
HAL Id: inria-00493778
https://inria.hal.science/inria-00493778

Submitted on 21 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interfacing Operating Systems and Polymorphic
Computing Platforms based on the MOLEN

Programming Paradigm
Mojtaba Sabeghi, Koen Bertels

To cite this version:
Mojtaba Sabeghi, Koen Bertels. Interfacing Operating Systems and Polymorphic Computing Plat-
forms based on the MOLEN Programming Paradigm. WIOSCA 2010 - Sixth Annual Workshorp
on the Interaction between Operating Systems and Computer Architecture, Jun 2010, Saint Malo,
France. �inria-00493778�

https://inria.hal.science/inria-00493778
https://hal.archives-ouvertes.fr

Interfacing Operating Systems and Polymorphic Computing Platforms
based on the MOLEN Programming Paradigm

Mojtaba Sabeghi, Koen Bertels
Computer engineering Laboratory

Delft University of Technology
Delft, the Netherlands

{M.Sabeghi, K.L.M.Bertels}@tudelft.nl

Abstract – The MOLEN Programming Paradigm was
proposed to offer a general function like execution of the
computation intensive parts of the programs on the
reconfigurable fabric of the polymorphic computing platforms.
Within the MOLEN programming paradigm, the MOLEN
SET and EXECUTE primitives are employed to map an
arbitrary function on the reconfigurable hardware. However,
these instructions in their current status are intended for single
application execution scenario. In this paper, we extended the
semantic of MOLEN SET and EXECUTE to have a more
generalized approach and support multi application,
multitasking scenarios. This way, the new SET and
EXECUTES are APIs added to the operating system runtime.
We use these APIs to abstract the concept of the task from its
actual implementation. Our experiments show that the
proposed approach has a negligible overhead over the overall
applications execution.

1 Introduction
Polymorphic computing platforms [1] usually consist of a
General Purpose Processor (GPP) and reconfigurable unit(s)
implemented in an FPGA technology. Programming such
systems usually implies the introduction of a new software
design flow which requires detailed knowledge about the
reconfigurable hardware. The compiler is a very important
component in the software design flow as it has to integrate
most of this information.

To increase the system performance, computational
intensive operations are usually implemented on the
reconfigurable hardware. Different vendors provide their
own implementation for each specific operation. The main
challenge is to integrate these implementations - whenever
possible - in new or existing applications. Such integration is
only possible when application developers as well as
hardware providers adopt a common programming
paradigm.

The MOLEN programming paradigm [2] is a sequential
consistency paradigm for programming reconfigurable
machines. This paradigm allows parallel and concurrent

hardware execution and it is currently intended for single
program execution.

However, movement towards multi applications, multi
tasking scenarios, adds new design factor to the system such
as dealing with FPGA as a shared resource. These factors
prevent using the MOLEN primitives as they are. They
should be extended in such a way that besides offering the
old functionalities, they have to resolves the conflicting
issues between different applications at the time of primitive
usage. In this paper, we present how the MOLEN
programming paradigm primitives are extended and adapted
into our runtime system.

The rest of the paper is organized as follows. Section 2
covers a summary over the related works. In Section 3, we
present a background overview. Section 4 describes the
runtime primitives followed by the evaluation results in
section 5. Finally, we conclude the paper in section 6.

2 Related Work
The main challenge in general-purpose reconfigurable
computers which serve multiple concurrent applications, is
sharing the reconfigurable fabric in a transparent and light-
weighted manner. Several research projects are intended to
offer a consistent runtime system which can handle such a
reconfiguration aware resource sharing. The IBM Lime [3]
goal is to create a single unified programming language and
environment that allows all portions of a system to move
fluidly between hardware and software, dynamically and
adaptively. Lime targets Java applications to be dynamically
translated for co-execution on general-purpose processors
and reconfigurable logic. Another similar work is PPL [4]
which tries to extend the java virtual machine approach by
featuring a parallel object language to be executed on a
common parallel runtime system, mapping this language
onto the respective computing nodes.

ReconOS [5] aims at the investigation and development of a
programming and execution model for dynamically
reconfigurable hardware devices. ReconOS extends the
concept of multithreaded programming to reconfigurable
logic. Another comparable approach is BORPH [6], which
introduces the concept of hardware process that behaves just
like a normal user program except that it is a hardware
design running on a FPGA. Hardware processes behave like

* This research is partially supported by hArtes project EU-IST-
035143, Artemisia iFEST project (grant 100203), Artemisia SMECY
(grant 100230) and FP7 Reflect (grant 248976).

30

normal software programs. The BORPH kernel provides
standard system services, such as file system access, to
hardware processes, allowing them to communicate with the
rest of the system easily and systematically.

Our work focuses on MOLEN programming paradigm and
considers the FPGA as a co-processor rather than having
complete hardware threads as in ReconOS and BORPH.
From this Perspective, our work is more similar to the
HybridOS [7] approach in which the granularity of the
computation on the FPGA is based on multiple data parallel
kernels mapped into accelerators to be accessed by multiple
threads of execution in an interleaved and space-multiplexed
fashion.

StarPU [8] offers a unified task abstraction named "codelet".
Rather than rewriting the entire code, programmers can
encapsulate existing functions within codelets. StarPU takes
care to schedule and execute those codelets as efficiently as
possible over the entire machine. In order to relieve
programmers from the burden of explicit data transfers, a
high-level data management library enforces memory
coherency over the machine: before a codelet starts, all its
data are transparently made available on the computing
resource.

We are targeting the tightly coupled processor coprocessor
MOLEN paradigm in which we abstract the concept of the
task using MOLEN SET and EXECUTE instructions.

3 Background Overview
The MOLEN hardware organization is established based on
the tightly coupled co-processor architectural paradigm.
Within the MOLEN concept, a general-purpose core
processor controls the execution and reconfiguration of
reconfigurable coprocessors (RP), tuning the latter to various
application specific algorithms. Figure 1 represents the
MOLEN machine organization.

Figure 1 MOLEN Hardware Organization

3.1 MOLEN Programming Paradigm
MOLEN programming paradigm presents a programming
model for reconfigurable computing that allows modularity,

general function like code execution and parallelism in a
sequential consistency computational model. Furthermore, it
defines a minimal ISA extension to support the
programming paradigm. Such an extension allows the
mapping of an arbitrary function on the reconfigurable
hardware with no additional instruction requirements.

This is done by introducing new super instructions to
operate the FPGA from the software. An operation, executed
by the RP, is divided into two distinct phases: set and
execute. In the set phase, the RP is configured to perform the
required task and in the execute phase the actual execution
of the task is performed. This decoupling allows the set
phase to be scheduled well ahead of the execute phase,
thereby hiding the reconfiguration latency. These phasing
introduces two super instructions; SET and EXECUTE.

The SET instruction requires single parameter – e.g. the
beginning address of the configuration microcode. When a
SET instruction is detected, the Arbiter reads every
sequential memory address until the termination condition is
met and configures it on the FPGA. After completion of the
SET phase, the hardware is ready to be used for the targeted
functionality. This is done using the EXECUTE instruction.
This instruction also utilizes a single parameter being the
address of the execution microcode. The execution
microcode performs the real operation which consists of
reading the input parameters, performing the targeted
computation and writing the results to the output registers.

As it is obvious, these two instructions are based on the
assumption of a single thread of execution. With such an
assumption, having an operating system as long as there is
only one application dealing with the FPGA is not an issue.
That is because there is no competition for the resources and
the application has full control over the FPGA. In case of
serving several concurrent applications on the same system,
SET and EXECUTE can not be used the same way as they
are used in single application paradigm. Each application
might issue its own SET (EXECUTE) which most probably
has conflicts with the other’s SETs (EXECUTEs). In such a
scenario, the operating system has to resolve all the
conflicts.

In the next section, we describe our runtime execution
environment in which the MOLEN primitives are used to
operate the FPGA.

3.2 The Runtime Environment
Our runtime environment [9] is a virtualized interface, which
decides how to allocate the hardware at run-time based on
the dynamic changing conditions of the system. Moreover,
this layer hides all platform dependent details and provides a
transparent application development process. This layer is
located above the Operating System.

The runtime environment components include a scheduler, a
profiler and a transformer. It might also incorporate a JIT
compiler for on the fly code generation for the target cores,

31

e.g. FPGA bit streams. Figure 2 depicts our runtime
environment.

Figure 2 the Runtime Environment

In our system, task scheduling takes place in two phases.
First, at compile-time, the compiler performs static
scheduling of the reconfiguration requests (SETs and
EXECUTEs) assuming a single application execution. The
main goal at this stage is to hide the reconfiguration delay by
configuring the operations well in advance before the
execution point.

Then at runtime, the run-time system performs the actual
task scheduling. At this stage, the MOLEN SET and
EXECUTE instructions are just a hint and they do not
impose anything to the runtime system. The run-time system
decides based on the runtime status of the system and it is
possible to run a kernel in software even though the
compiler already scheduled the configuration. More detail
about the scheduling procedure can be found in [10]. In this
paper, we only focus on the runtime SET and EXECUTE
operations.

We also have a kernel library which includes a set of
precompiled implementation for each known operations. This
means, we might have multiple implementations per
operation. Each implementation has different characteristics
which are saved as metadata and can contain, among other
things, the configuration latency, execution time, memory
bandwidth requirements, power consumption and physical
location on the reconfigurable fabric.
For each operation’s implementation in the library, there is a
software wrapper which is kept in the form of a Dynamic
Shared Object (DSO). The application developer can also
provide his own DSO along with the required metadata. To
this end, we provide the application developers with a DSO
creation tool, which is discussed later.

4 MOLEN Runtime Primitives
To keep the changes in the compiler and design tool chain
[11] as limited as possible and also to provide legacy
compatibility, we propose the MOLEN runtime primitives as
follows.

Figure 3 the Operation Execution Process

We have extended the operating system runtime with two
APIs; The MOLEN SET and MOLEN EXECUTE. The
functionality of these APIs are almost identical to the
original MOLEN SET and EXECUTE. Besides the normal
MOLEN activities, these APIs have to take care of the
sharing of the FPGA among all the competing applications.
This means, at the time of the call, the runtime system is
responsible to check the availability of the FPGA.
Furthermore, it can impose some sort of allocation policies
such as priorities and performance issues.

Figure 3 shows the sequence diagram of the operation
execution in our runtime system. When an application comes
upon a call to the SET for a specific operation, it sends its
request to the runtime system (VM). The VM then checks
the library to look for all the appropriate implementations. If
no such implementation is found, it sends a FAIL message
back to the application which means the SET operation can
not be performed. Otherwise, based on the scheduling policy
it selects one of the implementations (IM) and configure it
on the FPGA. The OS driver is the low level interface
between the operating system and the physical FPGA fabric.
Finally, it sends the address of the IM to the application.

Later on, when the application encounters the EXECUTE
instruction, the system checks if the IM is still configured
and ready. If so, the execution can start right away. If not, it

32

has to follow the SET routine again and at the end, starts the
execution. If any problem occurs during this process, a FAIL
message will be sent back to the application. A FAIL
message received by the application means the software
execution of the operation has to be started. In the following
two sections, we describe the two APIs in more detail.

4.1 MOLEN SET
The SET API receives the operation name as an input. We
assume all the supported operations have a unique name in
our system. This assumption is based on the idea of having a
library of a number of different implementations per
operation in our runtime environment. Listing 1 shows the
pseudo code corresponding to the SET API.

In Listing 1, line 2 creates a list of all the existing
implementation for the operation. If the physical location
corresponding to any of those implementations is busy, e.g.
another application is using that resource, that
implementation is removed from the list in line 4-1 and the
loop continues to the next element in the list. Some of the
implementations might already be configured on the FPGA.
This means there is no need for configuring them again.
Those implementations are added to another list in line 4-2
and the best candidate (here the fastest one) is return to the
main program in line 5. If there is no such an

implementation exists, the algorithm goes further to choose
one of the other implementations and start configuring it in
line 6. This selection is very dependent on the scheduling
(line 6-1). The configuration process is discussed in section
4.3.

4.2 MOLEN EXECUTE
The EXECUTE is also an API added to the operating
system. It has two input arguments; the operation name and
the address of the configured implementation in the SET
phase. Listing 2 shows the pseudo code corresponding to the
EXECUTE.

In our system, the operations might be shared between
different applications (This task sharing is one of the
motivations behind the idea of using dynamic shared object
as will be discussed in section 4.3). On the other hand, since
there might be a gap between the occurrence of the SET and
EXECUTE instructions, e.g. because of the compiler
optimizations to hide the reconfiguration delay, the control
might go to another application (app2) and that application
(app2) might use the implementation which is set by this
application. That is why the busy status of the IM (in line 2)
has to be checked. If it is not busy, it can start execution. It is
also possible to call the EXECUTE without any prior SET or
any successful prior SET.

In this case IM is null. In case of having a busy
implementation or a null, the SET has to be performed
again. This is done in line 3. Finally, the algorithm executes
the implementation in line 4. If any problem occurs during
the EXECUTE, it return a FAIL which means the operation
has to be executed in software. The execution process is
discussed in section 4.3.

4.3 Dynamic Binding Implementation
As we pointed earlier, the actual binding of the function calls
to the implementation happens at runtime. To do that we use

Listing 2 the EXECUTE
EXECUTE (input: Operation op; input:
Implementation IM)

1- EXECUTE begins

2- If IM is not NULL and IM is not busy

 Execute IM;

 Return SUCCESS;

End if

3- I* = SET (op);

4- If I* is not NULL and I* is not busy

Execute I*;

 Return SUCCESS;

End if

5- Return FAIL;
6- EXECUTE ends

Listing 1 the SET
SET (input: Operation op): return
Implementation I*

1- SET begins

2- Assume im_list the list of all the
implementations corresponding to the
op in the library;

3- Assume co_list as an empty list;

4- For each IM in im_list

4-1- If the corresponding physical
location of IM is busy

Remove IM from im_list;

Continue;

End if

4-2- If IM is already configured on
the FPGA, Add IM to the co_list;

End for

5- If co_list is not empty

Return the IM with the minimum
execution time from co_list;

6- If im_list is not empty

6-1- Choose I* from the im_list based
on the scheduling policy;

6-2- Configure I* on FPGA;

6-3- Return I*;

End if

7- Return FAIL;
8- SET ends

33

the ELF binary format delayed symbol resolution facility
and position independent code.

For each operation implementation in the library, there is a
software wrapper with two functions, one which performs
the low level configuration of the operation (the traditional
SET) and one which performs the low level execution of the
operation (the traditional EXECUTE). In the runtime SET,
when the reconfiguration takes place (line 6-2 in Listing 1),
the low level SET from this software wrapper is called.
Similarly, in the runtime EXECUTE (lines 2 and 4 in Listing
2) the low level EXECUTE is called. The reason that we can
use the traditional SET and execute at this point is that the
sharing controls has already been performed by the runtime
system and it is safe to call the normal SET and EXECUTE
instruction.

As it is mentioned before, this software wrapper is kept in
the form of a Dynamic Shared Object (DSO). Given the
name of a DSO by the SET (line 6-2 in Listing 1), which is
the name of the chosen implementation; the system
dynamically loads the object file into the address space of
the program and returns a handle to it for future operations.
We do this process by using the Linux dlopen function. The
dlopen is called with RTLD_LAZY mode, which says to
perform resolutions only when they're needed. This is done
internally by redirecting all requests that are yet to be
resolved through the dynamic linker. In this way, the
dynamic linker knows at request time when a new reference
is occurring, and resolution occurs normally. Subsequent
calls do not require a repeat of the resolution. To find the
address of each function in the DSO, we use Linux dlsym
facility. The dlsym takes the name of the function and
returns a pointer containing the resolved address of the
function.

In the traditional SET (line 6-2 in Listing 1), all the required
parameters needed by the FPGA have to be transferred to
MOLEN XREGS. Then, it starts configuring the FPGA. At
the time of traditional EXECUTE (lines 2 and 4 in Listing
2); using the dlsym the address of the second function is
resolved. By this function pointer, we can invoke the
required operation.

To simplify the creation of DSO files to be added to the
runtime library, (especially for third-party modules) a
support tool is proposed. The idea is simple: It shows a
template of the wrapper and the program developer has to
add a few lines of code to it. Besides, the program developer
has to explicitly write the parameters transfers instruction in
the pre defined template (moving the parameters to XREGs).
Then, the tool compiles the code for Position Independent
Code (PIC) and converts it to a DSO. Furthermore, the tool
provides a very simple interface to gather the metadata
required by the runtime scheduler such as the configuration
latency, execution time, memory bandwidth requirements,
power consumption, physical location on the reconfigurable
fabric, etc and stores them in an appropriate format.

5 Evaluation
When evaluating our proposed mechanism, two aspects are
important: what is the overall performance improvement
through acceleration which can be achieved and what the
overhead of invoking it is.

Overhead: The execution time overhead imposed by
dynamic linking (DSO loading) occurs on two places: at run
and load-time. At runtime, each reference to an externally
defined symbol must be indirected through the Global
Object Table (GOT). The GOT contains the absolute
addresses of all the static data referenced in the program. At
load-time, the running program must copy the loaded code
and then link it to the program. In most cases, the only run-
time overhead of dynamic code is the need to access
imported symbols through the GOT. Each access requires
only one additional instruction. The load time overhead is
the time spent to load the object file. For a null function call
in our system, the load time is about 0.75 milliseconds. For a
typical wrapper function, the load time increases to about 2
milliseconds. We should mention that the increase in the
input parameters’ size might increase the size of the wrapper
function since each parameter needs a separate instruction to
be transferred to the MOLEN XREGs.

Speedup: In order to show the overall performance of the
system, we performed a series of experiments. To show only
the overhead imposed by the SET and EXECUTE APIs, we
have implemented a scheduling algorithm in which we pick
the fastest implementation and execute it, on condition of
course that the FPGA is available. The experiment workload
is obtained from an interactive multimedia internet based
testing application [12]. The workload’s kernels are listed in
Table 1.

The last column in Table 1, shows the operation total
execution time when it is executed only once. This means
the execution time is the sum of the software wrapper load
delay plus the reconfiguration delay plus the HW execution
time. As shown in Table 1, the software wrapper delay over
the total execution time varies between 5 to 20 percent for
different kernels.

However in general, when a kernel is loaded (incurring one
wrapper and reconfiguration delay), it executes more than
once which means the overhead decreases as the number of
executions increases. To show such a reduction in execution
time, we evaluate the overall execution time in the
following. The first column is the software only execution
time (no FPGA) which is mentioned just as a point of
reference.

To show overall system performance, we used 5 different
workloads from interactive multimedia internet based test;
the workload varies based on the number of test taken and
the number of kernels which is used in each test. We have
workloads for 12 applicants (821 kernels), 24 applicants
(1534 kernels), 36 applicants (2586 kernels), 48 applicants
(3032 kernels) and 60 applicants (4164 kernels). It should be

34

mentioned that each test taker is has its own process in the
system and therefore the number of applications are equal to
the number f test takers. In such a scenario, each test takers
corresponding application is competing against the others to
obtain the FPGA resources.

We compared the software only execution with the
hardware/software execution. As shown in Table 2 the overall
system speedup varies between 2.28 to 1.91. The wrapper
overhead to the overall execution time is between five to
three percent. As the number of test takers increases, the
chance of executing an already configured kernel increases
and as a result, the wrapper overhead reduces.

On the other hand, since the system loads increases, the
overall speedup is also decreases. That is because the FPGA
resources are limited and fixed. Therefore, when the system
load increases the HW/SW execution time gets closer to the
SW only solution and as a result the speedup reduces.

Table 1 Workload Kernels

Kernels

Operation SW
only

execution time
(ms)

Operation
HW

Execution
time
(ms)

Operation
Configuration

Delay
(ms)

Operation
SW

wrapper
Delay
(ms)

The HW
total

execution
time
(ms)

Epic-
Decoder

19.87 8.56 5.82 2.11 16.49

Epic-
Encoder

11.87 5.22 2.49 1.17 8.88

Mpeg2-
Decoder

77.35 2.43 3.64 1.47 7.54

Mpeg2-
Encoder

10.39 1.94 4.87 1.81 8.62

G721 42.42 4.64 5.82 2.57 12.58

Jpeg-
Decoder

68.39 8.63 8.72 3.41 20.76

Jpeg-
Encoder

169.33 35.23 10.98 4.51 50.72

Pegwit 166.06 36.34 5.88 2.59 44.81

Table 2 Overall Execution Time

No application No

kernels

12

821

24

1534

36

2586

48

3032

60

4164

SW-only 135654.08 260508.60 381329.44 501860.74 641478.23

SW/HW 59580.79 121977.13 186415.10 256929.84 335276.90

SW wrapper

Overhead

2983.03 5884.87 7654.71 10814.62 11463.15

Wrapper overhead

percentage

~ 5 % ~ 5 % ~ 4 % ~ 4 % ~ 3 %

Speedup 2.28 2.14 2.05 1.95 1.91

6 Conclusion
In this paper, we extended the MOLEN programming
paradigms primitives to use them in presence of an operating
system and in multi application, multi tasking scenarios. The
MOLEN primitives in their current status are just for single
application execution. We discussed the details of the SET
and EXECUTE APIs and presented the dynamic binding
mechanism whish is used by these APIs to bind a task call to
a proper task implementation. Our experiments show that the
proposed approach has a negligible overhead over the
overall applications execution.

References
1. Vassiliadis, S., Kuzmanov, G.K., Wong, S., Panainte, E.M.,
Gaydadjiev, G.N., Bertels, K.L.M., Cheresiz, D.: PISC:
Polymorphic Instruction Set Computers. International Workshop on
Applied Reconfigurable Computing (2006)

2. Vassiliadis, S., Gaydadjiev, G.N., Bertels, K.L.M., Panainte,
E.M.: The Molen Programming Paradigm. Third International
Workshop on Systems, Architectures, Modeling, and Simulation
(2003)

3. Huang, S.S., Hormati, A., Bacon, D.F., Rabbah, R.: Liquid
Metal: Object-Oriented Programming Across the
Hardware/Software Boundary. European Conference on Object-
Oriented Programming (ECOOP) (2008)

4. Olukotun, K.: Towards Pervasive Parallelism. (2010)

5. Lübbers, E., Platzner, M.: ReconOS: An Operating System for
Dynamically Reconfigurable Hardware. Dynamically
Reconfigurable Systems. Springer (2010)

6. So, H.K.-H., Brodersen, R.: A unified hardware/software
runtime environment for FPGA-based reconfigurable computers
using BORPH. ACM Transactions on Embedded Computing
Systems (TECS) 7 (2008)

7. Kelm, J.H., Lumetta, S.S.: HybridOS: Runtime Support for
Reconfigurable Accelerators. International Symposium on Field-
Programmable Gate Arrays, Monterey, California (2008)

8. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.:
StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures. 15th International Euro-Par Conference
(2009)

9. Sabeghi, M., Bertels, K.: Toward a Runtime System for
Reconfigurable Computers: A Virtualization Approach.
Proceedings of the conference on Design, automation and test in
Europe (2009)

10. Sabeghi, M., Sima, V.M., Bertels, K.L.M.: Compiler Assisted
Runtime Task Scheduling on a Reconfigurable Computer. 19th
International Conference on Field Programmable Logic and
Applications (FPL09) (2009)

11. Panainte, E.M., Bertels, K., Vassiliadis, S.: Compiling for the
Molen Programming Paradigm. Field-Programmable Logic and
Applications (2003) 900-910

12. Fazlali, M., Zakerolhosseini, A.: REC-BENCH: A Tool to
Create Benchmark for Reconfigurable Computers. VI Southern
Programmable Logic Conference, (SPL 2010) (2010)

35

