
HAL Id: inria-00493640
https://inria.hal.science/inria-00493640

Submitted on 21 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Complexity of Codiagnosability for Discrete Event
and Timed Systems

Franck Cassez

To cite this version:
Franck Cassez. The Complexity of Codiagnosability for Discrete Event and Timed Systems. Int.
Symp. on Automated Technology for Verification and Analysis (ATVA’10), Sep 2010, Singapore,
Singapore. �inria-00493640�

https://inria.hal.science/inria-00493640
https://hal.archives-ouvertes.fr

The Complexity of Codiagnosability
for Discrete Event and Timed Systems

Franck Cassez⋆

National ICT Australia & CNRS
The University of New South Wales

Sydney, Australia

Abstract. In this paper we study the fault codiagnosis problem for discrete event
systems given by finite automata (FA) and timed systems given by timed auto-
mata (TA). We provide a uniform characterization of codiagnosability for FA and
TA which extends the necessary and sufficient condition that characterizes dia-
gnosability. We also settle the complexity of the codiagnosability problems both
for FA and TA and show that codiagnosability is PSPACE-complete in both cases.
For FA this improves on the previously known bound (EXPTIME) and for TA it is
a new result. Finally we address the codiagnosis problem for TA under bounded
resources and show it is 2EXPTIME-complete.

1 Introduction

Discrete-event systems [1,2] (DES) can be modelled by finite automata (FA) over an
alphabet ofobservableeventsΣ.

The fault diagnosis problemis a typical example of a problem under partial ob-
servation. The aim of fault diagnosis is to detectfaulty sequences of the DES. The
assumptions are that the behavior of the DES is known and a model of it is available as
a finite automaton over an alphabetΣ∪{τ, f}, whereΣ is the set of observable events,
τ represents the unobservable events, andf is a special unobservable event that corres-
ponds to the faults: this is the original framework introduced by M. Sampathet al. [3]
and the reader is referred to this paper for a clear and exhaustive introduction to the sub-
ject. A faulty sequence is a sequence of the DES containing an occurrence of eventf .
An observerwhich has to detect faults, knows the specification/model of the DES, and
it is able to observe sequences ofobservableevents. Based on this knowledge, it has to
announce whether an observation it makes (inΣ∗) was produced by a faulty sequence
(in (Σ ∪ {τ, f})∗) of the DES or not. Adiagnoser(for a DES) is an observer which
observes the sequences of observable events and is able to detect whether a fault event
has occurred, although it is not observable. If a diagnoser can detect a fault at most∆
steps1 after it has occurred, the DES is said to be∆-diagnosable. It is diagnosable if
it is ∆-diagnosable for some∆ ∈ N. Checking whether a DES is∆-diagnosable for

⋆ Author supported by a Marie Curie International Outgoing Fellowship within the 7th European
Community Framework Programme.

1 Steps are measured by the number of transitions in the DES.

a given∆ is called thebounded diagnosability problem; checking whether a DES is
diagnosable is thediagnosability problem.

Checkingdiagnosabilityfor a given DES and a fixed set of observable events can
be done in polynomial time using the algorithms of [4,5]. If a diagnoser exists there is a
finite state one. Nevertheless the size of the diagnoser can be exponential as it involves
a determinization step. The extension of this DES framework to timed automata (TA)
has been proposed by S. Tripakis in [6], and he proved that the problem of checking
diagnosability of a timed automaton is PSPACE-complete. In the timed case however,
the diagnoser may be a Turing machine. The problem of checking whether a timed
automaton is diagnosable by a diagnoser which is adeterministictimed automaton was
studied by P. Bouyeret al. [7].

Codiagnosabilitygeneralizes diagnosability by consideringdecentralized architec-
tures. Such decentralized architectures have been introduced in [8] and later refined
in [9,10]. In these architectures, local diagnosers (with their own partial view of the
system) can send some information to a coordinator, summarizing their observations.
The coordinator then computes a result from the partial results of the local diagnosers.
The goal is to obtain a coordinator that can detect the faults in the system. When local
diagnosers do not communicate with each other nor with a coordinator (protocol 3
in [8]), the decentralized diagnosis problem is calledcodiagnosis[10,9]. In this case,
codiagnosis means that each fault can be detected by at least one local diagnoser. In the
paper [10], codiagnosability is considered and an algorithm to check codiagnosability
is presented for discrete event systems (FA). An upper bound for the complexity of the
algorithm is EXPTIME. In [9], the authors consider ahierarchical frameworkfor de-
centralized diagnosis. In [11] a notion ofrobustcodiagnosability is introduced, which
can be thought of as afault tolerant(local diagnosers can fail) version of codiagnosabil-
ity. None of the previous papers has addressed the codiagnosability problems for timed
automata. Moreover, the exact complexity of the codiagnosis problems is left unsettled
for discrete event systems (FA).

Our Contribution. In this paper, we study the codiagnosability problems for FA and
TA. We settle the complexity of the problems for FA (PSPACE-complete), improv-
ing on the best known upper bound (EXPTIME). We also address the codiagnosability
problems for TA and provide new results: algorithms to check codiagnosability and also
codiagnosability under bounded resources. Our contribution is both of theoretical and
practical interests. The algorithms we provide are optimal, and can also be implemen-
ted using standard model-checking tools like SPIN [12] for FA, or UPPAAL [13] for
TA. This means that very expressive languages can be used to specify the systems to
codiagnose and very efficient implementations and data structures are readily available.

Organisation of the Paper.Section 2 recalls the definitions of finite automata and timed
automata. We also give some results on the Intersection Emptiness Problems (sec-
tion 2.6) that will be used in the next sections. Section 3 introduces the fault codiagnosis
problems we are interested in, and a necessary and sufficient condition that character-
izes codiagnosability for FA and TA. Section 4 contains the first main results: optimal
algorithms for the codiagnosability problems for FA and TA. Section 5 describes how

2

to synthesize the codiagnosers and the limitations of this technique for TA. Section 6 is
devoted to the codiagnosability problem under bounded resources for TA and contains
the second main result of the paper.

Omitted proofs can be found in the full version of this paper [14].

2 Preliminaries

Σ denotes a finite alphabet andΣτ = Σ∪{τ} whereτ 6∈ Σ is theunobservableaction.
B = {TRUE, FALSE} is the set of boolean values,N the set of natural numbers,Z the
set of integers andQ the set of rational numbers.R is the set of real numbers andR≥0

(resp.R>0) is the set of non-negative (resp. positive) real numbers. We denote tuples
(or vectors) byd = (d1, · · · , dk) and writed[i] for di.

2.1 Clock Constraints

Let X be a finite set of variables calledclocks. A clock valuationis a mappingv : X →
R≥0. We letRX

≥0 be the set of clock valuations overX. We let0X be thezerovaluation
where all the clocks inX are set to0 (we use0 whenX is clear from the context).
Givenδ ∈ R, v + δ is the valuation defined by(v + δ)(x) = v(x) + δ. We letC(X)
be the set ofconvex constraintson X, i.e., the set of conjunctions of constraints of the
form x ⊲⊳ c with c ∈ Z and⊲⊳∈ {≤, <,=, >,≥}. Given a constraintg ∈ C(X) and a
valuationv, we writev |= g if g is satisfied by the valuationv. We also write[[g]] for the
set{v | v |= g}. Given a setR ⊆ X and a valuationv of the clocks inX, v[R] is the
valuation defined byv[R](x) = v(x) if x 6∈ R andv[R](x) = 0 otherwise.

2.2 Timed Words

The set of finite (resp. infinite) words overΣ is Σ∗ (resp.Σω) and we letΣ∞ =
Σ∗ ∪ Σω. A languageL is any subset ofΣ∞. A finite (resp. infinite)timed wordover
Σ is a word in(R≥0.Σ)∗.R≥0 (resp.(R≥0.Σ)ω). Duration(w) is the duration of a
timed wordw which is defined to be the sum of the durations (inR≥0) which appear in
w; if this sum is infinite, the duration is∞. Note that the duration of an infinite word
can be finite, and such words which contain an infinite number of letters, are called
Zenowords. We letUnt(w) be theuntimedversion ofw obtained by erasing all the
durations inw. An example of untiming isUnt(0.4 a 1.0 b 2.7 c) = abc. In this paper
we write timed words as0.4 a 1.0 b 2.7 c · · · where the real values are the durations
elapsed between two letters: thusc occurs at global time4.1.

TW∗(Σ) is the set of finite timed words overΣ, TWω(Σ), the set of infinite timed
words andTW(Σ) = TW∗(Σ) ∪ TWω(Σ). A timed languageis any subset ofTW(Σ).

Let πΣ′ be the projection of timed words ofTW(Σ) over timed words ofTW(Σ′).
When projecting a timed wordw on a sub-alphabetΣ′ ⊆ Σ, the durations elapsed bet-
ween two events are set accordingly: for instance for the timed word0.4 a 1.0 b 2.7 c,
we haveπ{a,c}(0.4 a 1.0 b 2.7 c) = 0.4 a 3.7 c (note that projection erases some
letters but keep the time elapsed between two letters). Given a timed languageL, we let
Unt(L) = {Unt(w) | w ∈ L}. GivenΣ′ ⊆ Σ, πΣ′(L) = {πΣ′(w) | w ∈ L}.

3

2.3 Timed Automata

Timed automata are finite automata extended with real-valued clocks to specify timing
constraints between occurrences of events. For a detailed presentation of the funda-
mental results for timed automata, the reader is referred to the seminal paper of R. Alur
and D. Dill [15].

Definition 1 (Timed Automaton). A Timed AutomatonA is a tuple(L, l0, X,Στ , E,
Inv, F, R) where:L is a finite set oflocations; l0 is the initial location; X is a finite
set of clocks; Σ is a finite set ofactions; E ⊆ L × C(X) × Στ × 2X × L is a finite
set of transitions; in a transition (ℓ, g, a, r, ℓ′), g is theguard, a the action, andr the
resetset; as usual we often write a transitionℓ

g,a,r
−−−−→ ℓ′; Inv ∈ C(X)L associates

with each location aninvariant; as usual we require the invariants to be conjunctions
of constraints of the formx � c with �∈ {<,≤}; F ⊆ L is the set offinal locations
andR ⊆ L is the set ofrepeatedlocations. �

The size of a TAA is denoted|A| and is the size of the clock constraints i.e., the size
of the transition relationE. A stateof A is a pair(ℓ, v) ∈ L × RX

≥0. A run ̺ of A from
(ℓ0, v0) is a (finite or infinite) sequence of alternatingdelayanddiscretemoves:

̺ = (ℓ0, v0)
δ0−→ (ℓ0, v0 + δ0)

a0−→ (ℓ1, v1) · · ·
an−1

−−−→ (ℓn, vn)
δn−→ (ℓn, vn + δn) · · ·

s.t. for everyi ≥ 0:

– vi + δ |= Inv(ℓi) for 0 ≤ δ ≤ δi;
– there is some transition(ℓi, gi, ai, ri, ℓi+1) ∈ E s.t. : (i) vi + δi |= gi, (ii) vi+1 =

(vi + δi)[ri].

The set of finite (resp. infinite) runs inA from a states is denotedRuns∗(s,A) (resp.
Runsω(s,A)). We letRuns∗(A) = Runs∗(s0, A), Runsω(A) = Runsω(s0, A) with s0 =
(l0, 0), andRuns(A) = Runs∗(A) ∪ Runsω(A). If ̺ is finite and ends insn, we let
last(̺) = sn. Because of the denseness of the time domain, the unfolding ofA as
a graph is infinite (uncountable number of states and delay edges). Thetrace, tr(̺),
of a run̺ is the timed wordπΣ(δ0a0δ1a1 · · · anδn · · ·). The duration of the run̺ is
Duration(̺) = Duration(tr(̺)). ForV ⊆ Runs(A), we letTr(V) = {tr(̺) | ̺ ∈ V },
which is the set of traces of the runs inV .

A finite (resp. infinite) timed wordw is acceptedby A if it is the trace of a run of
A that ends in anF -location (resp. a run that reaches infinitely often anR-location).
L∗(A) (resp.Lω(A)) is the set of traces of finite (resp. infinite) timed words accepted
by A, andL(A) = L∗(A) ∪ Lω(A) is the set of timed words accepted byA.

In the sequel we often omit the setsR andF in TA and this implicitly meansF = L
andR = ∅.

A timed automatonA is deterministicif there is noτ labelled transition inA, and
if, whenever(ℓ, g, a, r, ℓ′) and (ℓ, g′, a, r′, ℓ′′) are transitions ofA, g ∧ g′ ≡ FALSE.
A is completeif from each state(ℓ, v), and for each actiona, there is a transition
(ℓ, g, a, r, ℓ′) such thatv |= g. We note DTA the class of deterministic timed automata.

A finite automaton is a particular TA withX = ∅. Consequently guards and invari-
ants are vacuously true and time elapsing transitions do not exist. We writeA = (Q,

4

q0, Στ , E, F, R) for a finite automaton. A run is thus a sequence of the form:̺ = ℓ0
a0−→

ℓ1 · · · · · ·
an−1

−−−→ ℓn · · · where for eachi ≥ 0, (ℓi, ai, ℓi+1) ∈ E. Definitions of traces
and languages are the same as for TA. For FA, the duration of a run̺ is the number
of steps (includingτ -steps) of̺ : if ̺ is finite and ends inℓn, Duration(̺) = n and
otherwiseDuration(̺) = ∞.

2.4 Region Graph of a Timed Automaton

A regionof RX
≥0 is a conjunction ofatomicconstraints of the formx ⊲⊳ c or x − y ⊲⊳ c

with c ∈ Z, ⊲⊳∈ {≤, <,=, >,≥} andx, y ∈ X. Theregion graph RG(A) of a TA A
is a finite quotient of the infinite graph ofA which is time-abstract bisimilar toA [15].
It is a finite automaton on the alphabetE′ = E ∪ {τ}. The states ofRG(A) are pairs
(ℓ, r) whereℓ ∈ L is a location ofA andr is aregionof RX

≥0. More generally, the edges
of the graph are tuples(s, t, s′) wheres, s′ are states ofRG(A) andt ∈ E′. Genuine
unobservable moves ofA labelledτ are labelled by tuples of the form(s, (g, τ, r), s′)
in RG(A). An edge(g, λ,R) in the region graph corresponds to a discrete transition of
A with guardg, actionλ and reset setR. A τ move inRG(A) stands for a delay move to
the time-successor region. The initial state ofRG(A) is (l0, 0). A final (resp. repeated)
state ofRG(A) is a state(ℓ, r) with ℓ ∈ F (resp.ℓ ∈ R). A fundamental property of the
region graph [15] is:

Theorem 1 (R. Alur and D. Dill, [15]). L(RG(A)) = Unt(L(A)).

The (maximum) size of the region graph is exponential in the number of clocks and in
the maximum constant of the automatonA (see [15]):|RG(A)| = |L| · |X|! ·2|X| ·K |X|

whereK is the largest constant used inA.

2.5 Product of Timed Automata

Given an locationsℓ1, · · · , ℓn, we writeℓ for the tuple(ℓ1, · · · , ℓn) and letℓ[i] = ℓi.
Given a lettera ∈ Σ1 ∪ · · · ∪ Σn, we letI(a) = {k | a ∈ Σk}.

Definition 2 (Product of TA). Let Ai = (Li, l
i
0, Xi, Σi

τ , Ei, Invi), i ∈ {1, · · · , n},
be n TA s.t.Xi ∩ Xj = ∅ for i 6= j. Theproductof theAi is the TAA = A1 ×
· · · × An = (L, l0, X,Στ , E, Inv) given by:L = L1 × · · · × Ln; l0 = (l10, · · · , ln0);
Σ = Σ1 ∪ · · · ∪ Σn; X = X1 ∪ · · · ∪ Xn; E ⊆ L × C(X) × Στ × 2X × L and

(ℓ, g, a, r, ℓ
′
) ∈ E if:

– eithera ∈ Σ \ {τ}, and

1. for eachk ∈ I(a), (ℓ[k], gk, a, rk, ℓ
′
[k]) ∈ Ek,

2. g = ∧k∈I(a)gk andr = ∪k∈I(a)rk;

3. for k 6∈ I(a), ℓ
′
[k] = ℓ[k];

– or a = τ and∃j s.t. (ℓ[j], gj , τ, rj , ℓ
′
[j]) ∈ Ej , g = gj , r = rj and fork 6= j,

ℓ
′
[k] = ℓ[k].

Inv(ℓ) = ∧n
k=1Inv(ℓ[k]). �

5

This definition of product also applies to finite automata (no clock constraints).

If the automatonAi has the set of final locationsFi then the set of final locations for
A is F1×· · ·×Fn. For Büchi acceptance, we add a counterc to A which is incremented
every time the product automatonA encounters anRi-location inAi, following the
standard construction for product of Büchi automata. The automaton constructed with
the counterc is A+. The repeated set of states ofA+ is L1 × · · · × Ln−1 × Ln × {n}.
As the sets of clocks of theAi’s are disjoint2, the following holds:

Fact 1 L∗(A) = ∩n
i=1L

∗(Ai) andLω(A+) = ∩n
i=1L

ω(Ai).

2.6 Intersection Emptiness Problem

In this section we give some complexity results for the emptiness problem on products
of FA and TA.
First consider the following problem on deterministic finite automata (DFA):

Problem 1 (Intersection Emptiness for DFA)
INPUTS: n deterministic finite automataAi, 1 ≤ i ≤ n, over the alphabetΣ.
PROBLEM: Check whether∩n

i=1L
∗(Ai) 6= ∅.

The size of the input for Problem 1 is
∑n

i=1 |Ai|.

Theorem 2 (D. Kozen, [16]).Problem 1 is PSPACE-complete.

D. Kozen’s Theorem also holds for Büchi languages:

Theorem 3. Checking whether∩n
i=1L

ω(Ai) 6= ∅ is PSPACE-complete.

Problem 1 is PSPACE-hard even ifA2, · · · , An are automata where all the states are
accepting andA1 is the only automaton with a proper set of accepting states (actually
one accepting state is enough).

Proposition 1. LetAi, 1 ≤ i ≤ n ben DFA over the alphabetΣ. If for all Ai, 2 ≤ i ≤
n, all states ofAi are accepting, Problem 1 is already PSPACE-hard.

The next results are counterparts of D. Kozen’s results for TA.

Problem 2 (Intersection Emptiness for TA)
INPUTS: n TA Ai = (Li, l

i
0, Xi, Σ

i
τ , Ei, Invi, Fi), 1 ≤ i ≤ n with Xk ∩ Xj = ∅ for

k 6= j.
PROBLEM: Check whether∩n

i=1L
∗(Ai) 6= ∅.

Theorem 4. Problem 2 is PSPACE-complete.

The previous theorem extends to Büchi languages:

Problem 3 (Büchi Intersection Emptiness for TA)
INPUTS: n TA Ai = (Li, l

i
0, Xi, Σ

i
τ , Ei, Invi, Ri), 1 ≤ i ≤ n with Xk ∩ Xj = ∅ for

k 6= j.
PROBLEM: Check whether∩n

i=1L
ω(Ai) 6= ∅.

Theorem 5. Problem 3 is PSPACE-complete.

2 For finite automata, this is is vacuously true.

6

3 Fault Codiagnosis Problems

We first recall the basics offault diagnosis. The purpose of fault diagnosis [3] is to
detect a fault in a system as soon as possible. The assumption is that the model of the
system is known, but only a subsetΣo of the set of eventsΣ generated by the system
are observable. Faults are also unobservable.

Whenever the system generates a timed wordw ∈ TW∗(Σ), an external observer
can only seeπΣo

(w). If an observer can detect faults under this partial observation of
the outputs ofA, it is called adiagnoser. We require a diagnoser to detect a fault within
a given delay∆ ∈ N.

To model timed systems with faults, we use timed automata on the alphabetΣτ,f =
Στ ∪ {f} wheref is the faulty (and unobservable) event. We only consider one type
of fault, but the results we give are valid for many-types of faults{f1, f2, · · · , fn}:
indeed solving the many-types diagnosability problem amounts to solvingn one-type
diagnosability problems [5]. The observable events are given byΣo ⊆ Σ and τ is
always unobservable.

The idea ofdecentralizedor distributeddiagnosis was introduced in [8]. It is based
on decentralized architectures: local diagnosers and a communication protocol. In these
architectures, local diagnosers (with their own partial view of the system) can send to a
coordinator some information, using a given communication protocol. The coordinator
then computes a result from the partial results of the local diagnosers. The goal is to
obtain a coordinator that can detect the faults in the system. When local diagnosers do
not communicate with each other nor with a coordinator (protocol 3 in [8]), the decent-
ralized diagnosis problem is calledcodiagnosis[10,9]. In this section we formalize the
notion of codiagnosability introduced in [10] in a style similar to [17]. This allows us to
obtain a necessary and sufficient condition for codiagnosability of FA but also to extend
the definition of codiagnosability totimed automata.

In the sequel we assume that the model of the system is a TAA = (L, l0, X, Στ,f ,
E, Inv) and is fixed.

3.1 Faulty Runs

Let ∆ ∈ N. A run ̺ = (ℓ0, v0)
δ0−→ (ℓ0, v0 + δ0)

a0−→ (ℓ1, v1) · · ·
an−1

−−−→ (ℓn, vn)
δn−→

(ℓn, vn + δ) · · · of A is ∆-faulty if: (1) there is an indexi s.t. ai = f and (2) the

duration of̺′ = (ℓi, vi)
δi−→ · · ·

δn−→ (ℓn, vn + δn) · · · is larger or equal to∆. We
let Faulty≥∆(A) be the set of∆-faulty runs ofA. Note that by definition, if∆′ ≥
∆ then Faulty≥∆′(A) ⊆ Faulty≥∆(A). We let Faulty(A) = ∪∆≥0Faulty≥∆(A) =
Faulty≥0(A) be the set of faulty runs ofA, andNonFaulty(A) = Runs(A) \ Faulty(A)

be the set of non-faulty runs ofA. Finally, we letFaultytr
≥∆(A) = Tr(Faulty≥∆(A)) and

NonFaultytr(A) = Tr(NonFaulty(A)) which are the traces3 of ∆-faulty and non-faulty
runs ofA.

We also make the assumption that the TAA cannot prevent time from elapsing. For
FA, this assumption is that from any state, a discrete transition can be taken. If it is not

3 Notice thattr(̺) erasesτ andf .

7

case,τ loop actions can be added with no impact on the (co)diagnosability status of the
system. This is a standard assumption in diagnosability and is required to avoid taking
into account these cases that are not interesting in practice.

For discrete event systems (FA), the notion of time is the number of transitions
(discrete steps) in the system. A∆-faulty run is thus a run with a fault actionf followed
by at least∆ discrete steps (some of them can beτ or evenf actions). When we
consider codiagnosability problems for discrete event systems, this definition of∆-
faulty runs apply. The other definitions are unchanged.

Remark 1. A timed automaton where discrete actions are separated by one time unit is
not equivalent to using a finite automaton when solving a fault diagnosis problem. For
instance, a timed automaton can generate the timed words1.f.1.a and1.τ.1.τ.1.a. In
this case, it is1-diagnosable: after reading the timed word2.a we announce a fault. If
we do not see the1-time unit durations, the timed wordsf.a and τ2.a give the same
observation. And thus it is not diagnosable if we cannot measure time. Using a timed
automaton where discrete actions are separated by one time unit gives to the diagnoser
the ability to count/measure time and this is not equivalent to the fault diagnosis prob-
lem for FA (discrete event systems).

3.2 Codiagnosers and Codiagnosability Problems

A codiagnoseris a tuple of diagnosers, each of which has its own set of observable
eventsΣi, and whenever a fault occurs, at least one diagnoser is able to detect it. In
the sequel we writeπi in place ofπΣi

for readability reasons. A codiagnoser can be
formally defined as follows:

Definition 3 ((∆, E)-Codiagnoser).Let A be a timed automaton over the alphabet
Στ,f , ∆ ∈ N andE = (Σi)1≤i≤n be a family of subsets ofΣ. A (∆, E)-codiagnoser
for A is a mappingD = (D1, · · · , Dn) with Di : TW∗(Σi) → {0, 1} such that:

– for each̺ ∈ NonFaulty(A),
∑n

i=1 D[i](πi(tr(̺))) = 0,
– for each̺ ∈ Faulty≥∆(A),

∑n
i=1 D[i](πi(tr(̺))) ≥ 1. �

As for diagnosability, the intuition of this definition is that (i) the codiagnoser will raise
an alarm (D outputs a value different from0) when a∆-faulty run has been identified,
and that (ii) it can identify those∆-faulty runs unambiguously. The codiagnoser is
not required to do anything special for∆′-faulty runs with∆′ < ∆ (although it is
usually required that once it has announced a fault, it does not change its mind and keep
outputting1).

A is (∆, E)-codiagnosable if there exists a(∆, E)-codiagnoser forA. A is E-codia-
gnosable if there is some∆ ∈ N s.t.A is (∆, E)-codiagnosable.

The standard notions [3] of∆-diagnosability and∆-diagnoser are obtained when
the familyE is the singletonE = {Σ}. The fundamental codiagnosability problems for
timed automata are the following:

Problem 4 ((∆, E)-Codiagnosability)
INPUTS: A TAA = (L, l0, X,Στ,f , E, Inv), ∆ ∈ N andE = (Σi)1≤i≤n.
PROBLEM: Is A (∆, E)-codiagnosable?

8

Problem 5 (Codiagnosability)
INPUTS: A TAA = (L, l0, X,Στ,f , E, Inv) andE = (Σi)1≤i≤n.
PROBLEM: Is A E-codiagnosable?

Problem 6 (Optimal delay)
INPUTS: A TAA = (L, l0, X,Στ,f , E, Inv) andE = (Σi)1≤i≤n.
PROBLEM: What is the minimum∆ s.t.A is (∆, E)-codiagnosable?

The size of the input for Problem 4 is|A| + log ∆ + n · |Σ|, and for Problems 5 and 6
it is |A| + n · |Σ|.

In addition to the previous problems, we will consider the construction of a(∆, E)-
codiagnoser whenA is (∆, E)-codiagnosable in section 5.

3.3 Necessary and Sufficient Condition for Codiagnosability

In this section we generalize the necessary and sufficient condition for diagnosabil-
ity [6,17] to codiagnosability.

Lemma 1. A is not(∆, E)-codiagnosable if and only if∃̺ ∈ Faulty≥∆(A) and

∀1 ≤ i ≤ n, ∃̺i ∈ NonFaulty(A) s.t. πi(tr(̺)) = πi(tr(̺i)). (1)

Using Lemma 1, we obtain a language based characterisation of codiagnosability ex-
tending the one given in [6,17]. Letπ−1

i (X) = {w ∈ TW∗(Σ) | πi(w) ∈ X}.

Lemma 2. A is (∆, E)-codiagnosable if and only if

Faultytr
≥∆(A) ∩

(n
⋂

i=1

π−1
i

(

πi(NonFaultytr(A))
)

)

= ∅. (2)

4 Algorithms for Codiagnosability Problems

4.1 (∆, E)-Codiagnosability (Problem 4)

Deciding Problem 4 amounts to checking whether equation 2 holds or not. Recall that
A = (L, l0, X,Στ,f , E, Inv). Let t be a fresh clock not inX. Let Af (∆) = ((L ×
{0, 1}) ∪ {Bad}, (l0, 0), X ∪ {t}, Στ , Ef , Invf) with:

– ((ℓ, n), g, λ, r, (ℓ′, n)) ∈ Ef if (ℓ, g, λ, r, ℓ′) ∈ E, λ ∈ Σ ∪ {τ};
– ((ℓ, 0), g, τ, r ∪ {t}, (ℓ′, 1)) ∈ Ef if (ℓ, g, f, r, ℓ′) ∈ E;
– for ℓ ∈ L, ((ℓ, 1), t ≥ ∆, τ, ∅, Bad) ∈ Ef ;
– Invf ((ℓ, n)) = Inv(ℓ).

Af (∆) is similar toA but when a fault occurs it switches to a copy ofA (encoded by
n = 1). When sufficient time has elapsed in the copy (more than∆ time units), location
Badcan be reached. The language accepted byAf (∆) with the set of final states{Bad}
is thusL∗(Af (∆)) = Faultytr

≥∆(A). DefineAi = (L, l0, Xi, Στ , Ei, Invi) with:

9

– Xi = {xi | x ∈ X} (create copies of clocks ofA);
– (ℓ, gi, λ, ri, ℓ

′) ∈ Ei if (ℓ, g, λ, r, ℓ′) ∈ E, λ ∈ Σi ∪ {τ} with: gi is g where the
clocksx in X are replaced by their counterpartsxi in Xi; ri is r with the same
renaming;

– (ℓ, gi, τ, ri, ℓ
′) ∈ Ei if (ℓ, g, λ, r, ℓ′) ∈ E, λ ∈ Σ \ Σi

– Invi(ℓ) = Inv(ℓ) with clock renaming (xi in place ofx).

EachAi accepts only non-faulty traces as thef -transitions are not inAi. If the set
of final locations isL for eachAi, thenL∗(Ai) = πi(NonFaultytr(A)). To accept
π−1

i

(

πi(NonFaultytr(A)) we add transitions(ℓ, TRUE, λ, ∅, ℓ) for each locationℓ of
Ei and for eachλ ∈ Σ \ Σi. Let A∗

i be the automaton on the alphabetΣ constructed
this way. By definition ofA∗

i , L∗(A∗
i) = π−1

i

(

πi(NonFaultytr(A))
)

.
DefineB = Af (∆) × A∗

1 × A∗
2 × · · · × A∗

n with the set of final locationsFB =
{Bad} × L × · · · × L. We letRB = ∅. Using equation 2 we obtain:

Lemma 3. A is (∆, E)-codiagnosable iffL∗(B) = ∅.

The size of the input for problem 4 is|A| + log ∆ + n · |Σ|. The size ofAf (∆) is
(linear in) the size ofA andlog ∆, i.e.,O(|A|+ log ∆). The size ofA∗

i is also bounded
by the size ofA. It follows that|Af (∆)| +

∑n
i=1 |A

∗
i | is bounded by(n + 1)|A| and is

polynomial in the size of the input of problem 4. We thus have a polynomial reduction
from Problem 4 to the intersection emptiness problem for TA. We can now establish the
following result:

Theorem 6.Problem 4 is PSPACE-complete for Timed Automata. It is already PSPACE-
hard for Deterministic Finite Automata.

4.2 E-Codiagnosability (Problem 5)

In this section we show how to solve theE-codiagnosability problem. The algorithm is
a generalisation of the procedure for deciding diagnosability of discrete event and timed
systems (see [18] for a recent presentation).

For standard fault diagnosis (one diagnoser andE = {Σ}), A is not diagnosable if
there is an infinite faulty run inA the projection of which is the same as the projection
of a non-faulty one [18].

The procedure for checking diagnosability of FA and TA slightly differ due to spe-
cific features of timed systems. We recall here the algorithms to check diagnosability of
FA and TA [18,6] and extend them to codiagnosability.

Codiagnosability for Finite Automata. To check whether a FAA is diagnosable, we
build a synchronized productAf × A1, s.t.Af behaves exactly likeA but records in
its state whether a fault has occurred, andA1 behaves likeA without the faulty runs
(transitions labelledf are cut off). This corresponds toAf (∆) defined in section 4.1
without the clock∆.

A faulty run in the productAf × A1 is a run for whichAf reaches a faulty state
of the form(q, 1). To decide whetherA is diagnosable we build an extended version of

10

Af ×A1 which is a B̈uchi automatonB [18]: B has a boolean variablez which records
whetherAf participated in the last transition fired byAf × A1. A state ofB is a pair
(s, z) wheres is a state ofAf × A1. B is given by the tuple((Q × {0, 1} × Q) ×
{0, 1}, ((q0, 0), q0, 0), Στ ,−→B, ∅, RB) with:

– (s, z)
λ

−−→B (s′, z′) if (i) there exists a transitiont : s
λ

−−→ s′ in Af × A1, and(ii)
z′ = 1 if λ is a move ofAf andz′ = 0 otherwise;

– RB = {(((q, 1), q′), 1) | ((q, 1), q′) ∈ Af × A1}.

The important part of the previous construction relies on the fact that, forA to be nonΣ-
diagnosable,Af should have an infinite faulty run (and take infinitely many transitions)
and A1 a corresponding non-faulty run (note that this one can be finite) giving the
same observation. With the previous construction, we have [18]:A is diagnosable iff
Lω(B) = ∅.

The construction for codiagnosability is an extension of the previous one adding
A2, · · · , An to the product. LetBco = Af×A1×· · ·×An with Ai defined in section 4.1.
In Bco we again use the variablez to indicate whetherAf participated in the last move.
Define the set of repeated states ofBco by: RBco = {(((q, 1), q), 1) | ((q, 1), q) ∈ Af ×
A1×· · ·×An}. By construction, a state inRBco is: (1) faulty as it contains a component
(q, 1) for the state ofAf and (2)Af participated in the last move asz = 1. It follows
that:

Lemma 4. A is E-codiagnosable iffLω(Bco) = ∅.

Theorem 7. Problem 5 is PSPACE-complete for Deterministic Finite Automata.

Codiagnosability for Timed Automata. Checking diagnosability for timed automata
requires an extra step in the construction of the equivalent of automatonB defined
above: indeed, for TA, a run having infinitely many discrete steps could well bezeno,
i.e., the duration of such a run can be finite. This extra step in the construction was first
presented in [6]. It can be carried out by adding a special timed automatonDiv with two
locations{0, 1} and synchronizing it withAf ×A1. If we useF = ∅ andR = {1} for
Div, any accepted run istime divergentand thus cannot be zeno. LetD = Af×Div×A1

and letFD = ∅ andRD be the set of states whereAf is in a faulty location andDiv is
in location1. For standard fault diagnosis, the following holds [6,18]:A is diagnosable
iff Lω(D) = ∅.

The construction to check codiagnosability is obtained by addingA2, · · · , An in
the product. LetDco = Af × Div × A1 × · · · ×An.

Lemma 5. A is E-codiagnosable iffLω(Dco) = ∅.

Theorem 8. Problem 5 is PSPACE-complete for Timed Automata.

4.3 Optimal Delay (Problem 6)

Using the results for checkingE-codiagnosability and(∆, E)-codiagnosability, we ob-
tain algorithms for computing the optimal delay.

11

Lemma 4 reduces codiagnosability of FA to Büchi emptiness on a product auto-
maton. The number of states of the automatonBco is bounded by4 · |A|n, and the
number of faulty states by2 · |A|n. This implies that:

Proposition 2. Let A be a FA. IfA is E-codiagnosable, thenA is (2 · |A|n, E)-codia-
gnosable.

From Proposition 2, we can conclude that:

Theorem 9. Problem 6 can be solved in PSPACE for FA.

For timed automata, a similar reasoning can be done on the region graph ofDco. If a
TA A is E-codiagnosable, there cannot be any cycle with faulty locations inRG(Dco).
Otherwise there would be a non-zeno infinite word inL(Dco) and thus an infinite time-
diverging faulty run inA, with corresponding non-faulty runs in eachAi, giving the
same observation. LetK be the size ofRG(Dco). If A is E-codiagnosable, then a faulty
state inRG(Dco) can be followed by at mostK states. Otherwise a cycle in the region
graph would occur and thusLω(Dco) would not be empty. This also implies that all the
states(s, r) in RG(Dco) that can follow a faulty state must have aboundedregion. As
the amount of time that can elapse in one region is at most1 time unit4, the maximum
duration of a faulty run inDco is bounded byK. This implies that:

Proposition 3. LetA be a TA. IfA isE-codiagnosable, thenA is (K, E)-codiagnosable
with K = |RG(Dco)|.

The size of the region graph ofDco is bounded by|L|n+1·((n+1)|X|+1)!·2(n+1)|X|+1·
M (n+1)|X|+1. Thus the encoding of constantK has sizeO(n · |A|).

Theorem 10. Problem 6 can be solved in PSPACE for Timed Automata.

5 Synthesis of Codiagnosers

The reader is referred to the extended version of this paper [14] for a detailed presenta-
tion of this section. The synthesis of codiagnosers for FA and TA can be carried out by
extending the known construction for diagnosers [3].

The construction of a diagnoser for timed automata [6] consists in computingon-
the-flythe current possible states of the timed automatonAf after reading a timed word
w. This procedure is effective but gives a diagnoser which is a Turing machine. The
machine computes a state estimate ofA after each observable event, and if it contains
only faulty states, it announces a fault.

Obviously the same construction can be carried out for codiagnosis: we define the
Turing machinesMi, 1 ≤ i ≤ n that estimate the state ofA. When oneMi’s estimate
on an inputΣi-tracew contains only faulty states, we setDi(w) = 1 and0 otherwise.
This tuple of Turing machines is a(∆, E)-codiagnoser.

Computing the estimates with Turing machines might be too expensive to be im-
plemented at runtime. More efficient and compact codiagnosers might be needed with
reasonable computation times. In the next section, we address the problem of codia-
gnosis for TA underbounded resources.

4 The constants in the automata are integers.

12

6 Codiagnosis with Deterministic Timed Automata

The fault diagnosis problem using timed automata has been introduced and solved by
P. Bouyeret al. in [7]. The problem is to determine, given a TAA, whether there exists
adiagnoserD for A, that can be represented by a deterministic timed automaton.

6.1 Fault Diagnosis with Deterministic Timed Automata

When synthesizing (deterministic) timed automata, an important issue is the amount
of resourcesthe timed automaton can use: this can be formally defined [19] by the
(number of) clocks,Z, that the automaton can use, the maximal constantmax, and a
granularity 1

m
. As an example, a TA of resourceµ = ({c, d}, 2, 1

3) can use two clocks,
c andd, and the clocks constraints using the rationals−2 ≤ k/m ≤ 2 wherek ∈ Z and
m = 3. A resourceµ is thus a tripleµ = (Z,max, 1

m
) whereZ is finite set of clocks,

max ∈ N and 1
m

∈ Q>0 is thegranularity. DTAµ is the class of DTA of resourceµ.

Remark 2. Notice that the number of locations of the DTA in DTAµ is not bounded and
hence this family has an infinite (yet countable) number of elements.

If a TA A is ∆-diagnosable with a diagnoser that can be represented by a DTAD with
resourceµ, we say thatA is (∆, D)-diagnosable. P. Bouyeret al. in [7] considered the
problem of deciding whether there exists a DTA diagnoser with resourceµ:

Problem 7 (∆-DTA-Diagnosability [7])
INPUTS: A TAA = (L, l0, X,Στ,f , E, Inv), ∆ ∈ N, a resourceµ = (Z,max, 1

m
).

PROBLEM: Is there anyD ∈ DTAµ s.t.A is (∆, D)-diagnosable ?

Theorem 11 (P. Bouyeret al., [7]). Problem 7 is 2EXPTIME-complete.

The solution to the previous problem is based on the construction of atwo-player
safety game, GA,∆,µ. In this game a set of states,Bad, must be avoided forA to be∆-
diagnosable. The most permissive winning strategy gives thesetof all DTAµ diagnosers
(the most permissive diagnosers) which can diagnoseA (or ∅ is there is none). We refer
to the extended version [14], section 6.1 for a detailed presentation of this construction.

6.2 Algorithm for Codiagnosability

In this section we include the alphabetΣ of a DTA in the resourceµ and writeµ =
(Σ, Z,max, 1

m
).

Problem 8 (∆-DTA-Codiagnosability)
INPUTS: A TAA = (L, l0, X,Στ,f , E, Inv), ∆ ∈ N, and a family of resourcesµi =
(Σi, Zi,maxi,

1
mi

), 1 ≤ i ≤ n with Σi ⊆ Σ.

PROBLEM: Is there any codiagnoserD = (D1, D2, · · · , Dn) with Di ∈ DTAµi
s.t.A

is (∆, D)-codiagnosable ?

13

∆-Codiagnosability Codiagnosability Optimal Delay
Synthesis

(Bounded Resources)

FA
PSPACE-C.
PTIME [5,4]

PSPACE-C.
PTIME [5,4]

PSPACE
PTIME [5,4]

EXPTIME
EXPTIME [3]

TA
PSPACE-C.

PSPACE-C. [6]
PSPACE-C.

PSPACE-C. [6]
PSPACE

PSPACE [18]
2EXPTIME-C.

2EXPTIME-C. [7]

Table 1.Summary of the Results

To solve Problem 8, we extend the algorithm given in [7] for DTA-diagnosability. Let
Gi be the gameGA,∆,µi

andBadi the set of bad states. Given a strategyfi, we let
fi(G

i) be the outcome5 of Gi whenfi is played by Player 0. Givenw ∈ TW∗(Σ) and
a DTA A onΣ, we letlast(w,A) be the location reached whenw is read byA.

Lemma 6. A is (∆, D)-codiagnosable iff there is a tuple of strategiesf s.t.

(1) ∀1 ≤ i ≤ n, f [i] is state-based on the gameGi, and

(2) ∀w ∈ Tr(A)

{

If Si = last(πΣi
(w), fi(G

i)), 1 ≤ i ≤ n,

then∃1 ≤ j ≤ n, s.t.Sj 6∈ Badj .

Item (2) of Lemma 6 states that there is no word inA for which all the Player 0 in the
gamesGi are in bad states. The strategies for each Player 0 are not necessarily winning
in eachGi, but there is always one Player 0 who has not lost the gameGi. From the
previous Lemma, we can obtain the following result:

Theorem 12. Problem 8 is 2EXPTIME-complete.

7 Conclusion & Future Work

Table 1 gives an overview of the results described in this paper (bold face) for the co-
diagnosis problems in comparison with the results for the diagnosis problems (second
line, normal face). Our ongoing work is to extend the results ondiagnosis using dynamic
observers[20,17] to the codiagnosis framework.

Ackowledgements.The author would like to thank the anonymous reviewers for their
helpful comments.

References

1. Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event processes. SIAM
Journal of Control and Optimization25(1) (1987) 1202–1218

2. Ramadge, P., Wonham, W.: The control of discrete event systems. Proc. of the IEEE77(1)
(1989) 81–98

5 fi(G
i) is a timed transition system.

14

3. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Diagnosab-
ility of discrete event systems. IEEE Transactions on Automatic Control40(9) (September
1995)

4. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial algorithm for testing diagnos-
ability of discrete event systems. IEEE Transactions on Automatic Control46(8) (August
2001)

5. Yoo, T.S., Lafortune, S.: Polynomial-time verification of diagnosability of partially-observed
discrete-event systems. IEEE Transactions on Automatic Control47(9) (September 2002)
1491–1495

6. Tripakis, S.: Fault diagnosis for timed automata. In Damm, W., Olderog, E.R., eds.: Proceed-
ings of the International Conference on Formal Techniques in Real Time and Fault Tolerant
Systems (FTRTFT’02). Volume 2469 of LNCS., Springer Verlag (2002) 205–224

7. Bouyer, P., Chevalier, F., D’Souza, D.: Fault diagnosis using timed automata. In Sassone, V.,
ed.: Proceedings of the 8th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS’05). Volume 3441 of LNCS., Edinburgh, U.K., Springer
Verlag (April 2005) 219–233

8. Debouk, R., Lafortune, S., Teneketzis, D.: Coordinated decentralized protocols for failure
diagnosis of discrete event systems. Discrete Event Dynamic Systems10(1-2) (2000) 33–86

9. Wang, Y., Yoo, T.S., Lafortune, S.: Diagnosis of discrete event systems using decentralized
architectures. Discrete Event Dynamic Systems17(2) (2007) 233–263

10. Qiu, W., Kumar, R.: Decentralized failure diagnosis of discrete event systems. IEEE Transac-
tions on Systems, Man and Cybernetics, Part A: Systems and Humans36(2) (2006) 384–395

11. Basilio, J., Lafortune, S.: Robust codiagnosability of discrete event systems. In Society, I.C.,
ed.: Proceedings of the American Control Conference (ACC’09). (2009) 2202–2209

12. Holzmann, G.J.: Software model checking with spin. Advances in Computers65 (2005)
78–109

13. Behrmann, G., David, A., Larsen, K.G.: A tutorial onUPPAAL. In Bernardo, M., Corradini,
F., eds.: Formal Methods for the Design of Real-Time Systems: 4th International School
on Formal Methods for the Design of Computer, Communication, and Software Systems,
SFM-RT 2004. Volume 3185 of LNCS., Springer Verlag (September 2004) 200–236

14. Cassez, F.: The complexity of codiagnosability for discrete event and timed systems. Re-
search report, National ICT Australia (April 2010) 24 pages, document available from arXiv
http://arxiv.org/abs/1004.2550.

15. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science126 (1994)
183–235

16. Kozen, D.: Lower bounds for natural proof systems. In: FOCS, IEEE (1977) 254–266
17. Cassez, F., Tripakis, S.: Fault diagnosis with static or dynamic diagnosers. Fundamenta

Informaticae88(4) (November 2008) 497–540
18. Cassez, F.: A Note on Fault Diagnosis Algorithms. In: 48th IEEE Conference on Decision

and Control and 28th Chinese Control Conference, Shanghai, P.R. China, IEEE Computer
Society (December 2009)

19. Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed control with partial observability.
In Hunt, Jr, W.A., Somenzi, F., eds.: Proceedings of the 15th International Conference on
Computer Aided Verification (CAV’03). Volume 2725 of LNCS., Boulder, Colorado, USA,
Springer (July 2003) 180–192

20. Cassez, F., Tripakis, S., Altisen, K.: Sensor minimization problems with static or dynamic
observers for fault diagnosis. In: 7th Int. Conf. on Application of Concurrency to System
Design (ACSD’07), IEEE Computer Society (2007) 90–99

21. Aceto, L., Laroussinie, F.: Is your model checker on time? on the complexity of model
checking for timed modal logics. J. Log. Algebr. Program.52-53(2002) 7–51

15

A Proofs for Section 2

A.1 Proof of Proposition 1

Proof. Let A1, A2, · · · , An ben deterministic automata with accepting statesF1, F2,
· · · , Fn on the alphabetΣ. Let λ be a fresh letter not inΣ. Define automatonA′

i by:
from any stateq in Fi, add a transition(q, λ,⊥) where⊥ is new state. LetF ′

1 = {⊥}
andF ′

i be all the states ofA′
i. It is clear thatL∗(A′

1) = L∗(A1).λ.
We can prove that∩n

i=1L
∗(Ai) 6= ∅ ⇐⇒ ∩n

i=1L
∗(A′

i) 6= ∅. Indeed, assume
w ∈ ∩n

i=1L
∗(Ai) 6= ∅. ThenA1 × A2 × · · · × An reaches the state(q1, q2, · · · , qn)

after readingw and∀1 ≤ i ≤ n, qi ∈ Fi. Thus inA′
1 × A′

2 × · · · × A′
n the same

state can be reached and thenλ can be fired in the product leading to(⊥,⊥, · · · ,⊥).
Conversely, if a wordw is accepted by the productA′

1 × · · · × A′
n, w must end with

λ. Let w = u.λ ∈ ∩n
i=1L

∗(A′
i) 6= ∅. After readingu the state of the product must be

(q1, q2, · · · , qn) with ∀1 ≤ i ≤ n, qi ∈ Fi, and the transitions fired when readingu are
also inA1 × A2 × · · · × An which impliesu ∈ ∩n

i=1L
∗(Ai). ⊓⊔

A.2 Proof of Theorem 4

Proof. PSPACE-hardness follows from the fact that checking∩n
i=1L

∗(Ai) 6= ∅ on
finite automata is already PSPACE-hard [16] or alternatively because reachability for
timed automata is PSPACE-hard [15].

PSPACE-easiness can be established as Theorem 31 (section 4.1) of [21]: the re-
gions of the product of TAAi can be encoded in polynomial space in the size of the
clock constraints of the product automaton. An algorithm to check emptiness is ob-
tained by: 1) guessing a sequence of pairs (location,region) in the product automaton
and 2) checking whether it is accepted. This can be done in NPSPACE and by Savitch’s
Theorem in PSPACE. ⊓⊔

A.3 Proof of Theorem 5

Proof. PSPACE-hardness follows from the reduction of Problem 2 to Problem 3 or
again because checking Büchi emptiness for timed automata is PSPACE-hard [15].

Consider the product automatonA+ the construction of which is described at the
end of section 2.5. PSPACE-easiness is established by: 1) guessing a state ofRG(A+)
of the form((ℓ, n), r) and 2) checking it is reachable from the initial state (PSPACE)
and reachable from itself (PSPACE). Asn is encoded in binary the result follows. ⊓⊔

B Proofs for Section 3

B.1 Proof of Lemma 1

Proof.

– If part. Assume equation (1) holds andA is (∆, E)-codiagnosable. Then there is
a codiagnoserD = (D1, · · · , Dn) satisfying Definition 3. For each̺i we must
haveDi(πi(tr(̺i))) = 0 because each̺i is non faulty. But we must also have for
at least one indexi, Di(πi(tr(̺i))) = Di(πi(tr(̺))) = 1 because̺ is ∆-faulty,
which is impossible.

16

– Only If part. AssumeA is not(∆, E)-codiagnosable and∀̺ ∈ Faulty≥∆(A), equa-
tion (1) does not hold. In this case, there is an index1 ≤ i ≤ n s.t. :

∀̺′ ∈ NonFaulty(A), πi(tr(̺)) 6= πi(tr(̺
′)).

Define Di(w) = 1 when w ∈ πi(Faultytr
≥∆(A)) \ πi(NonFaultytr(A)) and 0

otherwise. ThenD = (D1, · · · , Dn) is a ∆-codiagnoser forA. Indeed, let̺ ∈
NonFaulty(A). Thenπi(tr(̺)) ∈ πi(NonFaultytr(A)) and thusDi(πi(tr(̺))) = 0.
Let ̺ ∈ Faulty≥∆(A) and assumeDi(πi(tr(̺))) = 0 for each1 ≤ i ≤ n. By
definition ofDi we must haveπi(tr(̺)) ∈ πi(NonFaultytr(A)). In this case, there
is some run̺ i ∈ NonFaulty(A) s.t.πi(tr(̺)) = πi(tr(̺i)) and thus equation (1)
holds which contradicts the initial assumption. ⊓⊔

B.2 Proof of Lemma 2

Proof. Assume equation 2 does not hold and letw ∈ Faultytr
≥∆(A), and for each1 ≤

i ≤ n, w ∈ π−1
i

(

πi(NonFaultytr(A))
)

. This implies that:

– ∃̺ ∈ Faulty≥∆(A) s.t. tr(̺) = w;
– for eachi, w ∈ π−1

i

(

πi(NonFaultytr(A))
)

and πi(w) ∈ πi(NonFaultytr(A)).
Thus, there is a run̺i ∈ NonFaulty(A), s.t.πi(w) = πi(tr(̺)) = πi(tr(̺i)) and
as equation (1) of Lemma 1 is satisfied,A is not(∆, E)-codiagnosable.

For the converse, assumeA is not(∆, E)-codiagnosable. By Lemma 1, equation (1) is
satisfied and:

– there is a run̺ with tr(̺) ∈ Faultytr
≥∆(A);

– for eachi, there is some̺ i ∈ NonFaulty(A) s.t. πi(tr(̺)) = πi(tr(̺i)). Hence
tr(̺) ∈ π−1

i (πi(NonFaultytr(A))) for eachi,

and this implies that equation 2 does not hold. ⊓⊔

C Proofs for Section 4

C.1 Proof of Lemma 3

Proof. The sets of clocks of theAi’s andAf (∆) are disjoint: for each1 ≤ i < j ≤ n,
Xi ∩ Xj = ∅ andXi ∩ X = ∅. It follows from Fact 1 thatL∗(B) = L∗(Af (∆)) ∩
(
⋂n

i=1 L
∗(A∗

i)
)

. By Lemma 2 and the construction ofAf (∆) and theAi’s, the result
follows. ⊓⊔

C.2 Proof of Theorem 6

Proof. PSPACE-easiness follows from the polynomial reduction above and Lemma 3.
PSPACE-hardness is obtained by reducing the variant of theintersection emptiness
problemfor DTA to the (∆, E)-codiagnosability problem. This problem is PSPACE-
hard (Proposition 1).

17

Let Ai, 1 ≤ i ≤ n, ben deterministic finite automata over the alphabetΣ. Assume
A1 has one accepting state and forA2, · · · , An all states are accepting.

We constructB as shown on Figure 1:a2, · · · , an are fresh letters not inΣ; the
target state ofai is the initial state ofAi. The initial state ofB is ι. Let Σi = Σ \ {ai}
for each2 ≤ i ≤ n. From the final state ofA1 there is a transition labeledf to a new
statee.

We can prove thatB is (1, E)-codiagnosable if and only if∩n
i=1L

∗(Ai) = ∅ with
E = (Σi)1≤i≤n. Assumew ∈ ∩n

i=1L
∗(Ai) 6= ∅. Take the run of traceτ.w.f.τ in B.

This run is1-faulty. For each2 ≤ i ≤ n, there is a run of traceai.w which is non faulty.
Moreover,πi(ai.w) = w and thusB is not(1, E)-codiagnosable.

Now, assumeB is not(1, E)-codiagnosable. There is a1-faulty run, and this must be
a run of traceτ.w.f.τ with w ∈ L∗(A1), and for each2 ≤ i ≤ n, there is a non-faulty
run ̺i the trace of which isui, with πi(ui) = w. It must be the case thatui = ai.wi

as otherwiseπi(ui) would start withak, k 6= i and thus it would be impossible to have
πi(ui) = w. As ui = ai.wi, πi(ui) = wi = w, andw ∈ L∗(Ai), it follows that
w ∈ ∩n

i=1L
∗(Ai) and thus∩n

i=1L
∗(Ai) is not empty.

Finally∩n
i=1L

∗(Ai) 6= ∅ if and only if B is not(1, E)-codiagnosable.
The size ofB is in O(

∑n
i=1 |Ai|+ n) which is equal toO(

∑n
i=1 |Ai|) as|Ai| ≥ 1.

The size of the input for Problem 4 is thusO(
∑n

i=1 |Ai|) + n · (|Σ| + n) which is
quadratic and thus polynomial in

∑n
i=1 |Ai|. The intersection emptiness problem for

DTA is polynomially reducible to the(∆, E)-codiagnosability Problem and Problem 4
is PSPACE-hard for DTA. ⊓⊔

ι

...

...

eτ

a2

ak

an

f

τ

A1

A2

Ak

An

Fig. 1.Reduction for Theorem 6: AutomatonB

C.3 Proof of Theorem 7

Proof. PSPACE-easiness follows form the fact that checking whetherLω(Bco) = ∅

can be done in PSPACE (Theorem 3). PSPACE-hardness follows from a reduction of

18

Problem 1 to Problem 5 using the same encoding as the one given in the proof of
Theorem 6: the automatonB of Fig. 1 is not(∆, E)-codiagnosable for any∆ ∈ N. ⊓⊔

C.4 Proof of Theorem 8

Proof. The size ofDco is in O((n + 1) · |A|) and thus polynomial in the size of the
input of Problem 5 (|A| + n · |Σ|). PSPACE-easiness follows because the intersection
emptiness problem for B̈uchi automata can be solved in PSPACE. PSPACE-hardness
holds because it is already PSPACE-hard for FA. ⊓⊔

C.5 Proof of Proposition 2

Proof. If L(Bco) = ∅ there cannot be a faulty run of length more than2·|A|n otherwise
at least one faulty states will be encountered twice on this run, and in this case we could
construct an infinite faulty run which contradicts the fact thatL(Bco) = ∅. ⊓⊔

C.6 Proof of Theorem 9

Proof. Checking whetherA is E-codiagnosable can be done in PSPACE. If the result
is “yes”, we can do a binary search for the optimal delay: start with∆ = 2 · |A|n,
and check whetherA is (∆, E)-codiagnosable. If “yes”, divide∆ by 2 and so on. The
encoding of2 · |A|n has sizeO(n · log |A|) and thus is polynomial in the size of the
inputs of Problem 6. ⊓⊔

C.7 Proof of Theorem 10

Proof. Checking whether a TAA is E-codiagnosable can be done in PSPACE. If the
result is “yes”, we can do a binary search for the maximum delay: start with∆ = K =
|RG(Bco)|, and check whetherA is (∆, E)-codiagnosable. If “yes”, divide∆ by 2 and
so on. The encoding ofK has sizeO(n · |A|) and thus is polynomial in the size of the
input of Problem 6. ⊓⊔

D Proofs for Section 6

D.1 Proof of Lemma 6

Proof.

If part. Assume there is a tuple of state-based strategiesf = (f1, f2, · · · , fn) on each
gameGi, s.t. (2) is satisfied. From (1), each choice of Player 0 inGi determines one
transition from each square state (see the definition ofGi and square states in sec-

tion 6.1). Thus the graph ofGi can be folded into a set of transitionsq
g,a,Y
−−−→ q′

if the choice of Player 0 isg, a, Y in square state(q, g, a). This gives a DTAGi,c.
We can then build a diagnoserDi defined by the DTA as follows: (i) for each state
q = {(ℓ1, r1), · · · , (ℓk, rk)} in Gi,c, if all the ℓj are ∆-faulty, q is accepting; (ii)

19

given w ∈ Tr(A), if πΣi
(w) ∈ L(Gi,c), let Di(πΣi

(w)) = 1 and otherwise0. D
is a ∆-codiagnoser forA. Indeed, letw ∈ NonFaultytr(A). In each gameGi,c, we
cannot reach a∆-faulty state because of (2). Hence

∑n
i=1 D[i] = 0. Now assume

w ∈ Faultytr
≥∆(A): In eachGi,c we must reach a stateqi containing a∆-faulty state.

By (2), there is somej s.t.qj 6∈ Badj and this implies thatqj is made only of∆-faulty
states andqj is accepting, thusD[j](πΣj

(w)) = 1.

Only If part. For this part we first show that a tuple of strategiesf exists and then ad-
dress the state-based problem. LetD = (D1, D2, · · · , Dn) be the tuple of DTA that dia-
gnosesA. For each gameGi, define the strategyfi by: let̺ = (g1, λ1)(g1, λ1, Y1) · · ·
(gk−1, λk−1)(gk−1, λk−1, Yk−1)(gk, λk) be a run inGi; fi(̺) = (g, a, Y) if in Di

the symbolic sequence(g1, λ1) · · · (gk, λk) reaches a locationℓ and there is a trans-
ition (ℓ, (g, a, Y), ℓ′) in Di. By assumption, asD is a ∆-codiagnoser, for eachw ∈
Faultytr

≥∆(A), there is at least oneDj which reaches an accepting state after reading
πΣj

(w).
As a consequence, in the corresponding game,Gj , the state reached is made only

of ∆-faulty states. Indeed, if a non-faulty state is reachable, then the wordw is also the
projection of a non faulty run. HenceDj should announce0 which is a contradiction.

If w ∈ NonFaultytr(A), all the states reached in eachGi are non faulty.

Now assume we have the strategiesfi, 1 ≤ i ≤ n. We can construct state-based
strategies on each gameGi. Givenf1, (not necessarily winning) onG1, let T1 be the
set of bad states reachable inf1(G

1). Define the languageL1 to be the set of words
w ∈ Tr(A) s.t. a state inT1 is reachable inf1(G

1) when readingπΣ1
(w). These are

the words on whichf1 is not winning inG1.
Let Reach(f1(G

1)) be the set of states reachable inG1. There is a strategy (f1) to
avoidB1 = Reach(G1) \ Reach(f1(G

1)). Hence there is a state-based strategyf ′
1 that

avoidsB1.
Let 1 ≤ i < n. Consider the gamefi+1(G

i+1) restricted to the (projections of the)
wordsw ∈ Li. The idea is that onLi, a strategyfj , j ≤ i is winning in Gj . In this
restricted game, we define the setTi+1 of bad states that are still reachable. LetLi+1

be the set of wordsw ∈ Tr(A) s.t. a state inTi+1 is reachable in the restricted timed
transition systemfi+1(G

i+1).
Notice that we can construct a state-based strategyf ′

i which avoids the same states
asfi does. For each restricted gamef ′

i(G
i) we define the diagnoserDi as before. If for

somei, Li = ∅, we can define the diagnosersDk, k ≥ i to always announce0 for each
word.

f ′ is a(∆, E)-codiagnoser forA and all thef ′[i] are state-based onGi. ⊓⊔

D.2 Proof of Theorem 12

Proof. 2EXPTIME-hardness follows from Theorem 11, from [7]. 2EXPTIME easiness
is obtained using the following algorithm:

1. compute the gamesGi, 1 ≤ i ≤ n;
2. select a state-based strategy on each gameGi;

20

3. check condition (2) of Lemma 6.

The sizes of the gamesGi are doubly exponential inA, ∆ and the resourcesµi (recall
thatΣi is included inµi). There is a doubly exponential number of state-based strategies
for each gameGi. Once selected we have a DTAGi,c.

Checking condition (2) of Lemma 6 can be done on the productA(∆)×G1,c×· · ·×
Gn,c. It amounts to deciding whether a location inL3 × Bad1 × · · ·Badn is reachable.
Reachability can be checked in PSPACE for product of TA (Theorem 2). As the size of
the input is doubly exponential in the size ofA, this results in a 2EXPSPACE algorithm.

Nevertheless, there is no exponential blow up in the number of clocks of the product.
Actually the size ofRG(A(∆)×G1,c × · · · ×Gn,c) is |L| · 22|A|+|µ1|

· · · · · 22|A|+|µn|

·
(n · |X|)! · 2n·|X| ·Kn·|X| with K the maximal constant inA, ∆, and the resourcesµi.
It is doubly exponential in the size ofA, ∆ and the resourcesµi. Reachability can be
checked in linear time on this graph and thus in doubly exponential time in the size of
A, ∆ and the resources. Step 3 above is done at most a doubly exponential number of
times and the result follows. ⊓⊔

21

