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Abstract—Complex networks can often be divided in
dense sub-networks called communities. Using a partition
edit distance, we study how three community detection
algorithms transform their outputs if the input network is
slightly modified. The instabilities appear to be important
and we propose a modification of one algorithm to stabilize
it and to allow the tracking of the communities in an
evolving network. This modification has one parameter
which is a tradeoff between stability and quality. The
resulting algorithm appears to be very effective. We finally
use it on an evolving network of blogs.

Index Terms—complex networks, evolving communities,
stability, tracking, blogs

INTRODUCTION

Complex networks arise naturally in many different
fields. They describe a variety of systems by modeling
the interactions between constituents. For instance, the
internet is a network of computers linked by physical
or wireless links. Similarly, the web can be seen as a
network of web pages linked by hyperlinks.

A common feature of many real networks is the
existence of groups of nodes, or communities, which
are crucial in understanding the underlying structure
of large networks. Communities can be, for example,
groups of friends in a social network, websites dealing
with the same subject or scientists working on similar
topics in co-authorship networks. Formalizing the notion
of community and detecting communities is a harsh task
which has attracted a lot of attention in the recent years.
In particular, many algorithms based on the network
topology have been proposed.

However, most studies usually deal with a single static
network which is a snapshot of the data. Very few studies
have given attention to temporal features. As real data
are always evolving (in phone networks, people do not
call each other permanently; on the web, pages appear,

disappear or are updated continuously for instance), a lot
of information is lost.

In this paper, we will try to track communities between
successive snapshots of the evolution of a network. We
will first use classical community detection algorithms
whose main issue in this context is stability. Indeed, we
will show how little modifications of the input network
often lead to strong transformations of the detected com-
munity structure, making them untraceable. We will thus
propose a modification of one very effective algorithm
to obtain much more stable communities and then use it
to study a truly dynamic dataset: a network of blogs.

The paper is organized as follows: in the first section
we will present classical results about community detec-
tion, evolving networks and community tracking. Then,
we will describe our experiments and results concerning
stability in the second section. In the third section,
we will propose a modified version of the Louvain
algorithm to achieve better stability and the results of
our experiments on a real graph.

I. BACKGROUND AND RELATED WORK

A. Communities

The detection of communities in complex networks
has attracted a lot of interest and many definitions of a
community have been proposed. Usually, algorithms are
looking for a good partition of the nodes. This implies
that no node belongs to more than one community
and the main issue is to define what good means.
People dealing with visualization problems often define
a good partition as a partition where parts are drawn
separately [1]. Good partitions can also be obtained
through k-means algorithms using the classical distance
in graphs as a distance between nodes [2]. Another
classical approach consists in defining a quality function
which gives a score to a partition: the good partition
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Figure 1. Example of a network with communities.

is the one which maximizes this quality function. One
of the most used quality function is the modularity,
defined in [3]. Ranging between -1 and 1, the modularity
compares for each parts (or community) the proportion
of links inside the community with a null model. The
higher it is, the better the partition is.

B. Detection algorithms

Finding the partition which maximizes the modularity
is NP-hard [4] and therefore many approximation algo-
rithms have been proposed, see [5]–[7] for comprehen-
sive surveys. In this paper, we will use three different
algorithms:

� the first one, Walktrap [8], is based on the idea that
a small random walk will stay inside the community
from where it’s originating because there are many
links inside and few bridges leading outside.

� the second one, Fast Greedy [9], is a greedy op-
timization algorithm for modularity: each node is
initially in its own community and then, at every
step, the algorithm groups two communities in order
to maximize the gain of modularity.

� the last one, Louvain Method [10] is described more
precisely in the next paragraph since we will modify
it in section III-A.

Louvain Method is a hierarchical greedy algorithm. It
is composed of two phases, executed alternatively. Ini-
tially, each node is in its own community. Then, during
phase 1, nodes are considered one by one, and each
one is placed in the neighboring community (including
its own community) which maximizes the modularity
gain. This phase is repeated until no node is moved (the
obtained decomposition is therefore a local maxima).
Then, phase 2 consists in building the graph between

communities obtained during phase 1: there is a node
in the new graph for each community and, for two
communities C and C 0, there is a link of weight w

where w =
P

v;v02C�C0 weight(v; v0). There is also a
loop on C of weight

P
v;v02C�C weight(v; v0) 1. Then,

the algorithm starts the phase 1 again with the new graph,
grouping communities together, and then phase 2, and
so on until the modularity does not improve. The whole
process is described on algorithm 1.

Algorithm 1 Pseudo-code of Louvain Method
1: G the initial network
2: repeat
3: Put each node of G in its own community
4: while some nodes are moved do
5: for all node n of G do
6: place n in its neighboring community includ-

ing its own which maximizes the modularity
gain

7: end for
8: end while
9: if the new modularity is higher than the initial

then
10: G = the network between communities of G
11: else
12: Terminate
13: end if
14: until

These three algorithms perform well on static net-
works. However, Louvain Method is the fastest and
most accurate method (it achieves better modularity)
and walktrap the slowest and less accurate. However,
we are willing to deal with evolving networks and
less efficient static algorithm can be more efficient for
evolving networks. This is the reason why we did not
restrict ourselves to the Louvain Method.

C. Evolving communities

The study of the evolution of communities has lead
to two main approaches: using the temporal information
directly in the detection or tracking communities among
different snapshots, often obtained with algorithms suited
for static graphs. The first direction has not been widely
followed. To take into account the temporal information,
authors of [11] have for example modified the quality

1This ensures that the partition found after phase 1 has the same
modularity as the partition of the new graph where each node is put
in its own community

509



(a) Matching example

 0

 100

 200

 300

 400

 500

 600

0 1 2 3 4 5 6 7 8 9

N
u
m

b
e
r 

o
f 
c
o
m

m
u
n
it
ie

s

Number of nodes removed (⋅10
3
)

Louvain
Walktrap

Fast Greedy

(b) Number of communities

Figure 2. Example of the matching between parts of different partitions and number of communities during one run

function to integrate dynamics inside it. In [12], a prob-
abilistic model integrating dynamic features is defined
and used to detect communities.

On the other hand, the main underlying problem when
computing communities on different snapshots is to de-
cide which community at time t has evolved into which
community at time t+ 1. Considering that communities
may merge, split, appear or disappear, many solutions
have been proposed. In [13], Hopcroft et al. look for
two parts sharing the most nodes and having similar
size. In [14], this idea is generalized by introducing
many rules to handle split, merge, etc. This method
works but finding a consensus on rules is difficult, and
there are always some parameters that must be fixed
arbitrarily. When do two communities are the same?
Is it when they share 70% of the nodes? Or maybe
80%, 90% or more? To avoid this kind of rules, [15]
uses a modification of their own community detection
algorithm to do the matching. However, this requires
a property on the algorithm that is barely fulfilled: by
adding links to a network, the communities can only
grow, merge or remain unchanged. Thus, community
tracking and detection on evolving networks is still a
challenge.

D. Comparing partitions and tracking

The most widely used metric to evaluate the distance
between two partitions is the mutual information [16].
It ranges from 0 to 1, where a value of 0 means that
partitions are independent and 1 that they are equal.
Defined by the information theory, it counts the number
of bits shared by two random variables. This metric is
really interesting but have a few issues. First, there are
many ways to normalize it, leading to different values,
and no normalization is clearly the good one. Secondly,
it has been proven that there is a correlation between
mutual information and the size of the partitions [17].
Consequently, it is not well-suited to compare algo-

rithms. It is also rather difficult to interpret and, extreme
values excepted, it does not allow to really decide if
partitions are close, really close or far from each others.

To address these issues, we have decided to use both
mutual information and an edit distance between parti-
tions. This distance counts the number of transformations
needed to move from a partition A to a partition B.
For example, figure 2(a) presents two partitions with
two possible matchings. In the first one, nodes C, D,
E, F, G and H must be moved whereas, only C and F
have to move with the second matching. The matching
which minimizes the number of transformations can be
computed in O(n3) with n the number of parts using
the Kuhn-Munkres algorithm [18]. This distance has two
advantages and one disadvantage: it gives the matching
and it is more intelligible but its matching is a one to
one association. There are no merge, split or apparition
of new communities, and thus the association is only
reliable when such one to one association exists, i.e. only
when the communities are really stable.

Using these algorithms and definitions, we are able
to compute communities at different time steps of the
evolution of a network and compute the similarities
between the partitions. This will be first used to study the
stability of the algorithms in case of small modifications
of the networks.

II. STABILITY OF THE THREE ALGORITHMS

To study the stability of the three algorithms, we first
simulate an evolution on a classical static network. The
evolution simply consists in the removal, one by one,
of a random node, keeping only the largest connected
component to always have a connected network. This is
clearly not realistic, but removing one node should not
change the structure of the network and thus partitions
computed with any algorithm should be very similar
(both in terms of mutual information or edit distance)
before and after removal.
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Figure 3. Modularities during one run and mutual information or partition edit distance between two consecutive partitions.

We present hereafter results using the arxiv dataset
which is a network of scientists defined by Newman
in [19]. Two scientists are connected if they have written
a paper together. To simplify the network and as they
do not modify the communities, we have removed the
nodes connected by a single link. This gives a network
of 9377 nodes and 24107 edges. The obtained results are
qualitatively similar on other networks.

The first metric computed at each time step is the
modularity. The results are presented on the figure 3(a).
The modularity is in each case growing slowly until a
break point where it falls quickly. The Louvain Method
performs better than Fast Greedy which is itself better
than Walktrap in the sense that the partition found
has higher modularity. The order remains the same
when considering the speed. Another remark is that the
modularity is almost constant between two consecutive
steps. Removing random nodes does not modify much
the structure of the network and the quality is therefore
really stable.

The number of communities in the partition, shown
on the figure 2(b), is also stable for the Louvain Method
and the Fast Greedy algorithm. Walktrap is less stable
during the whole run, but the number of communities
does not change very quickly. Thus we are in the case
where the partition edit distance is reliable.

The figure 3(b) shows the mutual information between
every partition and its predecessor. Walktrap algorithm
has values close to 1 and seems really stable. On the
opposite, the two other algorithms take many different
values of mutual information ranging from 0.75 to 0.98
for Louvain Method, and from 0.65 to 0.97 for Fast
Greedy. The distance between partitions varies a lot
between different steps. But a value of 0.9 of the mutual
information, which is common for Louvain Method,
seems to indicate that the partitions are not so different.
The partition edit distance, shown on figure 3(c), gives

a really different insight: after the removal of only one
node among (initially) 9377, between 2000 and 3000
nodes are moved in the community structure with the
Fast Greedy algorithm, and between 1500 and 2500 with
the Louvain Method. This means that the communities
detected at each step are completely different and that
both algorithms are extremely instable. Walktrap’s re-
sults are clearly better, but there are still often 500 moves
which represent too many transformations for only one
node removed.

Therefore, none of these algorithms is suitable to
compute evolving communities due to this instability. We
will next propose a new version of the Louvain method
which is far more stable.

III. A STABILIZED VERSION OF THE LOUVAIN

METHOD

A. Stabilized algorithm

To be able to track communities we propose another
much more stable version of the Louvain Method. The
idea is to constrain the initial partition in order to force
stability. This can be simply done by changing the initial-
ization of the algorithm. Whereas the classical Louvain
Method starts with every node in its own community,
we will now start the computation at time t by grouping
nodes using the partition found at time t � 1. We then
apply the exact same algorithm, allowing nodes to move
if the initial constraint is not pertinent.

The figure 4(a) is similar to the figure 3(c) but with
the modified algorithm. The communities are far more
stable. Most of the time, the communities are not modi-
fied, but there are some pikes where small modifications
happen. This is far more satisfactory since the removal
of one node does not change the structure of the graph,
except for a few central nodes.

The pikes on figure 4(a) can be caused by true events
on the network or be artifacts caused by the algorithm.
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Figure 4. Stability and modularity of the stabilized version of the Louvain Method and modularity using the quality parameter.

Therefore we have removed each node independently,
starting from the initial network and compared the
communities obtained with the initial decomposition.
We then tried, for each node, to correlate the distance
between partitions and properties of the removed node
(degree, pagerank, closeness or betweeness centrality
computed on the whole graph or using only the graph
inside the removed node community). None of the com-
puted metrics is clearly correlated with the effect on
communities’ stability. Therefore we are not able at the
moment to explain why the removal of some specific
nodes generates more modifications of the partition.

However, stability is not sufficient to have good parti-
tion. The figure 4(b) presents the modularity of Louvain
Method, Walktrap and Louvain Method modified. Most
of the time, Louvain Method modified is better than
Walktrap and competes with Louvain Method. It is only
when the network topology has changed a lot, at the
end of the run, that Walktrap outpasses Louvain Method
modified. As we remove one node, every node in the
initial partition is in a community, and we can assume
that it is in a good one as it is the result of the algorithm.
Thus, the initial partition is a strong constraint for the
algorithm and we will next study some possibilities to
limit this constraint.

B. A stability vs. quality parameter.

To limit the constraints of the modified algorithm,
we choose randomly x% of the nodes and place them
alone in their own community instead of putting them
in their previous community. The higher x is, the more
the algorithm can modify the communities since the
nodes placed alone in their communities will be moved
(it is always a bad choice to leave a node alone). If
x = 100%, the algorithm is the classical Louvain method
and if x = 0%, the algorithm is the stabilized version
presented before. There is obviously a tradeoff between

stability and quality. Figure 4(c) shows the modularity
for different values of x. Even low values of x like 2%
make an important improvement and change the shape
of the plot.

Figure 5(a) shows the average partition edit distance
during the first 1000 removals. For small values of x,
the stability is only slightly damaged. For larger values,
above x = 50%, the stability increases linearly to reach
the classical Louvain stability. Using x = 2% seems to
be a good compromise here: it gives a good stability
and a very high modularity. This parameter depends
on the network evolution. For instance, if there are
many modifications, using the previous partition can be
sufficient. Indeed, the initial partition is not so good and
therefore does not impose much constraints. The choice
of x depends on the number of modifications between
two consecutive snapshots. If snapshots are very similar,
x should be increased to give more freedom, but if they
are far enough, it may remain set to 0.

C. A real dynamic

As the evolution used before is completely artificial,
we have run the same tests on a truly evolving network:
a network of blogs. During four months, around five
thousands blogs have been monitored to track posts and
comments. Let’s consider that time 0 corresponds to the
beginning of the measurement. The nodes of the network
at time t are the blogs which contain a post between time
0 and t. There is a link between two blogs at time t if
one of them make a link to the other between time 0
and t. The resolution is of one day, so we have 120
snapshots of the network, one for each day, which all
represent the aggregation of the posts and links until the
considered day. To simplify community detection and
tracking, we take only the largest connected component
for each snapshot.

Starting first with an empty network, we applied
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Figure 5. Average edit distance during the first 1000 removals with different values of the quality parameter. Modularity and partition edit
distance of the blogs at each time step

the same algorithms and tracking techniques than in
section II using the modified Louvain Method. As we
are only adding nodes and not removing them, we put
all new nodes alone when starting the algorithm.

Figure 5(b) shows the modularity of the different
decompositions at each time step. The Louvain Method
is still the best but the modified version is really close. It
performs better than in section III-A since the algorithm
has more freedom. Enough nodes are alone or clearly
misclassified, so the decomposition here is not too con-
strained and there is no need of the parameter defined in
the previous sub-section. It can be set to 0 without any
loss of quality.

The figure 5(c) shows the partition edit distance be-
tween each successive partition. The modified Louvain
Method is more stable than the others, allowing an easier
tracking of the communities. First, the network evolves a
lot during its first construction and then stabilizes. There
is also a detected event at the time step 40 corresponding
to an event in the measurement (some blogs where added
to the initial list).

Thus, starting from an empty network, the modified
Louvain Method is fast, stable, and produce high quality
results. To start with a network more structured and
to see how the modified method reacts, we run the
same tests starting with the network at time 60, and the
results are very similar. The modified Louvain Method
is still able to adapt the initial partition to achieve high
modularity, with a better stability.

CONCLUSION AND DISCUSSION

We have shown that classical community detection
algorithms are very instable. This instability has been
precisely evaluated using a partition edit distance which
gives understandable values and a matching between
partitions. It raises questions about the reliability of the

results of these algorithms. They produce many different
results, which are all evaluated as good since they have
high modularity, but which one is the best? We have no
answer to this question, and the proposed solution is a
workaround.

The instabilities also forbid to make an effective track-
ing of the communities at different time steps: everything
change, so it becomes impossible to identify trends and
events. We have proposed a modification of the Louvain
Method which achieves a really good stability without
major loss of quality. This modified version also includes
a parameter that allows to controll the loss of quality and
the stability. If the evolution is tiny, like the removal of
one node, setting x to small values like 2% is enough
to achieve better modularity with still a good stability.
It is one of the first algorithms taking into account the
dynamic by using the previous computation and it now
allows to track several communities at different time
steps.

The gap between partitions cannot be considered as
true events but are often due to the algorithm and re-
moving the last artifacts is still a challenge. The possible
transitions are also very limited. There is always a one to
one matching, with new empty sets if needed. The tran-
sitions are still rough because of the lack of overlapping
communities. We can imagine that a community does
not disappear instantaneously but is slowly absorbed by
some other ones and our method cannot handle this kind
of transformations.
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