N
N

N

HAL

open science

The Complexity of Codiagnosability for Discrete Event
and Timed Systems

Franck Cassez

» To cite this version:

Franck Cassez. The Complexity of Codiagnosability for Discrete Event and Timed Systems. Int.
Symp. on Automated Technology for Verification and Analysis (ATVA’10), Sep 2010, Singapore,

Singapore. inria-00493640

HAL Id: inria-00493640
https://inria.hal.science/inria-00493640

Submitted on 21 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00493640
https://hal.archives-ouvertes.fr

The Complexity of Codiagnosability
for Discrete Event and Timed Systems

Franck Casséz

National ICT Australia & CNRS
The University of New South Wales
Sydney, Australia

Abstract. Inthis paper we study the fault codiagnosis problem for discrete event
systems given by finite automata (FA) and timed systems given by timed auto-
mata (TA). We provide a uniform characterization of codiagnosability for FA and
TA which extends the necessary and sufficient condition that characterizes dia-
gnosability. We also settle the complexity of the codiagnosability problems both
for FA and TA and show that codiagnosability is PSPACE-complete in both cases.
For FA this improves on the previously known bound (EXPTIME) and for TAitis

a new result. Finally we address the codiagnosis problem for TA under bounded
resources and show it is 2EXPTIME-complete.

1 Introduction

Discrete-event systems [1,2] (DES) can be modelled by finite automata (FA) over an
alphabet obbservableeventsy.

The fault diagnosis problenis a typical example of a problem under partial ob-
servation. The aim of fault diagnosis is to detéatilty sequences of the DES. The
assumptions are that the behavior of the DES is known and a model of it is available as
a finite automaton over an alphat¥t {7, f}, whereX’'is the set of observable events,

T represents the unobservable events, Argla special unobservable event that corres-
ponds to the faults: this is the original framework introduced by M. Samgiadih [3]

and the reader is referred to this paper for a clear and exhaustive introduction to the sub-
ject. Afaulty sequence is a sequence of the DES containing an occurrence offevent
An observermwhich has to detect faults, knows the specification/model of the DES, and

it is able to observe sequencesotiservableevents. Based on this knowledge, it has to
announce whether an observation it makes¥in) was produced by a faulty sequence

(in (X U {r, f})*) of the DES or not. Adiagnoser(for a DES) is an observer which
observes the sequences of observable events and is able to detect whether a fault event
has occurred, although it is not observable. If a diagnoser can detect a fault atmost
steps after it has occurred, the DES is said to Aediagnosable. It is diagnosable if

it is A-diagnosable for somél € N. Checking whether a DES id-diagnosable for

* Author supported by a Marie Curie International Outgoing Fellowship within the 7th European
Community Framework Programme.
! Steps are measured by the number of transitions in the DES.

a givenA is called thebounded diagnosability problenshecking whether a DES is
diagnosable is thdiagnosability problem

Checkingdiagnosabilityfor a given DES and a fixed set of observable events can
be done in polynomial time using the algorithms of [4,5]. If a diagnoser exists there is a
finite state one. Nevertheless the size of the diagnoser can be exponential as it involves
a determinization step. The extension of this DES framework to timed automata (TA)
has been proposed by S. Tripakis in [6], and he proved that the problem of checking
diagnosability of a timed automaton is PSPACE-complete. In the timed case however,
the diagnoser may be a Turing machine. The problem of checking whether a timed
automaton is diagnosable by a diagnoser whichdetarministidimed automaton was
studied by P. Bouyeet al.[7].

Codiagnosabilitygeneralizes diagnosability by consideritgcentralized architec-
tures Such decentralized architectures have been introduced in [8] and later refined
in [9,10]. In these architectures, local diagnosers (with their own partial view of the
system) can send some information to a coordinator, summarizing their observations.
The coordinator then computes a result from the partial results of the local diagnosers.
The goal is to obtain a coordinator that can detect the faults in the system. When local
diagnosers do not communicate with each other nor with a coordinator (protocol 3
in [8]), the decentralized diagnosis problem is calbedliagnosiq10,9]. In this case,
codiagnosis means that each fault can be detected by at least one local diagnoser. In the
paper [10], codiagnosability is considered and an algorithm to check codiagnosability
is presented for discrete event systems (FA). An upper bound for the complexity of the
algorithm is EXPTIME. In [9], the authors considehgerarchical frameworkfor de-
centralized diagnosis. In [11] a notion mfbustcodiagnosability is introduced, which
can be thought of asfault tolerant(local diagnosers can fail) version of codiagnosabil-
ity. None of the previous papers has addressed the codiagnosability problems for timed
automata. Moreover, the exact complexity of the codiagnosis problems is left unsettled
for discrete event systems (FA).

Our Contribution. In this paper, we study the codiagnosability problems for FA and
TA. We settle the complexity of the problems for FA (PSPACE-complete), improv-
ing on the best known upper bound (EXPTIME). We also address the codiagnosability
problems for TA and provide new results: algorithms to check codiagnosability and also
codiagnosability under bounded resources. Our contribution is both of theoretical and
practical interests. The algorithms we provide are optimal, and can also be implemen-
ted using standard model-checking tools like SPIN [12] for FA, or UPPAAL [13] for
TA. This means that very expressive languages can be used to specify the systems to
codiagnose and very efficient implementations and data structures are readily available.

Organisation of the PapeiSection 2 recalls the definitions of finite automata and timed
automata. We also give some results on the Intersection Emptiness Problems (sec-
tion 2.6) that will be used in the next sections. Section 3 introduces the fault codiagnosis
problems we are interested in, and a necessary and sufficient condition that character-
izes codiagnosability for FA and TA. Section 4 contains the first main results: optimal
algorithms for the codiagnosability problems for FA and TA. Section 5 describes how

to synthesize the codiagnosers and the limitations of this technique for TA. Section 6 is
devoted to the codiagnosability problem under bounded resources for TA and contains
the second main result of the paper.

Omitted proofs can be found in the full version of this paper [14].

2 Preliminaries

X denotes afinite alphabet att} = X U{7} wherer ¢ X' is theunobservablaction.

B = {TRUE, FALSE} is the set of boolean valuel, the set of natural numberg, the

set of integers anf) the set of rational numberR is the set of real numbers aiitd.
(resp.R~g) is the set of non-negative (resp. positive) real numbers. We denote tuples
(or vectors) byl = (dy, - - - ,dy) and writed|[:] for d;.

2.1 Clock Constraints

Let X be a finite set of variables calletbcks A clock valuations a mapping : X —
R>o. We IetR);0 be the set of clock valuations ovér. We let0 y be thezerovaluation
where all the clocks inX are set to) (we use0 when X is clear from the context).
Givend € R, v + 4 is the valuation defined bfp + 0)(z) = v(z) + . We letC(X)

be the set ofonvex constrainten X, i.e., the set of conjunctions of constraints of the
form 1 ¢ with ¢ € Z andixe {<, <, =, >, >}. Given a constrainy € C(X) and a
valuationv, we writev |= g if g is satisfied by the valuation We also write]g] for the
set{v | v |= g}. Given a sefR C X and a valuatior of the clocks inX, v[R] is the
valuation defined by[R](x) = v(z) if z ¢ R andv[R](z) = 0 otherwise.

2.2 Timed Words

The set of finite (resp. infinite) words over is X* (resp.X“) and we letY> =

X* U X, Alanguagel is any subset of2*°. A finite (resp. infinite)timed wordover

XY is a word in(R>0.X2)*.R>¢ (resp.(Rx>o.X)*). Duration(w) is the duration of a
timed wordw which is defined to be the sum of the durationsKig,) which appear in

w; if this sum is infinite, the duration iso. Note that the duration of an infinite word
can be finite, and such words which contain an infinite number of letters, are called
Zenowords. We letUnt(w) be theuntimedversion ofw obtained by erasing all the
durations inw. An example of untiming i&Jnt(0.4 a 1.0 b 2.7 ¢) = abe. In this paper

we write timed words a8.4 a 1.0 b 2.7 ¢--- where the real values are the durations
elapsed between two letters: thusccurs at global timd.1.

TW* (X)) is the set of finite timed words over, TW” (X), the set of infinite timed
words andTW(X) = TW*(X) U TWY(X). A timed languagés any subset ofW(X').

Let 5 be the projection of timed words GW(X") over timed words oTW(X").
When projecting a timed word on a sub-alphabef’ C ¥, the durations elapsed bet-
ween two events are set accordingly: for instance for the timed Wdrd 1.0 b 2.7 c,
we haverm, (0.4 a 1.0 b 2.7 ¢c) = 0.4 a 3.7 ¢ (note that projection erases some
letters but keep the time elapsed between two letters). Given a timed languagdet
unt(L) = {Unt(w) | w € L}. GivenX' C X, wx/ (L) = {wx(w) | w € L}.

2.3 Timed Automata

Timed automata are finite automata extended with real-valued clocks to specify timing
constraints between occurrences of events. For a detailed presentation of the funda-
mental results for timed automata, the reader is referred to the seminal paper of R. Alur
and D. Dill [15].

Definition 1 (Timed Automaton). A Timed AutomatonA is a tuple(L, Iy, X, X, E,

Inv, F, R) where: L is a finite set oflocations [, is theinitial location, X is a finite
set of clocks X is a finite set ofactions £ C L x C(X) x X, x 2% x L is a finite
set of transitions in a transition (¢, g, a,r,¢'), g is theguard a the action andr the
resetset; as usual we often write a transitigh-2“"~ ¢’; Inv € C(X)" associates
with each location annvariant as usual we require the invariants to be conjunctions
of constraints of the form < ¢ with <€ {<,<}; F C L is the set offinal locations
and R C L is the set ofrepeatedocations. [|

The size of a TAA is denoted A| and is the size of the clock constraints i.e., the size
of the transition relatiotk. A stateof A is a pair(¢,v) € L x RZ;. A run g of A from
(Lo, vo) is a (finite or infinite) sequence of alternatidglayanddiscretemoves:

Ap—1 on

0 = (€o,v0) B, (o, v0 + 80) == (£1,v1) -+ —— (Lnyvn) — (Lnyvn +) - -
s.t. for everyi > 0:

—v; + 0 E Inv(¢;) for0 < § < 6;;
— there is some transitiof¥;, g;, a;, 5, ¢i+1) € E S.t.: ¢) v; + 0; E ¢, (13) vig1 =
(Ui + (SZ)[’I’z]

The set of finite (resp. infinite) runs iA from a states is denotedRuns (s, A) (resp.
Run$’(s, A)). We letRuns (A) = Runs$(sg, A), Rung’(A) = Runs$’(sg, A) with s =
(l0,0), andRungA) = Runs(A4) U Run&’ (A). If ¢ is finite and ends ir,,, we let
last(o) = s,. Because of the denseness of the time domain, the unfolding as
a graph is infinite (uncountable number of states and delay edges}raldeetr (o),
of a runy is the timed wordr 5 (dpagpdiay - - - andy - - -). The duration of the rump is
Duration(g) = Duration(tr()). ForV C RungA), we letTr(V) = {tr(o) | 0 € V'},
which is the set of traces of the runslin

A finite (resp. infinite) timed wordy is acceptedoy A if it is the trace of a run of
A that ends in arf'-location (resp. a run that reaches infinitely oftenRdhocation).
L*(A) (resp.L“(A)) is the set of traces of finite (resp. infinite) timed words accepted
by A, andL(A) = £*(A) U L~(A) is the set of timed words accepted Hy

In the sequel we often omit the sdtaand F' in TA and this implicitly meand” = L
andR = .

A timed automatom is deterministicif there is nor labelled transition in4, and
if, whenever(¢, g, a,r, ¢') and (¢, ¢’,a,r’,¢") are transitions o4, g A ¢ = FALSE.
A is completeif from each statg/, v), and for each actiom, there is a transition
(¢, g,a,r,¢") such that = g. We note DTA the class of deterministic timed automata.

A finite automaton is a particular TA withh = @. Consequently guards and invari-
ants are vacuously true and time elapsing transitions do not exist. We Avrite(Q,

q, X, E, F, R) for afinite automaton. A run is thus a sequence of the farm:¢, 2%
JZREERED gnt, ¢, --- where for eachi > 0, (¢;,a;,¢;11) € E. Definitions of traces
and languages are the same as for TA. For FA, the duration of a isithe number
of steps (includingr-steps) ofo: if ¢ is finite and ends i®,,, Duration(o) = n and
otherwiseDuration(p) = oo.

2.4 Region Graph of a Timed Automaton

A regionof R, is a conjunction ohtomicconstraints of the form > c orz — y i ¢
with ¢ € Z, =€ {<,<,=,>,>} andz,y € X. Theregion graph RGA) of a TA A

is a finite quotient of the infinite graph of which is time-abstract bisimilar td [15].

It is a finite automaton on the alphab®Bt = E U {r}. The states oRG(A) are pairs
(¢,r) wherel € L is alocation ofA andr is aregionof R . More generally, the edges
of the graph are tuple&, ¢, s’) wheres, s’ are states o0RG(A) andt € E’. Genuine
unobservable moves of labelledr are labelled by tuples of the fors, (g, 7,7), s’)

in RG(A). An edge(g, A, R) in the region graph corresponds to a discrete transition of
A with guardyg, actionX and reset se®. A 7 move inRG(A) stands for a delay move to
the time-successor region. The initial stateR@(A) is (I, 0). A final (resp. repeated)
state ofRG(A) is a stat€?, r) with ¢ € F (resp. € R). A fundamental property of the
region graph [15] is:

Theorem 1 (R. Alur and D. Dill, [15]). £L(RG(A)) = Unt(L(A)).

The (maximum) size of the region graph is exponential in the number of clocks and in
the maximum constant of the automatdrgsee [15])|RG(A)| = |L|-| X|!-2/X]. KX
whereK is the largest constant used4n

2.5 Product of Timed Automata

Given an locations(y, - - - , £,,, we write/ for the tuple(¢;,- - - ,£,) and letl[i] = ¢;.
Givenalettem € X1 U---U X", we letl(a) = {k | a € X*}.

Definition 2 (Product of TA). Let A; = (L;, 1}, X;, X%, E;, Inv;), i € {1,--- ,n},
ben TAs.t.X; N X; = @ fori # j. Theproductof the A4; is the TAA = A; x

“x Ay, = (Lo, X, X7, E,InV) given by:L = Ly X --+ x Ly; log = (I§,--+ ,13);
T=XlU. - UX X =X,U---UX, ECLxCX)x X, x2% x Land
(¢,g,a,r, Z’) € Eif:

— eithera € X'\ {r}, and
1. for eachk € I(a), (Ck], i, a, 71, C [K]) € Ej,
2. 9= Nker(a)9k ANAT = Upcr(a)Tk;
3. fork ¢ I(a), 7 [k] = O[k];

—ora = 7and3js.t.(¢j],9;, 7,75, ¢ [j]) € E;, g = g;, v = r; and fork # j,
7'k) = 7[k).

Inv(f) = AR_, Inv(Z[k]). [|

This definition of product also applies to finite automata (no clock constraints).

If the automatom; has the set of final locatiorfs then the set of final locations for
Ais Fy x---x F,. For Bichi acceptance, we add a countéw A which is incremented
every time the product automatoh encounters arR;-location in 4;, following the
standard construction for product ofiehi automata. The automaton constructed with
the counter: is A™. The repeated set of statesAf isL; X --- x L, 1 X L, X {n}.

As the sets of clocks of tha,’s are disjoint, the following holds:

Factl £L*(A) = NI, L£*(A4;) and LY (AT) = NI, LY(A;).

2.6 Intersection Emptiness Problem

In this section we give some complexity results for the emptiness problem on products
of FA and TA.
First consider the following problem on deterministic finite automata (DFA):

Problem 1 (Intersection Emptiness for DFA)
INPUTS: n deterministic finite automatd;, 1 < ¢ < n, over the alphabeL.
ProBLEM: Check whethen?_, £L*(A;) # @.

The size of the input for Problem 1)8"_, | A;|.

Theorem 2 (D. Kozen, [16]).Problem 1 is PSPACE-complete.

D. Kozen’s Theorem also holds foiiBhi languages:

Theorem 3. Checking whethen?’_, £¥(A;) # @ is PSPACE-complete.

Problem 1 is PSPACE-hard evendf, - - - , A,, are automata where all the states are
accepting andd, is the only automaton with a proper set of accepting states (actually
one accepting state is enough).

Proposition 1. Let A;,1 < i < n ben DFA over the alphabel. Ifforall 4;,2 <i <
n, all states ofA4; are accepting, Problem 1 is already PSPACE-hard.

The next results are counterparts of D. Kozen'’s results for TA.

Problem 2 (Intersection Emptiness for TA)

INPUTS n TAA; = (LZ', lé,Xi, E:_,E“ Inv;, Fi), 1 < i < nwith XN Xj = o for
k+#j.

ProBLEM: Check whethen?_, £L*(A;) # @.

Theorem 4. Problem 2 is PSPACE-complete.

The previous theorem extends tédhi languages:

Problem 3 (Blichi Intersection Emptiness for TA)

INPUTS n TAA; = (L, 1§, X;, X8, By Inv, R;), 1 < i < nwith X, N X; = @ for
k7.

ProBLEM: Check whethen?_, £ (A4;) # @.

Theorem 5. Problem 3 is PSPACE-complete.

2 For finite automata, this is is vacuously true.

3 Fault Codiagnosis Problems

We first recall the basics dhult diagnosis The purpose of fault diagnosis [3] is to
detect a fault in a system as soon as possible. The assumption is that the model of the
system is known, but only a subsgt, of the set of eventd.’ generated by the system
are observable. Faults are also unobservable.

Whenever the system generates a timed word TW*(X'), an external observer
can only seerx_(w). If an observer can detect faults under this partial observation of
the outputs of4, it is called adiagnoser We require a diagnoser to detect a fault within
a given delayA € N.

To model timed systems with faults, we use timed automata on the alphabet
X, U{f} wheref is thefaulty (and unobservable) event. We only consider one type
of fault, but the results we give are valid for many-types of fadlfs, fo, -, fn}:
indeed solving the many-types diagnosability problem amounts to solvime-type
diagnosability problems [5]. The observable events are givetwhyC X andr is
always unobservable.

The idea ofdecentralizedr distributeddiagnosis was introduced in [8]. It is based
on decentralized architectures: local diagnosers and a communication protocol. In these
architectures, local diagnosers (with their own partial view of the system) can send to a
coordinator some information, using a given communication protocol. The coordinator
then computes a result from the partial results of the local diagnosers. The goal is to
obtain a coordinator that can detect the faults in the system. When local diagnosers do
not communicate with each other nor with a coordinator (protocol 3 in [8]), the decent-
ralized diagnosis problem is calleddiagnosig10,9]. In this section we formalize the
notion of codiagnosability introduced in [10] in a style similar to [17]. This allows us to
obtain a necessary and sufficient condition for codiagnosability of FA but also to extend
the definition of codiagnosability timed automata

In the sequel we assume that the model of the system is.d FA(L, lp, X, X, ¢,
E,Inv) and is fixed.

3.1 Faulty Runs
Let A € N.Aruno = (Lo, v0) 2% (Lo, v0 + 80) 2> (61,v1) -+ == (Lo, vp) 2

(bn,vn + 0) --- oOf Alis A-faulty if: (1) there is an index s.t.a; = f and (2) the

duration ofo’ = (4;,v;) LRI (b, vn + 0,) - -+ is larger or equal taA. We

let Faultys. ,(A) be the set ofA-faulty runs of A. Note that by definition, ifA’ >
A thenFaulty., »,(A) C Faulty. ,(A). We letFaulty(A) = UasoFaultys o(A) =
Faulty.,(A) be the set of faulty runs of, andNonFaulty A) = RungA) \ Faulty(A)
be the set of non-faulty runs ef. Finally, we letFaulty?, , (4) = Tr(Faulty- ,(A)) and
NonFaulty' (4) = Tr(NonFaulty A)) which are the tracé€sf A-faulty and non-faulty
runs of A.

We also make the assumption that the AZ&annot prevent time from elapsing. For
FA, this assumption is that from any state, a discrete transition can be taken. If it is not

% Notice thattr (o) erases andf.

case; loop actions can be added with no impact on the (co)diagnosability status of the
system. This is a standard assumption in diagnosability and is required to avoid taking
into account these cases that are not interesting in practice.

For discrete event systems (FA), the notion of time is the number of transitions
(discrete steps) in the system.faulty run is thus a run with a fault actighfollowed
by at leastA discrete steps (some of them canb@r evenf actions). When we
consider codiagnosability problems for discrete event systems, this definitigh of
faulty runs apply. The other definitions are unchanged.

Remark 1. A timed automaton where discrete actions are separated by one time unit is
not equivalent to using a finite automaton when solving a fault diagnosis problem. For
instance, a timed automaton can generate the timed whorfl$.a and1.7.1.7.1.a. In

this case, it isl-diagnosable: after reading the timed wdtd: we announce a fault. If

we do not see thé-time unit durations, the timed wordgéa and 72.a give the same
observation. And thus it is not diagnosable if we cannot measure time. Using a timed
automaton where discrete actions are separated by one time unit gives to the diagnoser
the ability to count/measure time and this is not equivalent to the fault diagnosis prob-
lem for FA (discrete event systems).

3.2 Codiagnosers and Codiagnosability Problems

A codiagnoseris a tuple of diagnosers, each of which has its own set of observable
eventsy;, and whenever a fault occurs, at least one diagnoser is able to detect it. In
the sequel we writer; in place ofrwy;, for readability reasons. A codiagnoser can be
formally defined as follows:

Definition 3 ((4, £)-Codiagnoser).Let A be a timed automaton over the alphabet
Y5 AeNand€ = (X;)i1<i<, be afamily of subsets df. A (A, £)-codiagnoser
for Ais amappingD = (Dy,--- , D,,) with D; : TW*(%;) — {0, 1} such that:

— for eachp € NonFaultyf A), >°""_| D[i](m;(tr (o)) = 0,

— for eachp € Faulty. ,(A), >"7, D[i](m;(tr(0))) > 1. [|

As for diagnosability, the intuition of this definition is thaj {he codiagnoser will raise
an alarm D outputs a value different froi)) when aA-faulty run has been identified,
and that {7) it can identify thoseA-faulty runs unambiguously. The codiagnoser is
not required to do anything special fa¥'-faulty runs withA’ < A (although it is
usually required that once it has announced a fault, it does not change its mind and keep
outputting1).

Ais (A, £)-codiagnosable if there exist a, £)-codiagnoser foA. A is £-codia-
gnosable if there is somé& € N s.t. Ais (A, £)-codiagnosable.

The standard notions [3] af\-diagnosability andA-diagnoser are obtained when
the family € is the singletorf = {X'}. The fundamental codiagnosability problems for
timed automata are the following:

Problem 4 (A, £)-Codiagnosability)
INPUTS ATAA = (L, 1o, X, 2 ¢, E,Inv), A e Nand€ = (X;)1<i<n-
PROBLEM: Is A (A, £)-codiagnosable?

Problem 5 (Codiagnosability)
INPUTS ATAA = (L, lg, X, 27-7f, F, |nV) andé = (Ei)lgign-
PROBLEM: Is A £-codiagnosable?

Problem 6 (Optimal delay)
INPUTS. ATAA = (L, lg, X, 27-7f, FE, |nV) andé = (Ei)lgign-
ProBLEM: What is the minimum s.t. A is (A, £)-codiagnosable?

The size of the input for Problem 4 jid| + log A + n - | X|, and for Problems 5 and 6
itis |[A| +n - |X|.

In addition to the previous problems, we will consider the construction(af,&)-
codiagnoser whed is (A, £)-codiagnosable in section 5.

3.3 Necessary and Sufficient Condition for Codiagnosability

In this section we generalize the necessary and sufficient condition for diagnosabil-
ity [6,17] to codiagnosability.

Lemma 1. Ais not(4, £)-codiagnosable if and only He € Faulty, ,(A4) and
V1 < i <mn,3Jp; € NonFaultf A) s.t. w;(tr(o)) = m;(tr(o:)). 1)

Using Lemma 1, we obtain a language based characterisation of codiagnosability ex-
tending the one given in [6,17]. Let; ' (X) = {w € TW*(X) | m;(w) € X}.

Lemma 2. Ais (A, £)-codiagnosable if and only if

Faulty? ,(A4) N - 7; ! (m;(NonFaulty (4)))) = @.)
an (e)

4 Algorithms for Codiagnosability Problems

4.1 (A, &)-Codiagnosability (Problem 4)

Deciding Problem 4 amounts to checking whether equation 2 holds or not. Recall that
A = (L,ly, X, X, s, E,Inv). Lett be a fresh clock not inX. Let Af(A) = ((L x
{0,1}) U{Bad}, (1p,0), X U {t}, X+, Ey, Invy) with:

- ((4,n),g,\,r,({',n)) € Efif (6,g,\,r,0')e E,Xxe€ X U{T};
- ((¢,0),g,7,rU{t}, (¢,1)) € Efif (¢, 9, f,r,0) € E;
—forte L, ((¢,1),t > A, 1,2, Bad) € Ey;

— Invs((4,n)) = Inv(0).

Af(A) is similar to A but when a fault occurs it switches to a copy4{encoded by
n = 1). When sufficient time has elapsed in the copy (more thdime units), location
Badcan be reached. The language accepted) with the set of final statefBad}
is thusL* (A (A)) = Faulty ,(A). DefineA; = (L,ly, X;, X, E;, Inv;) with:

- X; = {z' | z € X} (create copies of clocks of);

-, gi,\,r,0) € E;if (6,g,\,r,0') € E, X\ € X; U{r} with: g; is g where the
clocksz in X are replaced by their counterpamtsin X;; r; is r with the same
renaming;

- (&gi,T,ri,K’) € E;if (f,g,)\,T,gl) IS IPNS Z\El

— Inv;(¢) = Inv(¢) with clock renaming« in place ofz).

Each A; accepts only non-faulty traces as tligransitions are not i4;. If the set
of final locations isL for eachA;, then £*(A;) = m;(NonFaulty’(A)). To accept
m; ! (m;(NonFaulty (4)) we add transitiong¢, TRUE, A, @, £) for each locatior? of

E; and for each\ € X'\ X;. Let AF be the automaton on the alphatietconstructed
this way. By definition ofA}, £*(A}) = w; " (m;(NonFaulty (4))).

DefineB = Af(A) x A7 x A} x --- x A¥ with the set of final locationgs =
{Bad} x L x --- x L. We letRz = @. Using equation 2 we obtain:

Lemma 3. Ais (A, £)-codiagnosable if.*(B) = &.

The size of the input for problem 4 jgl| + log A + n - |X|. The size ofA/(A) is
(linear in) the size ofd andlog A, i.e.,O(|A|+1log A). The size ofA} is also bounded
by the size ofA. It follows that| A7 (A)| + Y"1, |A7| is bounded byn + 1)|A| and is
polynomial in the size of the input of problem 4. We thus have a polynomial reduction
from Problem 4 to the intersection emptiness problem for TA. We can now establish the
following result:

Theorem 6.Problem 4 is PSPACE-complete for Timed Automata. Itis already PSPACE-
hard for Deterministic Finite Automata.

4.2 &-Codiagnosability (Problem 5)

In this section we show how to solve thecodiagnosability problem. The algorithm is
a generalisation of the procedure for deciding diagnosability of discrete event and timed
systems (see [18] for a recent presentation).

For standard fault diagnosis (one diagnoser &nd {X'}), A is not diagnosable if
there is an infinite faulty run il the projection of which is the same as the projection
of a non-faulty one [18].

The procedure for checking diagnosability of FA and TA slightly differ due to spe-
cific features of timed systems. We recall here the algorithms to check diagnosability of
FA and TA [18,6] and extend them to codiagnosability.

Codiagnosability for Finite Automata. To check whether a FA is diagnosable, we
build a synchronized product’ x A;, s.t. Af behaves exactly likel but records in
its state whether a fault has occurred, ahdbehaves liked without the faulty runs
(transitions labellegf are cut off). This corresponds té/(A) defined in section 4.1
without the clockA.

A faulty runin the productd/ x A; is a run for whichA’ reaches a faulty state
of the form(q, 1). To decide whethed is diagnosable we build an extended version of

10

AT x A, which is a Bichi automator [18]: B has a boolean variabkewhich records
whetherA/ participated in the last transition fired by x A;. A state ofB3 is a pair
(s,2) wheres is a state ofAf x A;. B is given by the tuplg(Q x {0,1} x Q) x
{Oﬂ 1}ﬂ ((qoa O), q0, 0)7 ET, —n5,9, RB) with:

— (s,2) 255 (', 2') if (i) there exists a transitioh: s = s’ in Af x Ay, and(ii)
z' = 1if Xis a move ofd/ andz’ = 0 otherwise;
- RB = {(((qa 1)7q/)7 1) ‘ ((q7 1),(]/) S Af X Al}

The important part of the previous construction relies on the fact that, fobe nonX’-
diagnosableA’ should have an infinite faulty run (and take infinitely many transitions)
and A, a corresponding non-faulty run (note that this one can be finite) giving the
same observation. With the previous construction, we have [A83: diagnosable iff
LY(B) = @.

The construction for codiagnosability is an extension of the previous one adding
Ay, .-+, A, tothe product. LeB® = Af x A, x---x A, with A; defined in section 4.1.
In B°° we again use the variableto indicate whetherl” participated in the last move.
Define the set of repeated stated36f by: Rs-- = {(((¢,1),9),1) | ((¢,1),q) € Af x
A x---x Ay}, By construction, a state iig<. is: (1) faulty as it contains a component
(¢, 1) for the state ofd/ and (2) A’ participated in the last move as= 1. It follows
that:

Lemma 4. A is £-codiagnosable if£« (B°) = @.

Theorem 7. Problem 5 is PSPACE-complete for Deterministic Finite Automata.

Codiagnosability for Timed Automata. Checking diagnosability for timed automata
requires an extra step in the construction of the equivalent of autonthefined
above: indeed, for TA, a run having infinitely many discrete steps could welebeg
i.e., the duration of such a run can be finite. This extra step in the construction was first
presented in [6]. It can be carried out by adding a special timed autorDatavith two
locations{0, 1} and synchronizing it wittd x A;. If we useF’ = @ andR = {1} for
Div, any accepted run téne divergenaind thus cannot be zeno. IBt= A/ x Divx A4;
and letFp = @ andRp be the set of states where is in a faulty location andiv is
in location1. For standard fault diagnosis, the following holds [6,18]s diagnosable
iff L2(D) = o.

The construction to check codiagnosability is obtained by adding - - , 4,, in
the product. LeD = Af x Div x A; x --- xA,,.

Lemma 5. A is £-codiagnosable ifC“ (D) = .

Theorem 8. Problem 5 is PSPACE-complete for Timed Automata.

4.3 Optimal Delay (Problem 6)

Using the results for checkingrcodiagnosability andA, £)-codiagnosability, we ob-
tain algorithms for computing the optimal delay.

11

Lemma 4 reduces codiagnosability of FA ta@i&hi emptiness on a product auto-
maton. The number of states of the automaRsh is bounded byt - |A|", and the
number of faulty states - | A|™. This implies that:

Proposition 2. Let A be a FA. IfA is £-codiagnosable, thed is (2 - | A|", £)-codia-
gnosable.

From Proposition 2, we can conclude that:
Theorem 9. Problem 6 can be solved in PSPACE for FA.

For timed automata, a similar reasoning can be done on the region grdphi.df a
TA A is £-codiagnosable, there cannot be any cycle with faulty locatiofRG(D<°).
Otherwise there would be a non-zeno infinite wordifD<°) and thus an infinite time-
diverging faulty run inA, with corresponding non-faulty runs in eaeh, giving the
same observation. L&t be the size oRG(D). If A is £-codiagnosable, then a faulty
state inRG(D*°) can be followed by at most” states. Otherwise a cycle in the region
graph would occur and thu” (D<) would not be empty. This also implies that all the
stateq(s, r) in RG(D<°) that can follow a faulty state must havdaundedregion. As
the amount of time that can elapse in one region is at mtste unit', the maximum
duration of a faulty run irD° is bounded by. This implies that:

Proposition 3. Let A be a TA. IfA is £-codiagnosable, theA is (K, £)-codiagnosable
with K = |RG(D*°)|.

The size of the region graph & is bounded byL|"t!-((n+1)| X |+1)!-2(»+DIX[+1.
M +DIXI+1 Thus the encoding of constahit has sizeO (n - |A).

Theorem 10. Problem 6 can be solved in PSPACE for Timed Automata.

5 Synthesis of Codiagnosers

The reader is referred to the extended version of this paper [14] for a detailed presenta-
tion of this section. The synthesis of codiagnosers for FA and TA can be carried out by
extending the known construction for diagnosers [3].

The construction of a diagnoser for timed automata [6] consists in compmting
the-flythe current possible states of the timed automatomfter reading a timed word
w. This procedure is effective but gives a diagnoser which is a Turing machine. The
machine computes a state estimatedadfter each observable event, and if it contains
only faulty states, it announces a fault.

Obviously the same construction can be carried out for codiagnosis: we define the
Turing machinesV/;, 1 < i < n that estimate the state df. When onel/;’s estimate
on an inputy;-tracew contains only faulty states, we sBt(w) = 1 and0 otherwise.
This tuple of Turing machines is@&, £)-codiagnoser.

Computing the estimates with Turing machines might be too expensive to be im-
plemented at runtime. More efficient and compact codiagnosers might be needed with
reasonable computation times. In the next section, we address the problem of codia-
gnosis for TA undebounded resources

4 The constants in the automata are integers.

12

6 Codiagnosis with Deterministic Timed Automata

The fault diagnosis problem using timed automata has been introduced and solved by
P. Bouyeret al.in [7]. The problem is to determine, given a TA whether there exists
adiagnoserD for A, that can be represented by a deterministic timed automaton.

6.1 Fault Diagnosis with Deterministic Timed Automata

When synthesizing (deterministic) timed automata, an important issue is the amount
of resourcesthe timed automaton can use: this can be formally defined [19] by the
(number of) clocksZ, that the automaton can use, the maximal constant, and a
granularity L. As an example, a TA of resourge= ({c,d}, 2, 1) can use two clocks,

c andd, and the clocks constraints using the rationa®s< k/m < 2 wherek € Z and

m = 3. A resourcey is thus a tripleu = (Z, max, +) whereZ is finite set of clocks,

m

max € Nand-l € Q. is thegranularity. DTA,, is the class of DTA of resourge.

m

Remark 2. Notice that the number of locations of the DTA in DisAot bounded and
hence this family has an infinite (yet countable) number of elements.

If a TA Ais A-diagnosable with a diagnoser that can be represented by alDWih
resourceu, we say thatd is (A, D)-diagnosable. P. Bouyet al.in [7] considered the
problem of deciding whether there exists a DTA diagnoser with resqurce

Problem 7 (A-DTA-Diagnosability [7])
INPUTS ATAA = (L, 1y, X, Y- 5, E,Inv), A € N, aresourceu = (Z, max, %).
PROBLEM: Is there anyD € DTA, s.t. A is (A, D)-diagnosable ?

Theorem 11 (P. Bouyeret al., [7]). Problem 7 is 2EXPTIME-complete.

The solution to the previous problem is based on the constructiortved-glayer
safety gameG 4, 4 ... In this game a set of stateBad must be avoided foA to be A-
diagnosable. The most permissive winning strategy givesdta all DTA, diagnosers
(the most permissive diagnosers) which can diagabés & is there is none). We refer
to the extended version [14], section 6.1 for a detailed presentation of this construction.

6.2 Algorithm for Codiagnosability

In this section we include the alphabBtof a DTA in the resource. and writey =
(X, Z, max, %)

Problem 8 (A-DTA-Codiagnosability)

INPUTS ATAA = (L, 1o, X, 2, ¢, E, Inv), A € N, and a family of resourceg;
(Ei, Z;, max;, mL)’ 1 <i < nwith X, C M.

PROBLEM: Is there any codiagnosepd = (D1, Da,--- , D,,) with D; € DTA,, s.t.A
is (4, D)-codiagnosable ?

13

Synthesis

A-Codiagnosability| Codiagnosability| Optimal Delay (Bounded Resources)

A PSPACE-C. PSPACE-C. PSPACE EXPTIME
PTIME [5,4] PTIME [5,4] PTIME [5,4] EXPTIME [3]
A PSPACE-C. PSPACE-C. PSPACE 2EXPTIME-C.

PSPACE-C.[6] | PSPACE-C.[6] | PSPACE [18] | 2EXPTIME-C.[7]
Table 1. Summary of the Results

To solve Problem 8, we extend the algorithm given in [7] for DTA-diagnosability. Let
G' be the game>4 4 ,, andBad; the set of bad states. Given a stratefgywe let
f:(G%) be the outconteof G* when f; is played by Player 0. Givem € TW*(Y) and

a DTA A on X, we letlast(w, A) be the location reached whenis read byA.

Lemma 6. A is (4, D)-codiagnosable iff there is a tuple of strategiés.t.
(1) V1 <i < n, f[i] is state-based on the gani®, and
= . i(G* <i<
(2) vaw € Tr(A) If S; |aSt'(7T21(w)7fl(G), 1<i<n,
thendl < j <n, s.t.5; ¢ Bad;.

Item (2) of Lemma 6 states that there is no worddirior which all the Player 0 in the
gameg’‘ are in bad states. The strategies for each Player 0 are not necessarily winning
in eachG", but there is always one Player 0 who has not lost the gafmé&rom the
previous Lemma, we can obtain the following result:

Theorem 12. Problem 8 is 2EXPTIME-complete.

7 Conclusion & Future Work

Table 1 gives an overview of the results described in this paper (bold face) for the co-
diagnosis problems in comparison with the results for the diagnosis problems (second
line, normal face). Our ongoing work is to extend the resultdiagnosis using dynamic
observerg20,17] to the codiagnosis framework.

AckowledgementsThe author would like to thank the anonymous reviewers for their
helpful comments.

References

1. Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event processes. SIAM
Journal of Control and Optimizatid®B(1) (1987) 1202-1218

2. Ramadge, P., Wonham, W.: The control of discrete event systems. Proc. of th@ TARE
(1989) 81-98

5 f:(G") is a timed transition system.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Diagnosab-
ility of discrete event systems. IEEE Transactions on Automatic CoA@@) (September
1995)

. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial algorithm for testing diagnos-
ability of discrete event systems. IEEE Transactions on Automatic Cof8) (August
2001)

. Yoo, T.S., Lafortune, S.: Polynomial-time verification of diagnosability of partially-observed
discrete-event systems. |IEEE Transactions on Automatic Cofif(8) (September 2002)
1491-1495

. Tripakis, S.: Fault diagnosis for timed automata. In Damm, W., Olderog, E.R., eds.: Proceed-
ings of the International Conference on Formal Techniques in Real Time and Fault Tolerant
Systems (FTRTFT'02). Volume 2469 of LNCS., Springer Verlag (2002) 205-224

. Bouyer, P, Chevalier, F., D'Souza, D.: Fault diagnosis using timed automata. In Sassone, V.,
ed.: Proceedings of the 8th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS’05). Volume 3441 of LNCS., Edinburgh, U.K., Springer
Verlag (April 2005) 219-233

. Debouk, R., Lafortune, S., Teneketzis, D.: Coordinated decentralized protocols for failure
diagnosis of discrete event systems. Discrete Event Dynamic Sy&tig) (2000) 33—-86

. Wang, Y., Yoo, T.S., Lafortune, S.: Diagnosis of discrete event systems using decentralized

architectures. Discrete Event Dynamic Systdii®) (2007) 233—-263

Qiu, W., Kumar, R.: Decentralized failure diagnosis of discrete event systems. IEEE Transac-

tions on Systems, Man and Cybernetics, Part A: Systems and HB6&)$2006) 384-395

Basilio, J., Lafortune, S.: Robust codiagnosability of discrete event systems. In Society, I.C.,

ed.: Proceedings of the American Control Conference (ACC’09). (2009) 2202—2209

Holzmann, G.J.: Software model checking with spin. Advances in Comp@Be005)

78-109

Behrmann, G., David, A., Larsen, K.G.: A tutorial oRPAAL. In Bernardo, M., Corradini,

F., eds.: Formal Methods for the Design of Real-Time Systems: 4th International School

on Formal Methods for the Design of Computer, Communication, and Software Systems,

SFM-RT 2004. Volume 3185 of LNCS., Springer Verlag (September 2004) 200-236

Cassez, F.: The complexity of codiagnosability for discrete event and timed systems. Re-

search report, National ICT Australia (April 2010) 24 pages, document available from arXiv

http://arxiv.org/abs/1004. 2550.

Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Scier&(1994)

183-235

Kozen, D.: Lower bounds for natural proof systems. In: FOCS, IEEE (1977) 254266

Cassez, F., Tripakis, S.: Fault diagnosis with static or dynamic diagnosers. Fundamenta

Informaticae88(4) (November 2008) 497-540

Cassez, F.: A Note on Fault Diagnosis Algorithms. In: 48th IEEE Conference on Decision

and Control and 28th Chinese Control Conference, Shanghai, P.R. China, IEEE Computer

Society (December 2009)

Bouyer, P., D'Souza, D., Madhusudan, P., Petit, A.: Timed control with partial observability.

In Hunt, Jr, W.A., Somenzi, F., eds.: Proceedings of the 15th International Conference on

Computer Aided Verification (CAV'03). Volume 2725 of LNCS., Boulder, Colorado, USA,

Springer (July 2003) 180-192

Cassez, F., Tripakis, S., Altisen, K.: Sensor minimization problems with static or dynamic

observers for fault diagnosis. In: 7th Int. Conf. on Application of Concurrency to System

Design (ACSD’'07), IEEE Computer Society (2007) 90-99

Aceto, L., Laroussinie, F.: Is your model checker on time? on the complexity of model

checking for timed modal logics. J. Log. Algebr. Progr&2-53(2002) 7-51

15

A Proofs for Section 2

A.1 Proof of Proposition 1

Proof. Let Ay, As,--- , A,, ben deterministic automata with accepting statgs Fs,
.-+, F, on the alphabel’. Let A be a fresh letter not itt’. Define automatot; by:
from any state; in F;, add a transitiorig, A, L) where L is new state. Lef] = {1}
andF! be all the states ofl]. It is clear thatC*(A}) = £*(A1).\.

We can prove thah? , £L*(4;) # & < N ,L*(A]) # @. Indeed, assume
w € N, L*(A4;) # @. ThenA; x Ay x --- x A, reaches the stat@1, g2, - , qn)
after readingw andVl < i < n,q; € F;. Thus inA] x A} x --- x A} the same
state can be reached and thepan be fired in the product leading ta, L,---, L).
Conversely, if a wordv is accepted by the produet| x --- x A/, w must end with
A Letw = u. A € NI, L*(A]) # @. After readingu the state of the product must be
(q1,92, -+ ,qn) With V1 < i < n,q; € F;, and the transitions fired when readingre
alsoinA; x Ay x --- x A, which impliesu € NI £L*(4;). O

A.2 Proof of Theorem 4

Proof. PSPACE-hardness follows from the fact that checkijg, £*(A4;) # @ on
finite automata is already PSPACE-hard [16] or alternatively because reachability for
timed automata is PSPACE-hard [15].

PSPACE-easiness can be established as Theorem 31 (section 4.1) of [21]: the re-
gions of the product of TA4; can be encoded in polynomial space in the size of the
clock constraints of the product automaton. An algorithm to check emptiness is ob-
tained by: 1) guessing a sequence of pairs (location,region) in the product automaton
and 2) checking whether it is accepted. This can be done in NPSPACE and by Savitch's
Theorem in PSPACE. ad

A.3 Proof of Theorem 5

Proof. PSPACE-hardness follows from the reduction of Problem 2 to Problem 3 or

again because checkingighi emptiness for timed automata is PSPACE-hard [15].
Consider the product automateh™ the construction of which is described at the

end of section 2.5. PSPACE-easiness is established by: 1) guessing a R&{eldf)

of the form((¢,n),r) and 2) checking it is reachable from the initial state (PSPACE)

and reachable from itself (PSPACE). Ass encoded in binary the result follows. O

B Proofs for Section 3

B.1 Proof of Lemmal
Proof.

— If part. Assume equation (1) holds ardis (A, £)-codiagnosable. Then there is
a codiagnoseD = (Dy,---,D,,) satisfying Definition 3. For each; we must
haveD,(m;(tr(o;))) = 0 because each; is non faulty. But we must also have for
at least one index, D;(m;(tr(0;))) = D;(m;(tr(0))) = 1 because is A-faulty,
which is impossible.

16

— Only If part. Assumed is not(4, £)-codiagnosable andp € Faulty. ,(A), equa-
tion (1) does not hold. In this case, there is an intlexi < n s.t.:

Vo' € NonFaultf A), m;(tr(o)) # m;(tr(¢')).

Define D;(w) = 1 whenw € m;(Faultyl ,(A)) \ 7;(NonFaulty (4)) and 0
otherwise. ThenD = (Dy,---,D,) is a A-codiagnoser ford. Indeed, leto €
NonFaulty A). Thenr;(tr()) € m;(NonFaulty (A)) and thusD; (7;(tr(¢))) = 0.
Let o € Faulty. 4,(A4) and assumé);(m;(tr(g))) = 0 for eachl < i < n. By
definition of D; we must haver;(tr (o)) € m;(NonFaulty (A4)). In this case, there
is some rurp; € NonFaultyf A) s.t.;(tr(o)) = ;(tr(e;)) and thus equation (1)
holds which contradicts the initial assumption. O

B.2 Proof of Lemma 2

Proof. Assume equation 2 does not hold anddet FaultygA(A), and for each <
i <n,w € m; " (m;(NonFaulty (4))). This implies that:

— Jo € Faultys, 5, (4) s.t.tr(p) = w;

— for eachi, w € m; " (m;(NonFaulty (4))) and m;(w) € m;(NonFaulty(A)).
Thus, there is a rup; € NonFaulty A), s.t.7;(w) = m;(tr(o)) = m;(tr(e;)) and
as equation (1) of Lemma 1 is satisfietlis not(A, £)-codiagnosable.

For the converse, assurdeis not (A, £)-codiagnosable. By Lemma 1, equation (1) is
satisfied and:

— there is a rurp with tr () € Faulty? , (A);
— for eachi, there is some; € NonFaulty{A) s.t. 7;(tr(g)) = m;(tr(e;)). Hence
tr(o) € m; ' (m;(NonFaulty (A))) for eachi,

and this implies that equation 2 does not hold. ad

C Proofs for Section 4

C.1 Proof of Lemma3

Proof. The sets of clocks of thd;'s and Af (A) are disjoint: for each < i < j < n,
X,NX; =2andX; N X = @. It follows from Fact 1 thatC*(B) = L*(A/(A)) N
(N, £*(A;)). By Lemma 2 and the construction df (A) and the4;’s, the result
follows. O

C.2 Proof of Theorem 6

Proof. PSPACE-easiness follows from the polynomial reduction above and Lemma 3.
PSPACE-hardness is obtained by reducing the variant ofrifegsection emptiness
problemfor DTA to the (A, £)-codiagnosability problem. This problem is PSPACE-
hard (Proposition 1).

17

Let A;,1 < i < n, ben deterministic finite automata over the alphabetAssume
A, has one accepting state and foy, - - - , A, all states are accepting.

We constructB as shown on Figure L, - -- ,a, are fresh letters not it; the
target state ofi; is the initial state of4;. The initial state ofB is . Let X; = X'\ {a;}
for each2 < i < n. From the final state ofl, there is a transition labelefito a new
statee.

We can prove thaB is (1, £)-codiagnosable if and only ifi_, £*(4;) = @ with
€ = (Xi)1<i<n- Assumew € NI, L*(A;) # @. Take the run of trace.w.f.7 in B.
This run isl-faulty. For eacl? < i < n, there is a run of trace;.w which is non faulty.
Moreover,r;(a;.w) = w and thusB is not(1, £)-codiagnosable.

Now, assumeB is not(1, £)-codiagnosable. There islafaulty run, and this must be
a run of tracer.w. f.7 with w € £L*(A4;), and for eacl2 < i < n, there is a non-faulty
run g; the trace of which is;, with 7;(u;) = w. It must be the case that = a;.w;
as otherwiser; (u;) would start withay, & # i and thus it would be impossible to have
mi(u;) = w. ASu; = a;w;, mi(u;) = w; = w, andw € L*(4;), it follows that
w € N L*(A;) and thus?'_; £*(4;) is not empty.

Finally n_, £*(A;) # @ if and only if B is not(1, £)-codiagnosable.

The size ofBisinO(}_!_, |A;| + n) whichis equal taD (>, |4;|) as|A;| > 1.
The size of the input for Problem 4 is tha¥>"""_ | |4;]) + n - (|X| + n) which is
quadratic and thus polynomial ", |4;|. The intersection emptiness problem for
DTA is polynomially reducible to théA, £)-codiagnosability Problem and Problem 4
is PSPACE-hard for DTA. O

oA Y

Ag

Fig. 1. Reduction for Theorem 6: Automatds

C.3 Proof of Theorem 7

Proof. PSPACE-easiness follows form the fact that checking wheflgi3*°) = &
can be done in PSPACE (Theorem 3). PSPACE-hardness follows from a reduction of

18

Problem 1 to Problem 5 using the same encoding as the one given in the proof of
Theorem 6: the automatdB of Fig. 1 is not(A, £)-codiagnosable foramA € N. O

C.4 Proof of Theorem 8

Proof. The size ofD is in O((n + 1) - |A]) and thus polynomial in the size of the
input of Problem 5|A| + n - | X'|). PSPACE-easiness follows because the intersection
emptiness problem for Bhi automata can be solved in PSPACE. PSPACE-hardness
holds because it is already PSPACE-hard for FA. O

C.5 Proof of Proposition 2

Proof. If £L(B°°) = @ there cannot be a faulty run of length more tRaj{|™ otherwise
at least one faulty statewill be encountered twice on this run, and in this case we could
construct an infinite faulty run which contradicts the fact tBé°) = @. O

C.6 Proof of Theorem 9

Proof. Checking whetheH is £-codiagnosable can be done in PSPACE. If the result
is “yes”, we can do a binary search for the optimal delay: start with- 2 - | A|",

and check whethed is (A, £)-codiagnosable. If “yes”, divide by 2 and so on. The
encoding of2 - |A|™ has sizeD(n - log |A|) and thus is polynomial in the size of the
inputs of Problem 6. O

C.7 Proof of Theorem 10

Proof. Checking whether a TA is £-codiagnosable can be done in PSPACE. If the
result is “yes”, we can do a binary search for the maximum delay: startAvith K =
|RG(B<?)|, and check whethed is (A, £)-codiagnosable. If “yes”, dividel by 2 and

so on. The encoding dk has sizeD(n - |A|) and thus is polynomial in the size of the
input of Problem 6. g

D Proofs for Section 6

D.1 Proof of Lemma 6

Proof.

If part. Assume there is a tuple of state-based stratefjies(f1, fo,-- - , f,,) on each
gameG?, s.t. (2) is satisfied. From (1), each choice of Player Grirdetermines one
transition from each square state (see the definitiorofind square states in sec-

tion 6.1). Thus the graph aoff* can be folded into a set of transitioqs% q
if the choice of Player 0 ig, a,Y in square statéq, g,a). This gives a DTAG"*.
We can then build a diagnosér; defined by the DTA as follows:) for each state
q = {(t1,r1), -, (lg,r)} in G*<, if all the ¢; are A-faulty, ¢ is accepting; &)

19

givenw € Tr(A), if wx,(w) € L(G"), let D;(mx,(w)) = 1 and otherwisd). D

is a A-codiagnoser ford. Indeed, letw € NonFaulty”(A). In each gameZ®-, we

cannot reach a\-faulty state because of (2). Hend€!" , D[i] = 0. Now assume
w € Faulty? ,(A): In eachG*¢ we must reach a statg containing aA-faulty state.
By (2), there is somg s.t.¢; ¢ Bad; and this implies thag, is made only ofA-faulty

states and; is accepting, thu®[j](r s, (w)) = 1.

Only If part. For this part we first show that a tuple of strategfesxists and then ad-
dress the state-based problem. Det= (D1, Ds, - - - , D,,) be the tuple of DTA that dia-
gnosesA. For each gamé&'?, define the strategy; by: leto = (g1, A\1)(g1, A1, Y1) - - -
(gk,h)\k,l)(gk,l,)\kfl,kal)(gk,)\k) be a run inG"'; fi(g) = (g7a,Y) if in D;
the symbolic sequencgy, A1) - - - (gx, \r) reaches a locatiod and there is a trans-
ition (¢, (g,a,Y),#) in D,. By assumption, a® is a A-codiagnoser, for eaclr €
Faultyl ,(A), there is at least on®; which reaches an accepting state after reading
T, (w).

As a consequence, in the corresponding gaffe the state reached is made only
of A-faulty states. Indeed, if a non-faulty state is reachable, then theavigdlso the
projection of a non faulty run. Hende; should announce which is a contradiction.

If w € NonFaulty”(A), all the states reached in eaGh are non faulty.

Now assume we have the strategjgsl < i < n. We can construct state-based
strategies on each ganig. Given f;, (not necessarily winning) o6, let T be the
set of bad states reachable in(G'). Define the languagg; to be the set of words
w € Tr(A) s.t. a state iffy is reachable irf; (G') when readingr 5, (w). These are
the words on whiclyf; is not winning inG*.

Let Reactif; (G')) be the set of states reachableGh. There is a strategyf() to
avoid B; = ReachiG!) \ Reaclif;(G')). Hence there is a state-based stratggthat
avoidsB;.

Let1 < i < n. Consider the gamg 1 (G**!) restricted to the (projections of the)
wordsw € L;. The idea is that oi;, a strategyf;,7 < i is winning inG7. In this
restricted game, we define the 4gt, of bad states that are still reachable. gt ;
be the set of wordsy € Tr(A) s.t. a state iff;;; is reachable in the restricted timed
transition systeny; ;1 (G**1).

Notice that we can construct a state-based strafégshich avoids the same states
asf; does. For each restricted garfjéG*) we define the diagnoséd; as before. If for
somei, £; = &, we can define the diagnosdpg, k£ > i to always announcdéfor each
word.

flisa(A, &)-codiagnoser ford and all thef’[i] are state-based . O

D.2 Proof of Theorem 12

Proof. 2EXPTIME-hardness follows from Theorem 11, from [7]. 2EXPTIME easiness
is obtained using the following algorithm:

1. compute the games’, 1 < i < n;
2. select a state-based strategy on each gaime

20

3. check condition (2) of Lemma 6.

The sizes of the games’ are doubly exponential id, A and the resources; (recall
thatX; is included inu;). There is a doubly exponential number of state-based strategies
for each gamé‘. Once selected we have a DT <.
Checking condition (2) of Lemma 6 can be done on the prodet) x G+¢ x - - - x
G™*¢. It amounts to deciding whether a locationlig x Bad, x - --Bad, is reachable.
Reachability can be checked in PSPACE for product of TA (Theorem 2). As the size of
the input is doubly exponential in the size4fthis results in a 2EXPSPACE algorithm.
Nevertheless, there is no exponential blow up in the number of clocks of the product.
Actually the size ORG(A(A) x G1¢ x -+ x G™¢)is |L|- 22" g2l Altlnl,
(n-|X|)!- 271X g IXT with K the maximal constant id, A, and the resourcgs.
It is doubly exponential in the size of, A and the resources;. Reachability can be
checked in linear time on this graph and thus in doubly exponential time in the size of
A, A and the resources. Step 3 above is done at most a doubly exponential number of
times and the result follows. O

21

