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Abstrace==In this work we introduce power optimizations
relying on partial tag comparison (PTC) in snoop-based
chip multiprocessors. Our optimizations rely on the
observation that detecting tag mismatches in a snoop-
based chip multiprocessor does not require aggressively
processing the entire tag. In fact, a high percentage of
cache mismatches could be detected by utilizing a small
subset but highly informative portion of the tag bits.

Based on this, we introduce a source-based snoop filtering
mechanism referred to as S-PTC. In S-PTC possible remote
tag mismatches are detected prior to sending the request.
We reduce power as S-PTC prevents sending unnecessary
snoops and avoids unessential tag lookups at the end-
points. Furthermore, S-PTC improves performance as a
result of early cache miss detection.

S-PTC improves average performance from 2.9 % to 3.5%
for different configurations and for the SPLASH-2
benchmarks used in this study. Our solutions reduce
snoop request bandwidth from 78.5% to 81.9% and
average tag array dynamic power by about 52%.

1. Introduction

The continuous downscaling of transistor dimensions
together with limitation on program’s instruction level
parallelism has popularized shared-memory chip multi-
processor (CMP) architecture as an effective solution. On
a CMP, cores communicate through shared variables and
based on cache coherence protocols. Cache coherence
protocols facilitate propagating the recently updated
values to all concerning caches [1]. In addition, cache
coherency provides cores with the latest value of the
requested shared variables. The delay associated with the
coherency mechanisms postpones shared variable
updates and read operations. Accordingly, one way to
enhance the overall CMP performance is to speedup the
coherence process.

To reduce coherency delay, commercial small-scale [2]
and possibly larger CMPs [3] exploit Snoopy Cache
Coherence (SCC) protocols. SCC protocols take an
aggressive approach and broadcast memory requests to
all cores in the system. Unfortunately, SCC protocols
impose high interconnect bandwidth demand and
frequent unnecessary remote cache searches [3].

Previous research has introduced different approaches to
solve the above problems. One possible approach exploits
snoop filters to eliminate useless interconnect and
memory activities [4-7]. Snoop filters come in two classes:
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source-based and destination-based. In source-based
filters [4,5] each node decides locally, but based on global
knowledge, to broadcast a message or not. While this
approach can eliminate some unessential traffic, it cannot
stop delivering messages or prevent cache lookups in
non-concerning processors when it attempts to broadcast.
Destination-based filters, however, focus on eliminating
unnecessary lookups at destinations [6,7]. On the contrary
to source-based filters, these filters rely on local
knowledge to determine whether lookup is necessary or
not. They take advantage of the snoop request access
pattern locality [6] or bloom filters [7] to eliminate non-
required lookups.

We extend previous work by using partial tag comparison

(or simply PTC) in snoop-based chip multiprocessors. We

rely on the observation that a considerable share of tag

mismatches could be avoided by comparing a subset of
tag bits, making an entire tag comparison unnecessary.

We take advantage of this phenomenon and store a small

number of tag bits for tags recorded in all cores in the

source node to facilitate early mismatch detection. Prior
to sending a snoop request, we compare the subset of
address tag bits to those stored in the source node and

avoid sending the snoop request to nodes showing a

mismatch.

It should be noted that there are two classes of coherency

cache misses: global and local. A global miss occurs when

the requested address is missed in every remote cache. In
the case of a local miss, while one or more cores miss the
requested data, there is at least one remote cache that has

a copy of the requested block. Previous suggested source-

based filters focus on global misses. As we show in this

paper, our proposed source-based PTC-based mechanism
detects both global and local misses increasing the power
reduction opportunities.

Using a small number of tag bits makes early cache miss

detection possible. This results in performance

improvement for some of the applications studied here.

Therefore, while previously suggested techniques often

save power at the expense of performance, we improve

performance and power simultaneously for some
applications.

In summary we make the following contributions.

* We show that it is possible to maintain cache
coherency by using only a small number of tag bits.
Our study shows that it is possible to detect, on
average, between 95% to 98% of global and local



remote misses by taking into account only the eight
lower bits of the requested tag in different CMP
configurations.

* We propose source-based PTC (or S-PTC). S-PTC
relies on storing a snapshot of the storage
components involved in snooping at the source-side.
S-PTC reduces interconnect bandwidth requirement
(78.5% to 81.9%) and tag array dynamic power
(52%) while improving average performance up to
3.5%.

The reset of the paper is organized as follows. In section 2

we discuss background. In section 3 we present our

motivating findings. In section 4 we discuss S-PTC in more
details. In section 5 we present methodology and results.

In section 6 we discuss related work. Finally, in section 7

we offer concluding remarks.

2. Background

SCC protocols implementations consist of coherence
communication followed by possible cache-to-cache data
transfers. To keep coherence transactions fast, designers
utilize different interconnects for different cache
coherency operations [8]. Small-scale CMPs (which are
the focus of this work) use address, snoop and
response/command buses for sending requests to the
snoop controller, broadcasting the requested addresses to
all cores and gathering each core’s response respectively
[1]. In addition, the snoop controller could be integrated
with the memory controller in order to manage requests
going to or coming from the higher memory level. Small-
scale CMPs could also assume a large separate pipelined
bus for data communication [8]. Figure 1 illustrates a
typical sequence of coherence transactions for coherence
buses.

Requester
CPU
g
Controller
Address Bus _>ﬂ
Snoop Bus /
Command Bus :H
CPU
Responder

Figure 1: The sequence of transactions for SCC protocols over shared bus
fabrics. 1) One of the cores sends the requested address using the address
bus. 2) The controller decodes the requested address and queues it at the
end of the snoop queue. After it has reached the head of the queue, the
controller broadcasts the requested address over the snoop bus. 3) Other
cores search their cache tag array and prepare their response. 4) Every
core puts the lookup result on the response bus. The controller receives the
result. 5) The snoop controller makes and propagates the final decision
according to the responses received.
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Figure 2: How often using the n lower tag bits (n<4, 4<n<6 and 7<n<8) is
enough to detect a remote cache miss in the configurations investigated in
this work (see section 5 for details).

3. Motivation

Conventional snooping relies on broadcasting and
processing all tag bits. This is inefficient from the power
and bandwidth point of view as it is possible to detect
mismatches using a small portion of tag bits. To provide
better insight, in figure 2 we report how often
broadcasting the lower n bits of the tag is enough to detect
a mismatch in all ways used in remote set associative
caches. As reported, a large number of tag mismatches
could be detected using a small number of bits.

On average, and for all configurations, more than 84% of
snoop misses could be detected broadcasting only eight
tag bits. Our study shows a similar observation for cache
lookups (not reported here in the interest of space).

4. S-PTC: Cache Optimizations
In this section, we introduce S-PTC in more detail.

4.1 S-PTC

S-PTC detects useless coherence traffic and lookups prior
to sending the snoop request. This is done by keeping a
small subset of tag bits of all core storage states. This
small subset is used to avoid sending snoop messages to
cores that do not have a valid version of the requested
line. To identify such cores, S-PTC holds a repository
referred to as the S-filter containing the small subset of
bits for every tag. This filter is accessed at the core
initiating the snoop. The S-filter contains the least
significant bits of every tag (LSB) for partial tag
comparison.

S-PTC avoids snooping and searching all caches as it can
identify those likely to have the requested block. By
limiting the search to some and not all cores, S-PTC avoids
processing both global and local misses.

4.2 S-PTC Updating

S-PTC requires keeping track of the storage states of
snooping components. Therefore having an efficient filter
updating mechanism is essential. To provide the S-filter
with recent storage states, we need to keep all cores
informed about every eviction and insertion event. Since
evictions occur as a result of inserting new cache blocks,
information regarding both events could be broadcasted
simultaneously.

For example, assume that one of the local caches inserts
block A, replacing block B. At this point the controller,



while inserting A into the cache, informs all filters
regarding the latest position and state of B. It is important
to note that the controller should also broadcast B’s dirty
bit.

An S-filter not informed about the dirty blocks could
potentially mistake an outdated block residing in the
upper level memory for a dirty block sitting in the
writeback buffer. This could happen if an evicted block is
requested before being written to the upper memory
level. An uninformed S-filter assumes that all evicted
blocks are clean. Consequently the coherency mechanism
will look for the missing data in the upper level memory.
To prevent such scenarios storing a low resolution
snapshot of the writeback buffer (WB) is also needed.

To keep S-filters up-to-date the following hardware
modifications are needed.

Local tag array: Local tag array should send the insertion
position, (i.e.,, the way number or W), in set associative
caches and the dirty bit (D) of the corresponding evicted
line to all S-filters. In the case of direct mapped caches
sending W is irrelevant.

Snoop controller: The snoop controller is responsible for
sending the required information to all S-filters. Since the
snoop controller has to accommodate the three new fields
used by the address bus, we add them to the pending
memory request table of the memory controller.

Besides the detecting bits, S-PTC stores a bit indicating the
validity of tag and a parity bit. S-PTC does not use or
modify the coherence bits of the cache blocks; therefore it
is orthogonal to the underlying cache coherence protocol.

In figure 3 we present the steps taken during S-PTC
updating in more detail.

Note that S-PTC relies on broadcasting the final command
to all cores in order to update all S-filters.
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Address Bus

Figure 3: S-PTC updating. 1) CPU requests address A in core 0. 2) The local

tag array in core 0 signals a miss and selects the position of the dirty line (F)

for replacement. 3) Upon granting access, core 0 sends a request to the
snoop controller for address A containing position and the dirty bits of line F
over the address bus. 4) Snoop controller stores information about the
evicted line in the pending request table. 5) After locating line A, the

controller broadcasts a message over the command bus a) to order core 0 to
receive line A and b) to tell all S-filters about evicting F and inserting A in
core 0. 6) Finally, core 0 replaces F with A, while forwarding F to WB. In

addition, the S-filters are updated while they snoop the command bus to get

the latest event.
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In the baseline snooping, however, the final command only
addresses the requesting or providing cores. Further
optimize of our solution is part of or our ongoing research.

5. Methodology and Results

In this section we report methodology and results. Section
5.1 explains methodology. In section 5.2 we report
performance improvements. In section 5.3, 5.4 and 5.5 we
report bandwidth reduction, tag power and area overhead
respectively.

5.1 Methodology

We use a representative subset of SPLASH-2 [9] (see Table

1) applications. We use and modify the SESC simulator

[10] to simulate our system. Table 2 reports the

configurations wused in our experiments. These

configurations are consistent with today’s implementation

of CMPs [11]. We use CACTI 6.0 [12] to estimate cache tag

array and filter power. We assume 65nm technology with

a target frequency of 5GHz. Note that S-PTC uses auxiliary

structures and therefore comes with timing and power

overhead. In this study we take this overhead into

account. We compare S-PTC to a conventional CMP.

5.2 Performance

In figure 4 we report relative performance for S-PTC
compared to a conventional snooping system for the two
configurations presented in Tables 2 and for the
applications studied here. As reported, we witness an
average performance improvement of 2.9% and 3.5% for
4-way and 8-way CMPs respectively.

Table 1: SPLASH input

benchmark input Benchmark input Benchmark input
barnes 16k radiosity  -batch -room | water-NSq 512
particle molecules
cholesky K29.0 Radix 8M keys water-sp 512
molecules
lu 512x512 raytrace Balls4.env fmm 16k
matrix particles
Ocean 258x258 volrend  256x256x126 fft -m20
grid voxels
Table 2: CMP configurations
Processor Memory Interconnect
Branch predictor : (instr. FX/FP DL1/IL1 size: 64/32 KB 4/8 way CMP fast Bus
16K windows size)  DL1/IL1 Asso.: 4/2 ways delay: 2/3 cycles
Bimodal & gshare 80/32 Latency: 3 cycles Slow wire penalty:
Penalty: 17 cycles ROB size: 176 Replace policy: 2 cycles

WB/WT
Cache line: 64 B

Bus arbitration: 6 cycles

Fetch/issue/commit:  Int/FP register

4/4/5 file :176 Protocol : MESI Bus size:
RAS: 32 entries Memory Latency: 500 Adr./Snoop/Cmd
BTB: 2-way 2k Max load/store: cycles 7/12/8 Bytes [8]
entries 62/56
Configuration Description L2 L2 Latency Data Interconnect
P4 four cores private 4 MB 4-banked 16- 10 cycles crossbar
L1 shared L2 way
P8 eight cores private 8-banked 16-way 10 cycles crossbar

L1 shared L2 with 512 KB per bank
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Figure 5: Bandwidth utilization

Note that raytrace and ocean show better performance
improvements compared to other benchmarks. This is
consistent with previously suggested studies [13]. We
improve performance as remote cache misses are
detected before reaching the end-points (i.e, at the
requesting node), skipping several snoop stages and
initiating an L2 access early.

5.3 Bandwidth Utilization Reduction

Source-based filtering reduces bandwidth requirements.
The exact bandwidth reduction depends on the bus
physical implementation details. For a simple single
segment bus bandwidth reduction is equal to number of
snoop requests filtered. For segmented or star buses S-PTC
can reduce bandwidth further as it can eliminate some
remote tag arrays searches when it has to snoop. Figure 5
reports the normalized bandwidth utilization for our two
configurations. We consider two- and four- branch buses
for 4-way and 8-way CMPs respectively. As reported,
bandwidth reduction is 78.5% and 81.9% for 4-way and 8-
way CMPs respectively.

5.4 Tag Lookup Power

In this section we report tag lookup power. S-PTC reduces
dynamic power as it prevents unessential tag array
lookups at the end-points. In figure 6 we report normalized
dynamic power dissipation for tag array lookups. Our
evaluation shows a dynamic power reduction of 53.2% and
52.3% in tag arrays lookup is achievable when we use S-
PTC.

Our evaluation shows that exploiting S-PTC increases static
power in tag arrays (60% and 140% in 4-way and 8-way
CMPs) as a result of the auxiliary structures used.
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Figure 6: Tag array dynamic power dissipation

Static power increases with the number of cores but could
be reduced by exploiting static power reduction solutions,
which is part of our future work.

5.5 Area

We estimate chip area utilization using the number of bits
stored. For 40-bit address space CMPs with 64B cache
blocks, a complete tag array should contain 32 bits for the
tag address, and valid and dirty bits for every individual
block. On the other hand, the S-filter stores 10 bits (8 bit
for LSB, one valid bit and a dirty bit) for each cache line.
Therefore S-PTC stores 10 bits per-core for every 34-bit tag
entry of bus-side tag arrays.

6. Related Work

A plethora of studies have investigated interconnect and
memory optimizations in shared memory
multiprocessors. Multicast snooping [14] and destination
set prediction [15] aim at achieving a bandwidth
requirement comparable to directory coherency while
maintaining low access time similar to snoop based
systems. Atoofian and Baniasadi showed that there is a
high chance that two consecutive cache misses in a local
cache are supplied by the same remote node (supplier
locality). They exploited this to reduce power by limiting
cache lookup and snoop broadcast to the predicted
supplier [16]. Jetty is a destination-based snooping filter
for symmetric multiprocessor systems, which takes two
different approaches (i.e., inclusion and exclusion) to
eliminate extra accesses to local L2 caches [17]. Ekman et
al. evaluated Jetty for CMPs and reported that power
savings achieved by jetty are often outweighed by the
overhead associated with the filters [18]. In Blue Gene/P
super computer three filters are used to optimize the
memory system [6]. Ballapuram et al. use bloom filters
[19] to remove unnecessary coherence activities [7].
Serial snooping is a destination-based non-speculative
snooping technique that takes a sequential approach to
search other cores instead of broadcasting [20]. Flexible
snooping further improves serial snooping in logical ring
interconnects by employing an adaptive filter on each
core that decides to snoop the request and then forward
or to snoop and forward in parallel [21].

Ekman et al. save sharing patterns for each memory page
to filter unnecessary snoop requests. Two further studies
[4,5] introduce region (as a contiguous power-of-two



number of cache lines) to address snoop inefficiencies.
RegionScout showed that memory requests lead to global
region misses frequently and used a non-tagged filter to
keep track of region’s sharing pattern [4]. Cantin et al.
used a tagged structure to save information for more
regions but at the cost of complexity [5]. Both of these
works prevent snooping when they find other caches not
sharing any block of the region containing the requested
address. These studies do not improve bandwidth or
memory utilization for cores not sharing the region when
they attempt to broadcast. In-Network-Coherence-
filtering addressed this issue by adding a table for each
output port of on-chip routers containing non-shared
regions of accessible cores [3].

In addition to the general differences listed above, our
work is different from RegionScout [4] and Coarse-Grain
Coherence Tracking [5] as S-PTC reduces interconnect
and cache activity for shared regions too. While S-PTC
limits interconnect and memory activity to those cores
likely to have the datal, region-based techniques
broadcast to all nodes and caches under such
circumstances. Previous studies relying on temporal
locality in cache misses (e.g., [6, 17]) capture a superset of
locally stored tags by means of counting bloom filter [7,
17]. This approach misses some saving opportunities as a
result of aliasing. S-filters, on the other hand, are not
vulnerable to aliasing as they save low resolution bits for
every individual tag. Moreover, unlike [17] and [6], S-PTC
can capture all kind of misses including those that have
occurred very recently.

While serial snooping and flexible snooping have variable
snoop delay, S-filters come with fixed penalty.
Furthermore and in contrast to [20], S-PTC can improve
performance as discussed earlier.

7. Conclusion

In this work we introduced S-PTC to improve energy
efficiency in CMPs. S-PTC uses a low number of tag bits to
reduce the amount of data processing and communication
in CMPs. S-PTC reduces power as it eliminates a
considerable share of the useless tag fast processing and
transmission. We show that S-PTC reduces power while
improving or maintaining performance for applications
and configurations used in this study.
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1 Assuming exploiting interconnect systems, which allow
messages reaching destination(s) without using the entire
interconnect resources (e.g., star-like interconnect).
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