ok, since both tuples τi are alive
at event η (and thus neither safe for selection nor rejection). Both runs are differ-
ent, since runs r1 and r2 differ at some position i < η. Hence concurQ(A,B)

(w, η) ≤

ambC(A,B)(w|η).
For the converse, consider two different runs r1 and r2 of C(A,B) on w|η.

We now build two partial tuples τ1 and τ2 and the corresponding runs r′1 and
r′2 of A on the prefixes of w ∗ τ1 and w ∗ τ2 until η. These are hidden in the
rules applied for producing runs r1 and r2 by C(A,B). Since the states which
are permitted to move to ok are alive, the runs r′1 and r′2 can be extended into
an alive state at η. This shows that both tuples τ1 and τ2 are alive. They
are different, since produced from distinct runs r1 and r2. This shows that
ambC(A,B)(w|η) ≤ concurQA,B

(w, η).

Theorem 5. Bounded and k-bounded concurrency for queries and schemas
defined by canonical dfas can be decided in P-time for any fixed k ≥ 0.

Proof. From Lemmas 16 and 19, C(A,B) can be constructed in P-time from A
and B. Before the construction, we need to make A and B productive, which
can be done in time O(|A| + |B|). By Proposition 20, it remains to decide the
finite (resp. k-bounded) ambiguity of C(A,B). Since k is fixed by assumption,
this can be done in P-time according to Theorem 1.

It should be noticed that our results for concurrency problems are weaker
than those for delay problems. In particular, we don’t know whether the con-
currency of a dfa query can be computed in P-time and whether k-bounded
concurrency can be decided in P-time for variable k (where k becomes part of
the input of the problem). The reason is that we could not come up with a
direct automaton construction in the case of concurrency, and that we don’t
know neither whether k-bounded ambiguity of nfas is in P-time for variable k.

6. Queries on Unranked Trees by Nested Word Automata

We state our main results on deciding bounded delay and concurrency for
queries on unranked trees that are defined by dnwas [4, 2]. These automata
were called deterministic streaming tree automata in [27], since they define
deterministic streaming algorithms in a natural way. As shown there, the notion
of deterministic forest pushdown automata [39] is equivalent to dnwas too.

Alternatively, we could have decided to work with bottom-up or top-down
deterministic tree automata on ranked trees modulo some binary encoding. It
is well-known that the same queries can be expressed this way but possibly
in a less succinct manner. Intuitively, the notion of determinism of dnwas
is advantageous since corresponding naturally to the notion of determinism of
streaming algorithms. For this reason it is possible to compile XPath queries in
large streamable fragments of XPath to dnwas [25, 26] in polynomial time.

6.1. Nested Word Automata

We start by recalling the notion of dnwas. We consider nested words as
linearizations of unranked trees. The nested word for the tree a(b(c), d) for
instance, is (op, a)·(op, b)·(op, c)·(cl, c)· (cl, b)·(op, d)·(cl, d)·(cl, a) or in Xml
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v x w

yop ∗:0
cl ∗:0

op a:0
op ∗:1

cl ∗:1

op ∗:0
cl ∗:0

op b:0

op ∗:0
cl ∗:0

(a) nwa A with wildcards for letters

a

a a

a a

b

b

v

v
0
y

v
0
v x

0
y

w
1
x w

1
x

w
0
w

y
0
y

(b) A successful run of A

Figure 6: An nwa accepting all trees with some a-node with b-child, i.e., for the fo formula
∃x.(laba(x) ∧ ∃y.(ch(x, y) ∧ labb(y))).

syntax <a><b><c></c></b><d></d></a>. In order to avoid further encodings,
we will interpret nwas directly on unranked trees, i.e., as streaming tree au-
tomata [27].

Definition 21. An nwa is a tuple A = (Σ,Γ, stat, init,fin, rul) where Γ is a
finite set of stack symbols, stat a finite set of states, init,fin ⊆ stat and rul ⊆

stat2 × Γ × Σ̂, that we denote as q1
α a:γ
−−−→ q2 where q1, q2 ∈ stat, α ∈ {op, cl},

γ ∈ Γ, and a ∈ Σ.

Figure 6(a) presents an nwa that accepts all trees with labels in {a, b} that
contain some node labeled by a with a child labeled by b. This is the language of
the Boolean query defined by the fo formula ∃x.(laba(x)∧∃y.(ch(x, y)∧labb(y)))
without free variables.

An nwa traverses a tree t in pre-order. It visits every node of t twice, once
when entering (open event) and once when exiting (close event) the subtree.
An nwa associates a state to each event of t, and a stack symbol to each node
of t, as shown in Figure 6(b). This corresponds to operating on the stream of
events produced by a Sax parser on the Xml linearization. At every time point,
the configuration of an nwa maintains a node, a current state, and a current
stack, which is the lists of states annotated to the path to the current node.
The height of the stack is thus equal to the depth of the current node.

More formally, a run of an nwa on a tree t is a pair of functions (re, rn) with
types re : eve(t) → stat and rn : nod(t) → Γ which map events to states and
nodes to stack symbols, such that re(start) ∈ init and the rule

re(pred((α, π)))
α a:rn(π)
−−−−−−→ re(α, π)

belongs to rul for all π ∈ nod(t) with a = labt(π), and actions α ∈ {op, cl}. The
language L(A) is the set of all unranked trees t ∈ TΣ that permit a successful
run by A, i.e., re((cl, ǫ)) ∈ fin.

An nwa is deterministic or equivalently a dnwa, if it has a single initial
state, no two op rules for the same letter use the same event state on the left,
and no two cl rules for the same letter use the same stack symbol and the same
event state on the left. dnwas can perform one-pass typing for extended DTDs
[13] with restrained competition [36] as well as for earliest query answering [29].
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6.2. Closure Properties

Language recognizable by nwas enjoy the usual closure properties under
Boolean operations, projection, and cylindrification.

We will consider projections Πi : TΣ1×...×Σm
→ TΣi

for all 1 ≤ i ≤ m,
such that all Πi(t) relabels all nodes π ∈ nod(t) to the i-th component of its
label. We write t = t1 ∗ · · · ∗ tm if ∧m

i=1Πi(t) = ti. We will also use more
general projections operations ΠI : TΣ1×...×Σm

→ TΣi1
×...×Σin

that preserve
a subset of components I = {i1, . . . , in} where 1 ≤ i1 < . . . < in ≤ m by
ΠI(t1 ∗ . . . ∗ tm) = ti1 ∗ . . . ∗ tin . Projections can be lifted to languages of trees
L ⊆ TΣ1×...×Σm

by ΠI(L) = {ΠI(t) | t ∈ L}.
We also need cylindrification operations on tree languages, which may add,

copy, and exchange components of tuple trees, but not delete them. We for-
malize unsorted cylindrification operations that apply to trees L ⊆ TΣn , where
all components have the same signature Σ. For functions θ : {1, . . . ,m} →
{1, . . . ,m} with {1, . . . , n} ⊆ θ({1, . . . ,m}) we define:

cθL = {tθ(1) ∗ . . . ∗ tθ(m) ∈ TΣm | t1 ∗ . . . ∗ tn ∈ L}

Note that all newly added components have signature Σ. Sorted cylindrification
operations, that add components of particular types, can be obtained from
unsorted cylindrification and intersection.

Proposition 22. Languages of unranked trees recognizable by nwas are closed
under Boolean operations, projection and cylindrification. The corresponding
operations on nwas all preserve determinism except for projection and can be
performed in P-time except for complementation non-deterministic nwas. Fur-
thermore every nwa can be made deterministic (in time O(2|A|2)).

The analogous results are well-known for bottom-up deterministic tree au-
tomata on ranked trees. Proposition 22 can be established for dnwas in analogy,
or else by compiling nwas to standard tree automata that operate on curried
binary encodings of unranked trees (see Appendix B).

It should be noticed that the cylindrification operations cθ here are a little
richer than the usual ones ci as in [19] that insert a single new component at
position i. In addition, operators cθ can copy components, which can be tested
by intersection with deterministic nwas that recognize the set {t ∗ t | t ∈ TΣ}.
They can also permute components. While operation cθ can be implemented in
P-time for every fixed θ by computing intersections with a fixed number of tree
automata (but not for flexible θ).

Note also cylindrification cannot delete components in contrast to projection
since the latter may spoil determinism in contrast to the former.

6.3. Querying Unranked Trees by dNWAs

Total n-ary queries QA on unranked trees in TΣ can be defined by nwas A
over Σ×Bn that recognize the canonical language of Q. Partial queries Q(A,B)

are defined by adding automaton B over Σ that recognizes the domain of the
query.

The closure properties of nwas in combination with determinization as
stated in Proposition 22 imply that all mso definable n-ary queries on unranked
trees are definable by dnwas. Nevertheless, we are able to prove the following
theorem:
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Theorem 6 (Main). Bounded delay is decidable in P-time for n-ary queries
defined by deterministic nested word automata (dnwas) where n may be variable.
Bounded concurrency is decidable in P-time for fixed n. For fixed k and n, k-
bounded delay and concurrency are decidable in P-time.

Unfortunately, our P-time algorithms for dfa-queries on words cannot be
lifted to dnwa-queries trees in any straightforward manner. The problem is
that the notion of safe states of dfas must be generalized to safe configuration
of dnwas where a configuration depends on the current stack in addition. Nev-
ertheless it was shown in [29] how to extend some of the automata constructions
to dnwa queries. These constructions, however, produce deterministic nwas of
exponential size rather than non-deterministic nwas of polynomial size.

In order to solve these problems, we present another proof by reduction to
bounded resp. k-bounded valuedness of recognizable relations between unranked
trees. We first show that bounded and k-bounded valuedness of nwa-recognized
relations between unranked trees can be decided in P-time (Section 7) and then
that delay and aliveness of dnwa-queries can be defined by nwas of polynomial
size (Section 8).

7. Recognizable Relations between Unranked Trees

We study recognizable relations between trees in the ranked [19] and un-
ranked case [11]. A recognizable relation is a set of tuples of trees such that the
set of overlays of these tuples is recognizable by a tree automaton. Similarly to
transducers, a notion of valuedness can be associated with binary recognizable
relations. We will use valuedness of recognizable tree relations to capture the
delay and concurrency of queries.

We first define recognizable relations over unranked trees and provide a
key example of such relations. We then present a procedure for deciding the
bounded valuedness of binary recognizable relations in polynomial time. The
proof is by reduction to bounded valuedness of tree transducers [52]. We then
recall a standard method to define recognizable relations in fo logic from a
set of basic recognizable relations, while relying on closure properties of tree
automata. Finally, we prove that k-bounded valuedness of binary recognizable
relations is decidable in P-time, by reduction to emptiness of tree automata.

An alternative way of proving the P-time decidability of bounded valuedness
of recognizable relations could be to use visibly pushdown transducers (vpts)
[47] instead of bottom-up tree transducers. Indeed, vpts directly operate on
unranked trees. Functionality (i.e. 1-bounded valuedness) of vpts was proven
decidable in P-time recently [23], but it is still open whether k-bounded valued-
ness is decidable in P-time (it is known to be in NP-time [23]). Neither exists
there any decidability result for bounded valuedness of vpts.

In this paper, we use nwas as underlying class of tree automata. We could
have chosen another class A of unranked tree automata, provided that a) it can
be translated in P-time to nwas, and b) A is closed under intersection, com-
plementation, cylindrification and projection modulo P-time transformations,
that preserve determinism except for projection. In particular, this is the case
for two classes: top-down ntas operating on the fcns encoding of trees, and
bottom-up ntas over the curry encoding of trees (see Appendix B for more de-
tails). Note however, that hedge automata with dfas for horizontal languages
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[19] fail to satisfy these requirements, since deterministic hedge automata cannot
be complemented in P-time.

7.1. Recognizable Relations

The overlay of k unranked trees ti ∈ TΣi is the unranked tree t1 ⊛ . . . ⊛ tk
in TΣ1

�
×...×Σk

�
obtained by superposing these k trees top-down and left-to-right;

the � symbol represents missing children where the structures of the trees differ.
This is illustrated in Figure 7 and formally defined by:

a(t1, . . . , tk)⊛ b(t′1, . . . , t
′
l) ={

(a, b)(t1 ⊛ t′1, . . . , tl ⊛ t′l, tl+1 ⊛ �, . . . , tk ⊛ �) if l ≤ k
(a, b)(t1 ⊛ t′1, . . . , tk ⊛ t′k, � ⊛ tk+1, . . . , � ⊛ tl) otherwise

Overlays of ranked trees can be obtained this way too [19], except that overlayed
symbols need to inherit the maximal arity. A k-ary relation R between unranked
trees is recognizable iff the language of its overlays ovl(R) = {t1 ⊛ . . . ⊛ tk |
(t1, . . . , tk) ∈ R} is recognizable by an nwa. We say that R is recognized by the
nwa A if ovl(R) = L(A).

7.2. Example: Tree Equality until Some Event

For illustration, we consider the relation eqη(t, u) between unranked trees
that expresses the equality of their sequentializations until some event. This
holds if t and u have the same structure and labels until event η. The idea now
is to represent an event η by some unranked tree, so that equality until some
event can be represented by a ternary relation between trees.

More precisely, we represent an event η of t by the unranked tree renη(t)
with signature {0, op, cl}, whose domain coincides with that of t. If the event
η = (α, π) is an opening event, then its node π is renamed to op, and in analogy
if it is a closing event. All other nodes are renamed to 0. See Figure 8 for a
graphical illustration. More formally, let ren(α,π)(t) ∈ T{0,op,cl} be obtained by
renaming the label of π to α and the labels of all other nodes of t to 0. We then
define the ternary relation Eq ⊆ TΣ × TΣ × T{0,op,cl} such that for all events
η ∈ eve(t) and trees t ∈ TΣ:

(t, u, renη(t)) ∈ Eq ⇔df eqη(t, u)

Lemma 23. For every signature Σ we can compute a dnwa in time O(|Σ|2),
that recognizes the relation Eq ⊆ TΣ × TΣ × T{0,op,cl}.
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Proof. We define a dnwa A on Σ�×Σ�×{0, op, cl}� such that L(A) = ovl(Eq).
We use two states statA = {before, after}, where initA = {before} and finA =
{after}. We use a single dummy stack symbol Γ = { }. The rules are given by
the following inference schema:

α ∈ {op, cl} a ∈ Σ b ∈ Σ�

before
α (a,a,0):
−−−−−−−→ before before

op (a,a,cl):
−−−−−−−−→ before

before
α (a,a,α):
−−−−−−−→ after after

α (a,b,0):
−−−−−−→ after

after
cl (a,b,op):
−−−−−−−→ after after

α (�,a,�):
−−−−−−−→ after

Note that the rule before
op (a,a,cl):
−−−−−−−−→ before is used to check the equality below

a node π if prefix equality has to be checked until (cl, π). The nwa A has size
O(|Σ2|) and can be computed in this time.

Other examples of recognizable relations [11] are the tree extension relations
≤↓,≤→⊆ TΣ×TΣ, such that t ≤↓ t′ if t′ is obtained by repeatedly adding children
to leaves of t, and t ≤→ t′ if t′ is obtained by repeatedly adding next-siblings to
right most children of t.

7.3. Bounded Valuedness

Like bottom-up tree transducers on ranked trees, bounded valuedness of
recognizable relations over unranked trees is decidable in P-time.

Theorem 7. For every nwa A recognizing a binary relation R between unranked
trees, val(R) < ∞ can be decided in P-time in |A|.

Note that A may be non-deterministic. The deterministic case is easier since
then the valuedness of R is equal to the ambiguity of the projection of A to the
input signature of R. So the problem is that the non-determinism introduced
by projection must be properly separated from any non-determinism of A.

Proof. We prove Theorem 7 by a reduction to Theorem 3, i.e. the P-time deci-
sion procedure for bounded valuedness of bottom-up (ranked) tree transducers.

Our first reduction is to the analogous problem for the ranked case. Here
we use the top-down encoding (fcns) and show that it preserves the valuedness
of relations (Proposition 24). Moreover, we can compute in P-time an nta A′

recognizing the fcns encoding R′ of R (see Proposition 39).
The second reduction transforms binary relations on ranked tree R to re-

labeling relation RelabR with the same valuedness. A relabeling relation R ⊆
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TΣ1 × . . . × TΣn is a relation between trees of the same structure, i.e. when-
ever (t1, . . . , tn) ∈ R then nod(t1) = . . . = nod(tn). In other words, the over-
lays in ovl(R) do not contain any place holder �. Proposition 25 shows that
val(R) = val(RelabR), and provides a P-time procedure to compute an nta A′

recognizing RelabR, from an nta A recognizing R.
Finally, the third reduction reduces the bounded valuedness problem of re-

cognizable relabeling relations to bounded valuedness of bottom-up tree trans-
ducers (see Proposition 26).

Let ren be the morphism on binary trees that renames constants (�, . . . ,�)
to � and preserves the trees otherwise. This morphism is linear and one-to-
one, so it preserves regularity in both directions: L is recognizable iff ren(L) is
recognizable. Overlays of unranked and ranked trees are related in the following
way:

fcns(t1 ⊛ . . .⊛ tn) = ren(fcns(t1)⊛ . . .⊛ fcns(tn)) (1)

The following proposition shows that valuedness is preserved by the fcns encod-
ing. Let fcns(R) = {(fcns(t1), fcns(t2)) | (t1, t2) ∈ R}.

Proposition 24. A binary relation R between unranked trees is recognizable iff
the corresponding relation between binary trees fcns(R) is, and val(fcns(R)) =
val(R).

Proof. By definition fcns(R) = {(fcns(t1), fcns(t2)) | (t1, t2) ∈ R}. Equation (1)
yields fcns(ovl(R)) = ren(ovl(fcns(R))). The morphism ren preserves recogniz-
ability back and forth. Thus, fcns(R) is a recognizable relation iff ovl(fcns(R)) is
recognizable language of binary trees iff ren(ovl(fcns(R))) is a recognizable lan-
guage of binary trees iff fcns(ovl(R)) is a recognizable language of binary trees
iff ovl(R) is a recognizable language of unranked trees iff R is a recognizable
relation of unranked trees.

We show how to convert recognizable relations over binary trees into recogni-
zable relabelings, while preserving valuedness. Let R be a recognizable relation
over T bin

Σ1 ×T bin
Σ2 . We define a recognizable relabeling RelabR ∈ T bin

Σ1
�
×Σ2

�

, where

we have 2 symbols (�,�) with arities 0 and 2 respectively. The idea is to expand
both trees in pairs (t1, t2) ∈ R to trees (t′1, t

′
2) ∈ RelabR of the same structure,

by repeatedly adding �-children to leaves of t1 or t2. Expansion exi(t, t
′) holds

for two trees t ∈ T bin
Σi and t′ ∈ T bin

Σi
�

if nod(t) ⊆ nod(t′), both trees have the

same labels on common nodes, and all new nodes of t′ are labeled by �. We
define the relabeling RelabR by:

RelabR = {(t′1, t
′
2)∈TΣ1

�
×TΣ2

�
| (t1, t2)∈R, ex1(t1, t

′
1), ex2(t2, t

′
2), nod(t

′
1)=nod(t′2)}

An example is given in Figure 9. While the relation R there is finite, the
corresponding relabeling RelabR is infinite, since there may be infinitely many
witnesses for every pair of R.

Proposition 25. RelabR and R have the same valuedness. Moreover, an nta
A′ recognizing RelabR can be computed from an nta A recognizing R in time
O(|A|).
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Figure 9: A recognizable relation R and the relabeling RelabR with the same valuedness.

Proof. The nta A′ is obtained by adding one more state to A, so that stat(A′) =
stat(A) ∪ {q�} and fin(A) = fin(A′). Automaton A′ runs A top-down, until �
occurs, and then checks for equal domains:

(�,�) → q� ∈ rulA′

(�,�)(q�, q�) → q� ∈ rulA′

(a, b) → q ∈ rulA
(a, b)(q�, q�) → q ∈ rulA′

(a, b)(q�) → q ∈ rulA′

Valuedness preservation is checked in Lemma 40 of Appendix C.

For relabelings over binary trees, bounded valuedness can be tested efficiently.

Proposition 26. The finite valuedness of a binary relabeling recognizable rela-
tion R over binary trees can be decided in P-time in |A|, when given an nta A
recognizing R.

Proof. Let R ⊆ T bin
Σ1

×T bin
Σ2

be a relabeling relation for binary signatures, and A

an nta for trees in T bin
Σ1×Σ2

that recognizes R, i.e. L(A) = ovl(R). We transform
A into a bottom-up tree transducer T defining the relation R. The rules of T
are inferred as follows where x1, x2 are variables:

(f, g)(q1, q2) → q ∈ rulA
f(q1(x1), q2(x2)) → q(g(x1, x2)) ∈ rulT

(a, b) → q ∈ rulA
a → q(b) ∈ rulT

This transducer T has the same valuedness as R. Theorem 3 shows that it can
be decided in polynomial time whether T is finite-valued, i.e. whether R is
bounded.

The above construction of bottom-up transducers cannot be lifted to reco-
gnizable relations beyond relabelings. This is why we introduced RelabR. Even
though testing bounded valuedness of tree transducers is known to be in P-time
[52], the complexity of known polynomial time algorithms is much higher than
for testing bounded ambiguity of tree automata [48].

Note that if we add the condition that A is deterministic, then a similar
construction could have been done using automata instead of transducers. If
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A′ is the automaton on Σ2 obtained from A by projecting the Σ1 components,
then amb(A′) = val(R), and ambiguity (and k-ambiguity) of A′ can be obtained
in P-time [51, 50]. However, we will use relations defined by existential first-
order formulas over relation symbols, whose corresponding automata are non-
deterministic.

7.4. Sorted FO Logic

Just as logics on words give alternative means of specifying regular languages,
fo logic on unranked trees gives a means of specifying recognizable relations [11].
Since we have to deal with relations of trees over various signatures we will use
a sorted fo logic, so that signatures can be mapped to sorts.

A sorted relational signature is a relational signature ∆ = Ω⊎ℜ, that consists
of a set of monadic symbols ω ∈ Ω called sorts and a set of relation symbols
r ∈ ℜ, each of which has a sort sort(r) ∈ Ωar(r).

We fix an infinite set V of variables. A sorted fo formula φ over ∆ has
the following abstract syntax, where r ∈ ℜ is a relation symbol of arity n,
X1, . . . , Xn, X ∈ V and ω ∈ Ω:

φ ::= r(X1, . . . , Xn) | φ ∧ φ′ | ¬φ | ∃X:ω. φ

Every sorted fo formula can be understood as a unsorted fo formula, obtained
by mapping sort bounded quantifiers ∃x:ω.φ to unsorted quantifiers ∃x.(ω(x)∧
φ); here sorts ω ∈ Ω are used as monadic predicate symbols.

A sorted relational structure s over ∆ = Ω⊎ℜ is a relational structure such
that: dom(s) = ∪ω∈Ωω

s and for every relation symbol r ∈ ℜ of arity m:

sort(r) = (ω1, . . . , ωm) ⇒ rs ⊆ ωs
1 × . . .× ωs

m

Every sorted fo formula φ over ∆ with at most m free sorted variables defines
an m-ary relation for every sorted relational structure s over ∆:

Rφ(X1:ω1,...,Xm:ωm)(s) = Qφ(X1,...,Xm)(s) ∩ ωs
1 × . . .× ωs

m

Note that the sorted formula φ in Qφ(X1,...,Xm) is considered as an unsorted fo

formula in order to reuse the definition of queries in this new context.

7.5. Sorted FO Logic of Recognizable Relations

In what follows let Ω be a fixed collection of unranked alphabets. Note that
only the simpler case with a single signature was treated in [11]. For every
sorted relation signature ∆ = Ω ⊎ ℜ, we will write fo∃[ℜ] for the set of sorted
∆-formulas in prenex normal form where quantifiers are existential.

Definition 27. A sorted structure of tree relations s over ℜ is a sorted rela-
tional structure over Ω ⊎ ℜ in which all alphabets Σ ∈ Ω are interpreted as the
set of unranked Σ-trees Σs = TΣ. We call a sorted structure of tree relations s
recognizable if all tree relations rs with r ∈ ℜ are recognizable.

A sorted structure of recognizable tree relations over ℜ can be defined by a
collection of nwas {Ar}r∈ℜ defining a recognizable relation between unranked
trees for every relation symbol. While overloading notion, we will write s =
{Ar}r∈ℜ for the sorted structure of tree relations defined by these automata.
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Every sorted fo formula φ with at most m free sorted variables defines an m-ary
relation:

Rφ(X1:Σ1,...,Xm:Σm)(s) ⊆ TΣ1
× · · · × TΣm

The closure properties of nwas under Boolean operations, cylindrification, and
projection ensure that all such relations are recognizable. Furthermore, under
some assumptions, an nwa recognizing the relation defined by an fo∃[ℜ] formula
can be computed efficiently from the nwas {Ar}r∈ℜ.

Proposition 28. Let φ be a fixed formula in fo∃[ℜ] with at most m free sorted
variables X1:Σ1, . . . , Xm:Σm where Xi ∈ V and Σi ∈ Ω. Then there exists a
polynomial p such that for all sorted structures of recognizable tree relations s =
{Ar}r∈ℜ defined by nwas such that Ar is deterministic if r occurs in the scope of
a negation in φ, one can compute in time p(

∑
r∈ℜ |Ar|) an nwa that recognizes

the relation Rφ(X1:Σ1,...,Xm:Σm)(s). The computed nwa is deterministic, if all
automata are deterministic and φ is free of existential quantifiers.

Proof. The proposition relies of the closure properties of nwas. The proof,
which is by induction on the structure of formulas in fo∃[ℜ], is mostly standard
and presented in detail in Appendix C. Note that all automata in the con-
struction remain deterministic, except for those capturing outermost existential
quantification.

In the remainder of this section, we prove that k-bounded valuedness of nwa-
recognized relations is decidable in P-time too. There, we will use the above
proposition for the first time. Further applications will follow in Section 8, in
order to construct nwas of polynomial size, that recognize relations capturing
delay and concurrency of dnwa defined queries.

7.6. k-Bounded Valuedness

In this section we study the problem of deciding whether a binary recogni-
zable relation has k-bounded valuedness. We first for all fixed k that k-bounded
valuedness is decidable in P-time. Subsequently we consider the problem for
variable k, and prove that it becomes exptime-hard.

Note that we cannot obtain a P-time decision for k-bounded valuedness by
using transducers, in contrast to Proposition 26, since known algorithms for
deciding k-boundedness of transducers are in coNP-time (Theorem 2.2 of [53]).

We can neither reduce the problem to deciding k-ambiguity of tree automa-
ton. We will need to measure the valuedness of relations that capture delay and
concurrency, but in general, amb(A) and val(R) may be uncomparable even for
tree automata A recognizing relation R.

Theorem 8. Let Σ1 and Σ2 be two alphabets and k ∈ N0 fixed. There exists a
polynomial p such that for every relation R ⊆ TΣ1

×TΣ2
recognized by a possibly

non-deterministic nwa A, val(R) ≤ k can be decided in time p(|A|).

Proof. We consider the tree relation SameTree = {(t, t) | t ∈ TΣ2
} which is

recognizable by an nwa of size O(|Σ2|
2). We fix a binary relation symbol r and

a relation symbol SameTree. For every relation R we define a structures sR such
that rsR = R and SameTreesR is the relations with the same name. We define
a formula val>k with k+2 free variables in the logic of recognizable relations in
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fo∃[r,SameTree], such that Rval>k(X:TΣ1
,X1:TΣ2

,...,Xk+1:TΣ2
)(sR) = ∅ if and only

if val(R) > k:

val>k =df

∧

1≤i≤k+1

r(X,Xi) ∧
∧

1≤i<j≤k+1

¬SameTree(Xi, Xj)

An nwa recognizing relation Rval>k(X:Σ1,X1:Σ2,...,Xk+1:Σ2)(sR) = ∅ can be com-
puted in polynomial time from the nwa A, where the polynomial depends on
the fixed parameters |Σ1|, |Σ2| and k. This follows from Proposition 28 since
relation symbol r does not occur below negation in formula val>k. Emptiness
of the language of this automaton can be tested in linear time. Hence, there
exists a polynomial p (depending on the fixed parameters k, Σ1, and Σ2), such
that we can check val(R) > k in polynomial time O(p(|A|)) from an nwa A
recognizing R.

Theorem 8 provides a P-time decision procedure for k-bounded valued-
ness, under the assumption that k is fixed. The proof relies on an nwa of
size O(|A|k+1) and a complexity bound of O(p(|A|k+1)) for some polynomial
p. Without bounding k, however, this algorithm can only be shown to be in
exptime.

Theorem 9. The problem that inputs k ∈ N0 and an nwa A recognizing a
binary relation R between unranked trees, and outputs the truth value of val(R) ≤
k is exptime-complete.

Proof. As argued above, the algorithm proving Theorem 8 runs in exptime if
not bounding k. For the hardness part, we will reduce emptiness of intersection
of deterministic nwas to this problem [4, 54]. Let Int(S) be the problem that
inputs S, a finite sequence of dnwas, and outputs “yes” if and only if there is
at least one tree recognized by each automaton of the sequence. For each nwa

A ∈ S, consider the binary relation RA that associates trees t with accepting
runs of A on t: RA = {(t, r) | r is a run of A on t}. From A ∈ S, we can build
in polynomial time an nwa recognizing RA. So, from S – w.l.o.g. we suppose
that the set of states are disjoint – we construct in polynomial time an nwa AS

for the binary relation ∨A∈SRA. As the automata are deterministic, AS will be
(|S|−1)-bounded iff there isn’t any tree recognized by each automaton of the
sequence. The conclusion follows, because emptiness of intersection of dnwas
is exptime-hard [4, 54].

Using the above constructions and Theorem 5.5 of [53], we can build an
algorithm for computing the exact value of val(R), if it exists. The overall
complexity is a fixed number of exponentials in |A|.

8. Deciding Bounded Delay and Concurrency

We prove our main Theorem 6 on deciding bounded delay and concurrency
for queries defined by dnwas by reduction to bounded valuedness of recognizable
relations.
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8.1. Basic Recognizable Relations

We start by defining various relations between trees by dnwas, that we will
use later on for defining the delay and concurrency of dnwa-defined queries by
recognizable relations between trees.

In this section, we fix the alphabets Ω = {Σ, {0, op, cl}} ∪
⋃

n{2
Vn} and

consider the sorted relational signature ∆ = Ω ⊎ ℜ with relation symbols ℜ =
{Can,Bef&Can,Bef&NotCan,Bef •, S,EqΣ,SameTuples}∪

⋃
n{Eq2Vn ,Type1

n}.
Given an n-ary query Q, we define in the sequel the sorted structure of tree re-
lations sQ over ℜ by providing interpretations of the symbols in ℜ. We denote
the interpretations by indexing them with Q. For instance, S is always mapped
to the schema associated with the query, so that SQ = dom(Q).

The relation Eq ⊆ TΣ × TΣ × T{0,op,cl} has been introduced in Section 7.2.
We use it on alphabets Σ and 2Vn , hence defining EqΣ and Eq2Vn respectively.

8.1.1. Type1n

Since states of canonical nwas need no more to be typed (the type of a tree
recognized in a state may vary with the current stack content), we consider
unary relations Type1n ⊆ T2Vn that are equal to the set of trees of T2Vn of type
1Vn .

Lemma 29. A dnwa recognizing Type1n can be computed in time O(3n).

Proof. Here we just have to collect variables in states at opening tags, and read
only variables that have not been seen so far.

stat=2Vn init={∅} fin={Vn} Γ={ }

V, V ′ ⊆ Vn V ∩ V ′ = ∅

V
op V ′:
−−−−→ V ∪ V ′ ∈ rul

V ′ ⊆ V ⊆ Vn

V
cl V ′:
−−−−→ V ∈ rul

This dnwa can be computed in time O(3n): For opening rules, choosing V
and V ′ consists in determining for each variable x ∈ Vn whether x ∈ V − V ′,
x ∈ V ′−V or x /∈ V ∪V ′. Similarly, for closing rules, we have to choose whether
x ∈ V − V ′, x ∈ V ′, or x /∈ V ∪ V ′.

8.1.2. Can

The next kind of tree relations express canonical languages of queries. Given
a tree t ∈ TΣ and a complete tuple τ ∈ dom(t)n, we define a tree pruneτ (t) ∈
T2Vn as follows. Let t′ be the prefix of t with domain dom latest(τ)(t). We set
pruneτ (t) = Π2(t

′ ∗ τ).
For every n-ary query Q, we define a recognizable relation CanQ ⊆ TΣ×T2Vn ,

which relates trees t ∈ TΣ with tuples τ ∈ Q(t):

CanQ = {(t, pruneτ (t)) | τ ∈ Q(t)}

Lemma 30. Let A and B be dnwas that define an n-ary query Q = Q(A,B).
Then we can compute a dnwa from A in time O(|A| · 3n) that recognizes CanQ.

Proof. The dnwa A recognizes the relation {(t,Π2(t ∗ τ)) | τ ∈ Q(t)}. Hence
only pruning of the second component is missing. This is obtained by do-
ing the product of A with a modified version of the dnwa recognizing Type1n

(Lemma 29), where opening actions are forbidden after reaching state Vn.
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8.1.3. Bef&Can

The relation Bef = {(t, pruneτ (t), renη(t)) | τ ∈ domη(t)
n} is the subset

of TΣ × T2Vn × T{0,op,cl} that captures all n-tuples of nodes of t (on its second
component) that contain only nodes opened before an event η provided by the
third component. Bef is recognizable by a dta of size O(3n), so we cannot
use this relation for P-time algorithms without fixing n. The problem can be
circumvented by using the following relation Bef&CanQ which can be recognized
while using the states of the canonical automaton for L(Q) for checking types:

Bef&CanQ = {(t, renτ (t), renη(t)) ∈ TΣ × T2Vn × T{0,op,cl} |
τ ∈ Q(t) ∧ τ ∈ domη(t)

n}

where renτ (u) ∈ T2Vn is the projection of u ∗ τ to 2Vn , i.e., nod(renτ (u)) =

nod(u) and labren
τ (u)(π) = V if labu(π) = (a, V ) for some a ∈ Σ, and all

π ∈ nod(u).

Lemma 31. We can compute a dnwa AB&C recognizing Bef&CanQ(A,B) in
time O(|A|).

Proof. We define statAB&C
= statA × B, in order to control by a Boolean,

whether the third component has been seen before. We define initial states by
initAB&C

= initA×{0}, final states by finAB&C
= finA×{1}, and stack symbols

by ΓAB&C
= ΓA. Before reaching event η, we run A on t ∗ τ :

q0
α (a,V ):γ
−−−−−−→ q1 ∈ rulA α′ 6= α

(q0, 0)
α (a,V,α′):γ
−−−−−−−−→ (q1, 0) ∈ rulAB&C

When reaching η, we change the Boolean value:

q0
α (a,V ):γ
−−−−−−→ q1 ∈ rulA

(q0, 0)
α (a,V,α):γ
−−−−−−−→ (q1, 1) ∈ rulAB&C

After η, we only allow empty annotations at opening (i.e., no variables):

q0
α (a,V ):γ
−−−−−−→ q1 ∈ rulA α′ 6= α α = op ⇒ V = ∅

(q0, 1)
α (a,V,α′):γ
−−−−−−−−→ (q1, 1) ∈ rulAB&C

8.1.4. Bef&NotCan

We also need a negated version of Bef&Can. The relation

Bef&NotCanQ = {(t, renτ (t), renη(u)) ∈ TΣ × T2Vn × T{0,op,cl} |
τ /∈ Q(t) ∧ τ ∈ domη(t)

n ∧ domη(t) = domη(u)}

is the subset of TΣ × T2Vn × T{0,op,cl} that captures all tuples τ (on its second
component) that contain only nodes opened before an event η provided by the
third component, such that τ /∈ Q(t).

Lemma 32. We can compute a dnwa AB&NC recognizing Bef&NotCanQ(A,B)

in time O(|A|).
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Proof. The dnwa AB&NC is similar to AB&C , but final states are inverted, and
the structure of the η-component may differ from the first two ones after η. This
second feature requires to be able to stop and resume the run of A on the first
two components. We use the stack to store the current state when a run of A is
stopped, and add a state (and stack symbol) to go through subtrees belonging
only to the η-component. The automaton AB&NC also has to check that all
descendants and right-siblings of �-labelled nodes must be labelled by � on the
corresponding component. The full construction is technical but not difficult,
and omitted for clarity. Every step can be performed in O(|A|), as only empty
annotations are allowed after reading η.

8.1.5. SameTuples

The relation SameTuples checks whether two tuples are equal until a given
event, the first one being selected by the query:

SameTuplesQ = {(t, renτ (t), uτ ′ , renη(t)) ∈ TΣ × T2Vn × T2Vn × T{0,op,cl} |
τ ∈ Q(t) and Eq2Vn (ren

τ (t), uτ ′ , renη(t))
and nodes of uτ ′ opened after η are labeled by ∅}

Lemma 33. A dnwa ASameTuples recognizing SameTuplesQ(A,B) can be com-
puted in time O(|A|).

Proof. The dnwa ASameTuples recognizing SameTuples can be obtained by run-
ning A on t ∗ τ and t ∗ τ ′ simultaneously until η, and then allowing the τ ′-
component to have a different structure, labeled only with ∅. Hence the proof
uses the same technique as proof of Lemma 32.

8.1.6. Bef•
We define a variant of Bef for partial tuples, called Bef •. Here, we do not

try to avoid the blow-up for two reasons. First, Bef • will be used with Type1n,
and a blow-up is necessary to recognize Type1n. Second, separating the relations
permits to clarify the definition of the formula capturing concurrency.

The relation Bef • = {(renτ (t), renη(t)) | ∃t ∈ TΣ. τ ∈ (domη(t)∪{•})n} is
a subset of T2Vn × T{0,op,cl} that relates annotations of trees with tuples τ and
events η, such that latest(τ) ≤ η.

Lemma 34. A dnwa recognizing Bef• can be computed in time O(3n).

Proof. The following dnwa recognizes the relation Bef •. In the states, we
collect (at opening) variables corresponding to the components of τ that have
been encountered. We also add a Boolean, that indicates whether the event η
has been read. Note that on the second component, we can read values different
from 0 when we are not at η. For instance if η = (op, π), we will read “op” on
the second component when we go through (cl, π).

stat=2Vn × B init={(∅, 0)} fin=2Vn × {1} Γ={ }

Rules are defined by the following inference schemas. At opening, we check
canonicity if η has not been reached; otherwise we forbid variables in the first
component. When η is reached, we still allow to read variables, and change the
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Boolean.
α ∈ {0, cl} V, V ′ ⊆ Vn V ∩ V ′ = ∅

(V, 0)
op (V ′,α):
−−−−−−−→ (V ∪ V ′, 0) ∈ rul

(V, 0)
op (V ′,op):
−−−−−−−→ (V ∪ V ′, 1) ∈ rul

(V, 1)
op (∅,0):
−−−−−−→ (V, 1) ∈ rul

At closing, we do not check anything. We just change the Boolean when η is
reached.

δ ∈ B α ∈ {0, op} V ′ ⊆ V ⊆ Vn

(V, 0)
cl (V ′,cl):
−−−−−−−→ (V, 1) ∈ rul

(V, δ)
cl (V ′,α):
−−−−−−−→ (V, δ) ∈ rul

The complexity comes from the same argument as Lemma 29.

8.2. Bounded Delay

Our objective is to define the formulas delayQ and concurQ in the logic
fo∃[Eq ,Can, S,Bef ,Bef&Can,Bef&NotCan,SameTuples ] preferably without us-
ing Can and Bef (to avoid a 3n blowup). We start with the definition of the
relation SelQ = {(t, pruneτ (t), renη(t)) | (τ, η) ∈ selQ(t)} by an fo formula Sel
with three free variables, such that SelQ = RSel(Xt:Σ,Xτ :2Vn ,Xη :{0,op,cl})(sQ):

Sel =df S(Xt) ∧ Bef (Xt, Xτ , Xη)
∧ ∀X ′

t:Σ. (S(X
′
t) ∧ EqΣ(Xt, X

′
t, Xη)) ⇒ Can(X ′

t, Xτ )

Note that entailment of Can(X ′
t, Xτ ) is correct only since we prune trees using

Bef : if (t′, t, η) belongs to relation REq(Xt:Σ,X′
t:Σ,Xη :{0,op,cl})(sQ) then t and

t′ may have different domains beyond η. Given dnwas A and B defining Q =
Q(A,B) we can thus define a dnwa recognizing SelQ(Xt, Xτ , Xη). Unfortunately,
we cannot construct this dnwa in P-time yet, since formula Sel does not belong
to the existential fragments of fo and uses relations Can and Bef . Nevertheless,
we obtain an algorithm for deciding judgments (τ, η) ∈ selQ(t).

We define the relation DelayQ = {(t, renτ (t), renη(t)) | η ∈ delayQ(t, τ)} by
the following formula of fo∃[Eq ,Bef&Can,Bef&NotCan, S,SameTuples ], that
expresses that η is an event increasing the delay if the nodes of τ ∈ Q(t) are be-
fore η in t, and there is a tree t′ that equals t until η but with τ /∈ Q(t′). The for-
mula has 3 free variables such thatDelayQ = RDelay(Xt:Σ,Xτ :2Vn ,Xη :{0,op,cl})(sQ).

Delay =df ∃X ′
t:Σ. ∃X

′
τ :2

Vn .
S(Xt) ∧ Bef&Can(Xt, Xτ , Xη) ∧
S(X ′

t) ∧ Bef&NotCan(X ′
t, X

′
τ , Xη) ∧

EqΣ(Xt, X
′
t, Xη) ∧ SameTuples(Xt, Xτ , X

′
τ , Xη)

All base relations can be defined by dnwas computed in P-time when leaving
n variable (since we do not need the relations Can and Bef here, and by Lem-
mas 23, 31, 32 and 33). Given deterministic automata A and B, we can thus de-
fine a possibly non-deterministic automaton recognizingDelayQ(A,B)

(Xt, Xτ , Xη)

in P-time from A and B, by Proposition 28. Let 2DelayQ = {(t ⊛ uτ , uη) |
(t, uτ , uη) ∈ DelayQ}. Both relations are recognized by the same automaton.
This relation exactly captures the delay:

val(2DelayQ) = max
τ∈Q(t)

delayQ(t, τ)
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Thus we can decide bounded delay and k-bounded delay of Q for a fixed k in
P-time by Theorems 7 and 8.

8.3. Bounded Concurrency

For concurrency, we proceed in a similar manner, except that we have to
work with partial (incomplete) tuples. Completion raises new difficulties, since
after the event η, we allow non-empty annotations on the 2Vn component, which
requires a blowup wrt. n.

Proposition 35. If arity n ∈ N is fixed, then for every n-ary query Q =
Q(A,B) defined by dnwas A and B, we can compute in P-time a possibly non-
deterministic nwa that recognizes the relation AliveQ = {(t, renτ (t), renη(t)) |
(τ, η) ∈ aliveQ(t)}.

Proof. We define AliveQ by a formula of fo∃[S,Can,EqΣ,Eq2Vn ,Type1
n,Bef •],

such that AliveQ = RAlive(Xt:TΣ,Xτ :T2Vn ,Xη:T{0,op,cl})(sQ). Here we use the rela-

tion Eq with two different alphabets: Σ and 2Vn . The latter permits to express
completions of tuples.

Alive(Xt,Xτ ,Xη) =df ∃X
′
t∈TΣ. ∃X

′′
t ∈TΣ. ∃X

′
τ ∈T2Vn . ∃X ′′

τ ∈T2Vn .
S(X ′

t) ∧ S(X ′′
t )

∧ CanQ(X
′
t, X

′
τ ) ∧ EqΣ(Xt, X

′
t, Xη) ∧ Eq2Vn (Xτ , X

′
τ , Xη) ∧ Bef •(Xτ , Xη)

∧ ¬CanQ(X
′′
t ,X

′′
τ ) ∧ EqΣ(Xt,X

′′
t ,Xη) ∧ Eq2Vn (Xτ ,X

′′
τ ,Xη) ∧ Type1n(X ′′

τ )

This formula expresses that τ is alive at η of t ∈ TΣ if there exists continuations
t′, t′′ ∈ TΣ of t beyond η and two completions τ ′, τ ′′ of τ beyond η such that
τ ′ ∈ Q(t′) but τ ′′ /∈ Q(t′′). Bef • checks whether latest(τ) ≤ η. Type1n verifies
that X ′′

τ is canonical, as this is not done by ¬CanQ(X
′′
t ,X

′′
τ ). All relations used

in the formula are recognizable by dnwas that can be computed in P-time by
Lemmas 23, 30, 34 and 29, so that an nwa for AliveQ is obtained in P-time from
Proposition 28 (since A is deterministic). Indeed, this result remains true if B is
non-deterministic, since relation symbol S does not occur below negation.

Note that we cannot integrate the canonicity control for X ′′
t into the negated

relation ¬Can(X ′′
t ,X

′′
τ ). The deeper problem is that automata A for canonical

languages of queries Q(A,B) do not have a notion of safe states in the case of
trees, since safety depends also on the current stack content.

Let 2AliveQ be the binary version of AliveQ, i.e., 2AliveQ = {(t ⊛ uη, uτ ) |
(t, uη, uτ ) ∈ AliveQ}, then:

val(2AliveQ) = max
t∈dom(Q),η∈eve(t)

concurQ(t, η)

Since we can define relation 2AliveQ by automata that we can compute in P-
time for fixed n from A and B by Proposition 28 we can decide bounded and
k-bounded concurrency of Q for fixed n and k in P-time by Theorems 7 and 8.

Conclusion.

In this paper we proved that bounded delay and concurrency are decidable
in P-time for queries in words defined by dfas and for queries in unranked trees
defined by dnwas. We obtained analogous results for k-bounded delay and
k-bounded concurrency for fixed k.
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We presented a direct P-time algorithm that computes the delay of queries
in words, and P-time reductions of various boundedness problems for queries
in words to ambiguity of nfas, which are know to be decidable in P-time. In
the case of trees, we presented P-time reductions for the boundedness problems
of queries to bounded valuedness of recognizable relations between trees. We
then show how to decide k-boundedness of recognizable relations for fixed k by
reduction to emptiness of tree automata, and that k-boundedness for flexible
k becomes exptime-hard. We proved that bounded valuedness of recognizable
relations is decidable in P-time by reduction to bounded valuedness of tree
transducers [52].

In follow-up work, we have proposed streaming models based on the notion
of bounded concurrency and obtained conp-hardness results for boundedness
problems for fragments of XPath, and distinguished a fragment of Forward
XPath with bounded concurrency [29]. An open question is how to obtain
a direct algorithm for deciding bounded valuedness of recognizable relations
without applying results on tree transducers. This could help to lower the
polynomials in our complexity results. In future work, we would like to study
lower bounds based on concurrency in sufficient generality.
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[14] Julien Carme, Aurélien Lemay, and Joachim Niehren. Learning node se-
lecting tree transducer from completely annotated examples. In 7th In-
ternational Colloquium on Grammatical Inference, volume 3264 of Lecture
Notes in Artificial Intelligence, pages 91–102. Springer Verlag, 2004.

[15] Julien Carme, Joachim Niehren, and Marc Tommasi. Querying unranked
trees with stepwise tree automata. In 19th International Conference on
Rewriting Techniques and Applications, volume 3091 of Lecture Notes in
Computer Science, pages 105–118. Springer Verlag, 2004.

[16] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What You Always Wanted
to Know About Datalog (And Never Dared to Ask). IEEE Trans. on Know.
Data Eng., 1(1):146–166, March 1989.
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Appendix A. Ground Datalog

We recall some folklore definitions and results about ground Datalog, fre-
quently used in this paper. For more details, we invite the reader to refer to the
following papers [16, 20, 30].

Let Λ be a ranked signature containing constants c ∈ Λ and predicates p ∈ Λ,
where all predicates have an arity ar(p) ∈ N0. We call a term p(c1, . . . , car(p))
a literal, and denote the set of literals over Λ by lit(Λ). A clause is a pair in
lit(Λ)× lit(Λ)k (with k ∈ N0) that we write L :- L1, . . . , Lk. as usual. A ground
Datalog program P is a finite set of clauses over Λ. Its size |P | is the total
number of symbols appearing in all its clauses.

The least fixed point lfp(P ) of P is the least set of literals over Λ that satisfies
that for all clauses L :- L1, . . . , Lk. of P , if L1, . . . , Lk ∈ lfp(P ) then L ∈ lfp(P ).
As no negation is allowed, every ground Datalog program P has a unique least
fixed point, and this one is finite. For ground Datalog, this least fixed point can
be efficiently computed.

Proposition 36. For every signature Λ and every ground Datalog program P
over Λ, the least fixed point of P can be computed in time O(|P |).

Proof. A program P can be seen as an hypergraph: vertices are literals, and
edges are tuples (L,L1, . . . , Lk) such that L :- L1, . . . , Lk. is a clause of P .
Then the least fixed point of P is exactly the set of accessible literals in this
hypergraph. This can be computed in linear time, modulo the ability of testing
whether L = L′ in time O(1). This is trivial if all literals are constants, but we
have to prove it for arbitrary signatures.

We can do this by assigning a number to each literal in P . This is done in
O(|P |) by parsing P and using a prefix tree that stores the assigned numbers
of all encountered literals. For instance the prefix tree #(p2(c2(c1(1), c2(2))))
(where # is just an extra symbol) indicates that p2(c2, c1) is assigned to 1, and
p2(c2, c2) to 2.

Appendix B. NWAs versus Standard Tree Automata

In this section, we relate nwas on unranked trees to standard tree automata
on ranked trees with respect to expressiveness. We also show that the notion of
determinism of dnwas generalizes over both bottom-up and top-deterministism
of standard tree automata in a succinct manner. This implies that Theorem 6
does equally apply to queries defined by top-down deterministic tree automata
on top-down encodings of unranked trees (fcns), or by bottom-up deterministic
tree automata on bottom-up encodings (curry).

Appendix B.1. Binary Encodings

The top-down encoding is defined by a function fcns : TΣ → T bin
Σ⊥

and is
illustrated in Figure 10(b). Its definition is based on an encoding of hedges,
fcns’ : ∪n≥0(TΣ)

n → T bin
Σ⊥

, i.e., sequences of unranked trees (where (t) 6= t).

fcns(t) = fcns’((t))
fcns’((a(s1, . . . , sl), t2, . . . , tk)) = a(fcns’((s1, . . . , sl)), fcns’((t2, . . . , tk)))
fcns’(()) = ⊥
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Figure B.10: Binary encodings

Every nta A over Σ⊥ defines a language of unranked trees modulo the fcns
encoding L(A) = {t ∈ TΣ | fcns(t) ∈ Lbin(A)}. Deterministic Dtds can be
recognized by top-down deterministic ntas this way (see [17] for precise trans-
lations).

The bottom-up encoding is based on currying. Let Σ@ = Σ ⊎ {@} be the
ranked alphabet in which all symbols from Σ are constants, and @ is the only
binary symbol. Function curry : TΣ → T bin

Σ@
maps unranked tree over Σ to

binary trees over the ranked signature Σ@:

curry(a(t1, . . . , tk)) =

{
a if k = 0
@(curry(a(t1, . . . , tk−1)), curry(tk)) otherwise

A stepwise tree automaton [15] is a nta over Σ@. Every stepwise tree automaton
B defines a language of unranked trees modulo currying L(B) = {t ∈ TΣ |
curry(t) ∈ Lbin(B)}. The notions of bottom-up determinism of ntas on binary
trees induce a notion of bottom-up and left-to-right determinism for stepwise
tree automata on unranked trees (see [37] for discussion).

Appendix B.2. Relation to NWAs

Furthermore, deterministic stepwise tree automata [15] can be converted in
dnwas in P-time.

Lemma 37. Every nta over Σ⊥ can be transformed to a nwa in P-time,
such that the language of unranked trees is preserved modulo the fcns-encoding.
This transformation preserves top-down determinism, in that it maps d↓ntas to
dnwas.

Proof. Let A be a nta recognizing binary fcns encodings in TΣ⊥
. We define an

nwa A′ over Σ such that L(A) = L(A′). This is illustrated by Figure B.11, with
runs of A on fcns(t) and A′ on t.

statA′ = statA
initA′ = finA

finA′ = statA

a(q1, q2) → q ∈ rulA

q
op a:q2
−−−−→ q1 ∈ rulA′

⊥ → q1 ∈ rulA a ∈ Σ q2 ∈ statA

q1
cl a:q2
−−−−→ q2 ∈ rulA′

This transformation maps d↓ntas to dnwas. Its correctness can be proved by
showing the following invariant: If h = (t1, . . . , tk) is a hedge over Σ, then there
is a run r of A on fcns’(h) iff there is a run r′ of A′ on h, and if such runs exist,
then, if π′ is the root of t1 and π the corresponding node in fcns’(h) we have:
r′e((op, π

′)) = r(π·1) and r′n(π
′) = r(π·2).
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(b) A run of the corresponding
nwa A′ on fcns−1(t).

Figure B.11: Example of runs for the translation of ntas modulo fcns encoding to nwas.
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(a) A run of a nta A on t ∈ TΣ@
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(b) A run of the corresponding nwa A′ on
curry−1(t).

Figure B.12: Example runs for the translation of ntas for curry encoding to nwas.

Lemma 38. Stepwise tree automata can be transformed in P-time to nwas
with the same language of unranked trees modulo currying. This transformation
preserves bottom-up determinism, i.e. it maps dtas to dnwas.

Proof. Modulo currying, stepwise tree automata can be seen as a weaker form
of nwas: a stepwise tree automaton evaluates hedges from left to right. The
difference with nwas is that when evaluating a new tree of the hedge, the state
resulting from the evaluation of the beginning of the hedge is unknown. The
translation of a nta A to an nwa A′ is detailed and proved below, and illustrated
by Figure B.12. The key idea here is to translate an @-rule by a closing rule,
that uses the stack to know how the hedge of preceding siblings of the current
node was evaluated, and the current state to know what is the state for the
subtree rooted at the current node. Labels are only used at opening.

statA′ = statA ⊎ {i, f} initA′ = {i} finA′ = {f}

@(q0, q1) → q2 ∈ rulA

q1
cl a:q0
−−−−→ q2 ∈ rulA′

a → q1 ∈ rulA q0 ∈ statA ∪ {i}

q0
op a:q0
−−−−→ q1 ∈ rulA′

q ∈ finA a ∈ Σ

q
cl a:i
−−−→ f

Correctness relies on the following property, that can be proved by induction on
the structure of t ∈ TΣ@

: a run r of A on t exists iff there is a run r′ of A′ on
curry−1(t), and r(ǫ) = r′((cl, k)) if the root of curry−1(t) has k children, and
r′((op, ǫ)) = r(πǫ) where πǫ is the first leaf of t in pre-order.
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(a) A run of the nwa A on t ∈ TΣ.
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(b) A run of the corresponding nta A on fcns(t).

Figure B.13: Example runs for the translation of nwas to ntas wrt. fcns encoding.

The next proposition states that all three classes of automata have the same
expressiveness. They capture monadic second-order definable languages of un-
ranked trees (see e.g. [15] for stepwise tree automata).

Proposition 39 (Same expressiveness). The three classes of tree automata
over unranked trees that we consider (ntas wrt. fcns and curry encodings, and
nwas) permit determinization and recognize the same languages of unranked
trees modulo P-time automata translations (not always preserving determinism).

Proof. For standard tree automata, determinization is standard. For nwas,
it is well-known too; it can be obtained from determinization of stepwise tree
automata and the translations discussed here. We have already shown how to
convert ntas modulo both encoding to nwas (Lemmas 37 and 38). It remains
to provide inverse encodings.

nwas to ntas wrt. fcns encoding. Let A be an nwa over the alphabet Σ.
We define the nta A′ over Σ⊥ such that L(A′) = L(A):

statA′ = statA × statA finA′ = initA × finA

q0
op a:γ
−−−−→ q1 ∈ rulA q2

cl a:γ
−−−−→ q3 ∈ rulA q4 ∈ statA

a((q1, q2), (q3, q4)) → (q0, q4) ∈ rulA′

q ∈ statA
⊥ → (q, q) ∈ rulA′

Figure B.13 illustrates this translation. The following property is easy to prove
by induction on the structure of t, and gives the main idea of the construction:
There is a run r′ of A′ on t iff there is a run r of A on the hedge fcns−1(t),
and if such runs exist then r′(ǫ) = (q0, q1) iff there is a run of A on fcns−1(t)
starting in q0 and ending in q1.

nwas to ntas over curry encoding. We exhibit a translation from an nwa

A to a nta recognizing the language of corresponding curry encodings of trees.
This time the translation is more intricate, as nwas allow to send the current
state from one node to its right sibling, but ntas over curry encoding do not.
This is why we have to guess this state, and then to check whether this guess
corresponds to the state reached when closing the previous sibling. The con-
struction is shown above and illustrated by Figure B.14.

statA′ = Σ× statA × statA
q0

op a:γ
−−−−→ q1 ∈ rulA

a → (a, q1, q1) ∈ rulA′
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(a) A run of the nwa A on t ∈ TΣ.
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(b) A run of the corresponding nta A′ on curry(t).

Figure B.14: Example runs for the translation of nwas to ntas modulo curry encoding.

q0
op a:γ
−−−−→ q1 ∈ rulA q2

cl a:γ
−−−−→ q3 ∈ rulA q0 ∈ initA q3 ∈ finA

(a, q1, q2) ∈ finA′

q0
op b:γ
−−−−→ q1 ∈ rulA q2

cl b:γ
−−−−→ q3 ∈ rulA q4, q5 ∈ statA a ∈ Σ

@((a, q4, q0), (b, q1, q2)) → (a, q4, q9) ∈ rulA′

The following invariant can be proved inductively on the structure of t ∈ TΣ@
:

There is a run r′ of A′ on t such that r′(ǫ) = (a, q0, q1) iff the root of curry−1(t)
is labeled by a, there is a run r of A on curry−1(t) such that r((op, ǫ)) = q0 and
r((cl, k)) = q1 where k is the last child of the root.

Appendix C. Recognizable Relations between Unranked Trees

Lemma 40. RelabR and R have the same valuedness.

Proof. If exi(t, t
′) holds for (t, t′) ∈ TΣi × TΣi

�
, then we write cleani(t

′) = t,

which is well-defined as t is unique for a given t′. It is easy to check that:

• if u ∈ TΣ1
�
×Σ2

�
then u ∈ ovl(RelabR) iff (clean1(Π1(u)), clean2(Π2(u))) ∈ R

• (t1, t2) ∈ RelabR iff (clean1(t1), clean2(t2)) ∈ R and nod(t1) = nod(t2).

First, let us prove that the valuedness of RelabR is at least the valuedness
of R. Let t in TΣ1 such that there exists at least k distinct ti with (t, ti) ∈ R.
Let D = nod(t) ∪ ∪k

i=1nod(ti). For a tree u and a set of nodes D such that
nod(t) ⊆ D, we define the completion of u w.r.t. D as the tree uD defined by

nod(uD) = D and labu
D

(π) = labu(π) if p belongs to nod(u), labu
D

(π) = �
otherwise. As nod(tD) = nod(tDi ) and clean1(t

D) = t, clean2(t
D
i ) = ti, we have

(tD, tDi ) ∈ RelabR, 1 ≤ i ≤ n. As the ti, 1 ≤ i ≤ n, are distinct, so are the tDi ,
1 ≤ i ≤ n: the valuedness of RelabR is at least the valuedness of R.

Now, let us prove that the valuedness of RelabR is at most the valuedness of
R. Let u in TΣ1

�
such that there exists at least k distinct vi with RelabR(u, vi).

Let t = clean1(u), ti = clean2(vi): we have (t, ti) ∈ R. It remains to prove that
the ti are all distinct.

Let 1 ≤ i < j ≤ n: as vi 6= vj there exists a position π such that labvi(π) 6=
labvj (π):
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• either labvi(π) 6= � and labvj (π) 6= �: then π belongs to nod(ti) and to
nod(tj) and labti(π) 6= labtj (π).

• either labvi(π) 6= � and labvj (π) = �: then π belongs to nod(ti) and π
does not belong to nod(tj).

• either labvj (π) 6= � and labvi(π) = �: similar to the precedent case.

So, there exists t ∈ TΣ1 such that there exists at least k distinct ti with (t, ti) ∈
R.

Proposition 28. Let φ be a fixed formula in fo∃[ℜ] with at most m free
sorted variables X1:Σ1, . . . , Xm:Σm where Xi ∈ V and Σi ∈ Ω. Then there
exists a polynomial p such that for all structures of recognizable relations s =
{Ar}r∈ℜ defined by tree automata such that Ar is deterministic if r occurs in the
scope of a negation in φ, one can compute in time p(

∑
r∈ℜ |Ar|) an automaton

that recognizes the relation Rφ(X1:Σ1,...,Xm:Σm)(s). The computed automaton
is deterministic, if all automata are deterministic and φ is free of existential
quantifiers.

Proof. The proof follows from two claims, that relate operations on tree relations
to operations on tree languages to closure properties of tree automata.

Claim 41. For all Q ⊆ TΣ1
×. . .×TΣm

, Vm = {X1, . . . , Xm} and θ : {1, . . . ,m} →
{1, . . . ,m} with {1, . . . , n} ⊆ θ({1, . . . ,m}):

ovl(∃Xi.Q) = Π{1,...,i−1,i+1,...,m}(ovl(Q)) ovl(cθQ) = cθovl(Q)
ovl(¬Q) = ovl(TΣ1

× . . .× TΣm
)− ovl(Q) ovl(Q1 ∧Q2) = ovl(Q1) ∩ ovl(Q2)

Proof of Claim 41. The proof is straightforward from the definitions. The next
claim relates connectives of sorted fo formulas to operations on tree relations.

Claim 42. For all alphabets Σ̃ = (Σ1, . . . ,Σm) and Σm+1, variables X̃ =
(X1, . . . , Xm) and Xm+1 that are pairwise distinct, structures s of tree rela-
tions, functions θ : {1, . . . ,m} → {1, . . . ,m} with {1, . . . , n} ⊆ θ({1, . . . ,m}),
sorted formulas φ, φ1, φ2 in fo[ℜ], and relations symbols r ∈ ℜ:

ovl(R∃Xm+1:Σm+1.φ(X̃:Σ̃)(s)) = Π{1,...,m}(ovl(Rφ(X̃:Σ̃,Xm+1:Σm+1)
(s)))

ovl(Rr(X̃)(Xθ(1):Σθ(1),...,Xθ(m):Σθ(m))
(s)) = ovl(TΣθ(1)

× . . .× TΣθ(m)
) ∩ cθovl(r

s)

ovl(Rφ1∧φ2(X̃:Σ̃)(s)) = ovl(Rφ1(X̃:Σ̃)(s)) ∩ ovl(Rφ2(X̃:Σ̃)(s))

ovl(R¬φ(X̃:Σ̃)(s)) = ovl(TΣ1
× . . .× TΣm

)− ovl(Rφ(X̃:Σ̃)(s))

Proof of Claim 42. The proof is straightforward from the definitions and the
previous claim. For illustration, we elaborate the case of negation, where the
sorting information is needed. Let LΣ̃ = ovl(TΣ1

× . . .× TΣm
).

ovl(R¬φ(X̃:Σ̃)(s)) = LΣ̃ ∩ ovl(Q¬φ(X̃:Σ̃)(s))

= LΣ̃ ∩ (LΣ̃ − ovl(Qφ(X̃:Σ̃)(s))) (previous claim)

= LΣ̃ − ovl(Rφ(X̃:Σ̃)(s))
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Finally, we illustrate the induction proving Proposition 28 for formula φ =
¬φ′. Since φ ∈ fo∃[ℜ], formula φ′ cannot contain existential quantifiers. Fur-
thermore, all automata Ar for relations symbols occurring in φ must be de-
terministic by assumption. By induction hypothesis, there exists a polynomial
p′ such that for all structures s = {Ar}r∈ℜ defined automata automata Ar,
one can compute in time p(

∑
r∈ℜ |Ar|) a deterministic automaton A′ recog-

nizing the language ovl(Rφ′(X̃:Σ̃)(s)). Recall that ovl(Rφ(X̃:Σ̃)(s)) is equal to

ovl(TΣ1
× . . . × TΣm

) − ovl(Rφ′(X̃:Σ̃)(s)) as shown by the previous claim. We

obtain an automaton A recognizing this language by complementing A′ and in-
tersecting it with an automaton for ovl(TΣ1

× . . . × TΣm
). This can be done in

time p1(|A
′|) · |Σ1| · . . . · |Σm| for some polynomial p1, since A

′ was deterministic.
Furthermore, automaton A can be constructed deterministically from A′. We
can thus define polynomial p by p(ξ) = p1(p

′(ξ)) · |Σ1| · . . . · |Σm|.
The only construction, where non-determinism is needed are projections.

This is why we require existential quantifiers to appear only in prenex position.
Note that the proposition can be extended to general fo formulas, but not in
P-time.
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