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Abstract – The MOLEN Programming Paradigm was 
proposed to offer a general function like execution of the 
computation intensive parts of the programs on the 
reconfigurable fabric of the polymorphic computing platforms. 
Within the MOLEN programming paradigm, the MOLEN 
SET and EXECUTE primitives are employed to map an 
arbitrary function on the reconfigurable hardware. However, 
these instructions in their current status are intended for single 
application execution scenario. In this paper, we extended the 
semantic of MOLEN SET and EXECUTE to have a more 
generalized approach and support multi application, 
multitasking scenarios. This way, the new SET and 
EXECUTES are APIs added to the operating system runtime. 
We use these APIs to abstract the concept of the task from its 
actual implementation. Our experiments show that the 
proposed approach has a negligible overhead over the overall 
applications execution. 

 

1 Introduction 
Polymorphic computing platforms [1] usually consist of a 
General Purpose Processor (GPP) and reconfigurable unit(s) 
implemented in an FPGA technology.  Programming such 
systems usually implies the introduction of a new software 
design flow which requires detailed knowledge about the 
reconfigurable hardware. The compiler is a very important 
component in the software design flow as it has to integrate 
most of this information. 

To increase the system performance, computational 
intensive operations are usually implemented on the 
reconfigurable hardware.  Different vendors provide their 
own implementation for each specific operation. The main 
challenge is to integrate these implementations - whenever 
possible - in new or existing applications. Such integration is 
only possible when application developers as well as 
hardware providers adopt a common programming 
paradigm. 

The MOLEN programming paradigm [2] is a sequential 
consistency paradigm for programming reconfigurable 
machines. This paradigm allows parallel and concurrent 

hardware execution and it is currently intended for single 
program execution.   

However, movement towards multi applications, multi 
tasking scenarios, adds new design factor to the system such 
as dealing with FPGA as a shared resource. These factors 
prevent using the MOLEN primitives as they are. They 
should be extended in such a way that besides offering the 
old functionalities, they have to resolves the conflicting 
issues between different applications at the time of primitive 
usage. In this paper, we present how the MOLEN 
programming paradigm primitives are extended and adapted 
into our runtime system.  

The rest of the paper is organized as follows. Section 2 
covers a summary over the related works. In Section 3, we 
present a background overview.  Section 4 describes the 
runtime primitives followed by the evaluation results in 
section 5. Finally, we conclude the paper in section 6. 

2 Related Work 
The main challenge in general-purpose reconfigurable 
computers which serve multiple concurrent applications, is 
sharing the reconfigurable fabric in a transparent and light-
weighted manner. Several research projects are intended to 
offer a consistent runtime system which can handle such a 
reconfiguration aware resource sharing.    The IBM Lime [3] 
goal is to create a single unified programming language and 
environment that allows all portions of a system to move 
fluidly between hardware and software, dynamically and 
adaptively. Lime targets Java applications to be dynamically 
translated for co-execution on general-purpose processors 
and reconfigurable logic. Another similar work is PPL [4] 
which tries to extend the java virtual machine approach by 
featuring a parallel object language to be executed on a 
common parallel runtime system, mapping this language 
onto the respective computing nodes.  

ReconOS [5] aims at the investigation and development of a 
programming and execution model for dynamically 
reconfigurable hardware devices. ReconOS extends the 
concept of multithreaded programming to reconfigurable 
logic. Another comparable approach is BORPH [6], which 
introduces the concept of hardware process that behaves just 
like a normal user program except that it is a hardware 
design running on a FPGA. Hardware processes behave like 

 
* This research is partially supported by hArtes project EU-IST-
035143, Artemisia iFEST project (grant 100203), Artemisia SMECY 
(grant 100230) and FP7 Reflect (grant 248976). 
 

30



normal software programs. The BORPH kernel provides 
standard system services, such as file system access, to 
hardware processes, allowing them to communicate with the 
rest of the system easily and systematically.  

Our work focuses on MOLEN programming paradigm and 
considers the FPGA as a co-processor rather than having 
complete hardware threads as in ReconOS and BORPH. 
From this Perspective, our work is more similar to the 
HybridOS [7] approach in which the granularity of the 
computation on the FPGA is based on multiple data parallel 
kernels mapped into accelerators to be accessed by multiple 
threads of execution in an interleaved and space-multiplexed 
fashion.  

StarPU [8] offers a unified task abstraction named "codelet". 
Rather than rewriting the entire code, programmers can 
encapsulate existing functions within codelets. StarPU takes 
care to schedule and execute those codelets as efficiently as 
possible over the entire machine. In order to relieve 
programmers from the burden of explicit data transfers, a 
high-level data management library enforces memory 
coherency over the machine: before a codelet starts, all its 
data are transparently made available on the computing 
resource.  

We are targeting the tightly coupled processor coprocessor 
MOLEN paradigm in which we abstract the concept of the 
task using MOLEN SET and EXECUTE instructions. 

3 Background Overview 
The MOLEN hardware organization is established based on 
the tightly coupled co-processor architectural paradigm. 
Within the MOLEN concept, a general-purpose core 
processor controls the execution and reconfiguration of 
reconfigurable coprocessors (RP), tuning the latter to various 
application specific algorithms. Figure 1 represents the 
MOLEN machine organization. 

 

Figure 1 MOLEN Hardware Organization 

3.1 MOLEN Programming Paradigm 
MOLEN programming paradigm presents a programming 
model for reconfigurable computing that allows modularity, 

general function like code execution and parallelism in a 
sequential consistency computational model. Furthermore, it 
defines a minimal ISA extension to support the 
programming paradigm. Such an extension allows the 
mapping of an arbitrary function on the reconfigurable 
hardware with no additional instruction requirements.  

This is done by introducing new super instructions to 
operate the FPGA from the software. An operation, executed 
by the RP, is divided into two distinct phases: set and 
execute. In the set phase, the RP is configured to perform the 
required task and in the execute phase the actual execution 
of the task is performed. This decoupling allows the set 
phase to be scheduled well ahead of the execute phase, 
thereby hiding the reconfiguration latency. These phasing 
introduces two super instructions; SET and EXECUTE. 

The SET instruction requires single parameter – e.g. the 
beginning address of the configuration microcode. When a 
SET instruction is detected, the Arbiter reads every 
sequential memory address until the termination condition is 
met and configures it on the FPGA. After completion of the 
SET phase, the hardware is ready to be used for the targeted 
functionality. This is done using the EXECUTE instruction. 
This instruction also utilizes a single parameter being the 
address of the execution microcode. The execution 
microcode performs the real operation which consists of 
reading the input parameters, performing the targeted 
computation and writing the results to the output registers. 

As it is obvious, these two instructions are based on the 
assumption of a single thread of execution. With such an 
assumption, having an operating system as long as there is 
only one application dealing with the FPGA is not an issue.  
That is because there is no competition for the resources and 
the application has full control over the FPGA.  In case of 
serving several concurrent applications on the same system, 
SET and EXECUTE can not be used the same way as they 
are used in single application paradigm. Each application 
might issue its own SET (EXECUTE) which most probably 
has conflicts with the other’s SETs (EXECUTEs). In such a 
scenario, the operating system has to resolve all the 
conflicts. 

In the next section, we describe our runtime execution 
environment in which the MOLEN primitives are used to 
operate the FPGA.  

3.2 The Runtime Environment 
Our runtime environment [9] is a virtualized interface, which 
decides how to allocate the hardware at run-time based on 
the dynamic changing conditions of the system. Moreover, 
this layer hides all platform dependent details and provides a 
transparent application development process. This layer is 
located above the Operating System.   

The runtime environment components include a scheduler, a 
profiler and a transformer. It might also incorporate a JIT 
compiler for on the fly code generation for the target cores, 
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e.g. FPGA bit streams. Figure 2 depicts our runtime 
environment.  

 

Figure 2 the Runtime Environment 

In our system, task scheduling takes place in two phases. 
First, at compile-time, the compiler performs static 
scheduling of the reconfiguration requests (SETs and 
EXECUTEs) assuming a single application execution. The 
main goal at this stage is to hide the reconfiguration delay by 
configuring the operations well in advance before the 
execution point.  

Then at runtime, the run-time system performs the actual 
task scheduling. At this stage, the MOLEN SET and 
EXECUTE instructions are just a hint and they do not 
impose anything to the runtime system. The run-time system 
decides based on the runtime status of the system and it is 
possible to run a kernel in software even though the 
compiler already scheduled the configuration. More detail 
about the scheduling procedure can be found in [10]. In this 
paper, we only focus on the runtime SET and EXECUTE 
operations. 

We also have a kernel library which includes a set of 
precompiled implementation for each known operations. This 
means, we might have multiple implementations per 
operation. Each implementation has different characteristics 
which are saved as metadata and can contain, among other 
things, the configuration latency, execution time, memory 
bandwidth requirements, power consumption and physical 
location on the reconfigurable fabric. 
For each operation’s implementation in the library, there is a 
software wrapper which is kept in the form of a Dynamic 
Shared Object (DSO). The application developer can also 
provide his own DSO along with the required metadata. To 
this end, we provide the application developers with a DSO 
creation tool, which is discussed later. 

4 MOLEN Runtime Primitives 
To keep the changes in the compiler and design tool chain 
[11] as limited as possible and also to provide legacy 
compatibility, we propose the MOLEN runtime primitives as 
follows.  

 

Figure 3 the Operation Execution Process 

We have extended the operating system runtime with two 
APIs; The MOLEN SET and MOLEN EXECUTE. The 
functionality of these APIs are almost identical to the 
original MOLEN SET and EXECUTE. Besides the normal 
MOLEN activities, these APIs have to take care of the 
sharing of the FPGA among all the competing applications. 
This means, at the time of the call, the runtime system is 
responsible to check the availability of the FPGA. 
Furthermore, it can impose some sort of allocation policies 
such as priorities and performance issues. 

Figure 3 shows the sequence diagram of the operation 
execution in our runtime system. When an application comes 
upon a call to the SET for a specific operation, it sends its 
request to the runtime system (VM). The VM then checks 
the library to look for all the appropriate implementations. If 
no such implementation is found, it sends a FAIL message 
back to the application which means the SET operation can 
not be performed. Otherwise, based on the scheduling policy 
it selects one of the implementations (IM) and configure it 
on the FPGA. The OS driver is the low level interface 
between the operating system and the physical FPGA fabric.  
Finally, it sends the address of the IM to the application.  

Later on, when the application encounters the EXECUTE 
instruction, the system checks if the IM is still configured 
and ready. If so, the execution can start right away. If not, it 
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has to follow the SET routine again and at the end, starts the 
execution. If any problem occurs during this process, a FAIL 
message will be sent back to the application. A FAIL 
message received by the application means the software 
execution of the operation has to be started. In the following 
two sections, we describe the two APIs in more detail. 

4.1 MOLEN SET 
The SET API receives the operation name as an input. We 
assume all the supported operations have a unique name in 
our system. This assumption is based on the idea of having a 
library of a number of different implementations per 
operation in our runtime environment. Listing 1 shows the 
pseudo code corresponding to the SET API. 

 

In Listing 1, line 2 creates a list of all the existing 
implementation for the operation. If the physical location 
corresponding to any of those implementations is busy, e.g. 
another application is using that resource, that 
implementation is removed from the list in line 4-1 and the 
loop continues to the next element in the list. Some of the 
implementations might already be configured on the FPGA.  
This means there is no need for configuring them again. 
Those implementations are added to another list in line 4-2 
and the best candidate (here the fastest one) is return to the 
main program in line 5.  If there is no such an 

implementation exists, the algorithm goes further to choose 
one of the other implementations and start configuring it in 
line 6. This selection is very dependent on the scheduling 
(line 6-1). The configuration process is discussed in section 
4.3. 

4.2 MOLEN EXECUTE 
The EXECUTE is also an API added to the operating 
system. It has two input arguments; the operation name and 
the address of the configured implementation in the SET 
phase. Listing 2 shows the pseudo code corresponding to the 
EXECUTE. 

In our system, the operations might be shared between 
different applications (This task sharing is one of the 
motivations behind the idea of using dynamic shared object 
as will be discussed in section 4.3). On the other hand, since 
there might be a gap between the occurrence of the SET and 
EXECUTE instructions, e.g. because of the compiler 
optimizations to hide the reconfiguration delay, the control 
might go to another application (app2) and that application 
(app2) might use the implementation which is set by this 
application. That is why the busy status of the IM (in line 2) 
has to be checked. If it is not busy, it can start execution. It is 
also possible to call the EXECUTE without any prior SET or 
any successful prior SET. 

 

 

In this case IM is null. In case of having a busy 
implementation or a null, the SET has to be performed 
again. This is done in line 3. Finally, the algorithm executes 
the implementation in line 4. If any problem occurs during 
the EXECUTE, it return a FAIL which means the operation 
has to be executed in software. The execution process is 
discussed in section 4.3. 

4.3 Dynamic Binding Implementation 
As we pointed earlier, the actual binding of the function calls 
to the implementation happens at runtime. To do that we use 

Listing 2 the EXECUTE 
EXECUTE (input: Operation op; input: 
Implementation IM) 

1- EXECUTE begins 

2- If IM is not NULL and IM is not busy 

 Execute IM; 

 Return SUCCESS; 

End if 

3- I* = SET (op); 

4- If I* is not NULL and I* is not busy 

Execute I*; 

 Return SUCCESS; 

End if 

5- Return FAIL; 
6- EXECUTE ends 

Listing 1 the SET 
SET (input: Operation op): return 
Implementation I* 

1-  SET begins 

2-  Assume im_list the list of all the 
implementations corresponding to the 
op in the library; 

3-  Assume co_list as an empty list; 

4-  For each IM in im_list  

4-1- If the corresponding physical 
location of IM is busy  

Remove IM from im_list; 

Continue; 

End if 

4-2- If IM is already configured on 
the FPGA, Add IM to the co_list; 

End for 

5-  If co_list is not empty 

Return the IM with the minimum 
execution time from co_list; 

6-  If im_list is not empty 

6-1- Choose I* from the im_list based 
on the scheduling policy; 

6-2- Configure I* on FPGA; 

6-3- Return I*; 

End if 

7-  Return FAIL; 
8-  SET ends 
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the ELF binary format delayed symbol resolution facility 
and position independent code.  

For each operation implementation in the library, there is a 
software wrapper with two functions, one which performs 
the low level configuration of the operation (the traditional 
SET) and one which performs the low level execution of the 
operation (the traditional EXECUTE). In the runtime SET, 
when the reconfiguration takes place (line 6-2 in Listing 1), 
the low level SET from this software wrapper is called. 
Similarly, in the runtime EXECUTE (lines 2 and 4 in Listing 
2) the low level EXECUTE is called. The reason that we can 
use the traditional SET and execute at this point is that the 
sharing controls has already been performed by the runtime 
system and it is safe to call the normal SET and EXECUTE 
instruction. 

As it is mentioned before, this software wrapper is kept in 
the form of a Dynamic Shared Object (DSO). Given the 
name of a DSO by the SET (line 6-2 in Listing 1), which is 
the name of the chosen implementation; the system 
dynamically loads the object file into the address space of 
the program and returns a handle to it for future operations. 
We do this process by using the Linux dlopen function. The 
dlopen is called with RTLD_LAZY mode, which says to 
perform resolutions only when they're needed. This is done 
internally by redirecting all requests that are yet to be 
resolved through the dynamic linker. In this way, the 
dynamic linker knows at request time when a new reference 
is occurring, and resolution occurs normally. Subsequent 
calls do not require a repeat of the resolution. To find the 
address of each function in the DSO, we use Linux dlsym 
facility. The dlsym takes the name of the function and 
returns a pointer containing the resolved address of the 
function.   

In the traditional SET (line 6-2 in Listing 1), all the required 
parameters needed by the FPGA have to be transferred to 
MOLEN XREGS. Then, it starts configuring the FPGA. At 
the time of traditional EXECUTE (lines 2 and 4 in Listing 
2); using the dlsym the address of the second function is 
resolved. By this function pointer, we can invoke the 
required operation.   

To simplify the creation of DSO files to be added to the 
runtime library, (especially for third-party modules) a 
support tool is proposed. The idea is simple: It shows a 
template of the wrapper and the program developer has to 
add a few lines of code to it. Besides, the program developer 
has to explicitly write the parameters transfers instruction in 
the pre defined template (moving the parameters to XREGs). 
Then, the tool compiles the code for Position Independent 
Code (PIC) and converts it to a DSO. Furthermore, the tool 
provides a very simple interface to gather the metadata 
required by the runtime scheduler such as the configuration 
latency, execution time, memory bandwidth requirements, 
power consumption, physical location on the reconfigurable 
fabric, etc and stores them in an appropriate format.  

5 Evaluation 
When evaluating our proposed mechanism, two aspects are 
important: what is the overall performance improvement 
through acceleration which can be achieved and what the 
overhead of invoking it is. 

Overhead: The execution time overhead imposed by 
dynamic linking (DSO loading) occurs on two places: at run 
and load-time. At runtime, each reference to an externally 
defined symbol must be indirected through the Global 
Object Table (GOT). The GOT contains the absolute 
addresses of all the static data referenced in the program. At 
load-time, the running program must copy the loaded code 
and then link it to the program. In most cases, the only run-
time overhead of dynamic code is the need to access 
imported symbols through the GOT. Each access requires 
only one additional instruction. The load time overhead is 
the time spent to load the object file. For a null function call 
in our system, the load time is about 0.75 milliseconds. For a 
typical wrapper function, the load time increases to about 2 
milliseconds. We should mention that the increase in the 
input parameters’ size might increase the size of the wrapper 
function since each parameter needs a separate instruction to 
be transferred to the MOLEN XREGs.  

Speedup: In order to show the overall performance of the 
system, we performed a series of experiments. To show only 
the overhead imposed by the SET and EXECUTE APIs, we 
have implemented a scheduling algorithm in which we pick 
the fastest implementation and execute it, on condition of 
course that the FPGA is available. The experiment workload 
is obtained from an interactive multimedia internet based 
testing application [12]. The workload’s kernels are listed in 
Table 1. 

The last column in Table 1, shows the operation total 
execution time when it is executed only once. This means 
the execution time is the sum of the software wrapper load 
delay plus the reconfiguration delay plus the HW execution 
time. As shown in Table 1, the software wrapper delay over 
the total execution time varies between 5 to 20 percent for 
different kernels.  

However in general, when a kernel is loaded (incurring one 
wrapper and reconfiguration delay), it executes more than 
once which means the overhead decreases as the number of 
executions increases. To show such a reduction in execution 
time, we evaluate the overall execution time in the 
following. The first column is the software only execution 
time (no FPGA) which is mentioned just as a point of 
reference. 

To show overall system performance, we used 5 different 
workloads from interactive multimedia internet based test; 
the workload varies based on the number of test taken and 
the number of kernels which is used in each test. We have 
workloads for 12 applicants (821 kernels), 24 applicants 
(1534 kernels), 36 applicants (2586 kernels), 48 applicants 
(3032 kernels) and 60 applicants (4164 kernels). It should be 
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mentioned that each test taker is has its own process in the 
system and therefore the number of applications are equal to 
the number f test takers. In such a scenario, each test takers 
corresponding application is competing against the others to 
obtain the FPGA resources.  

We compared the software only execution with the 
hardware/software execution. As shown in Table 2 the overall 
system speedup varies between 2.28 to 1.91. The wrapper 
overhead to the overall execution time is between five to 
three percent. As the number of test takers increases, the 
chance of executing an already configured kernel increases 
and as a result, the wrapper overhead reduces.  

On the other hand, since the system loads increases, the 
overall speedup is also decreases. That is because the FPGA 
resources are limited and fixed. Therefore, when the system 
load increases the HW/SW execution time gets closer to the 
SW only solution and as a result the speedup reduces. 

 

Table 1 Workload Kernels 

 

Kernels 

Operation SW 
only  

execution time 
(ms) 

Operation 
HW  

Execution 
time 
(ms) 

Operation 
Configuration 

Delay 
(ms) 

Operation 
SW 

wrapper 
Delay 
(ms) 

The HW 
total 

execution 
time 
(ms) 

Epic-
Decoder 

19.87 8.56 5.82 2.11 16.49 

Epic-
Encoder 

11.87 5.22 2.49 1.17 8.88 

Mpeg2-
Decoder 

77.35 2.43 3.64 1.47 7.54 

Mpeg2-
Encoder 

10.39 1.94 4.87 1.81 8.62 

G721 42.42 4.64 5.82 2.57 12.58 

Jpeg-
Decoder 

68.39 8.63 8.72 3.41 20.76 

Jpeg-
Encoder 

169.33 35.23 10.98 4.51 50.72 

Pegwit 166.06 36.34 5.88 2.59 44.81 

 

Table 2 Overall Execution Time 

No application No 

kernels 

12 

821 

24  

1534 

36  

2586 

48  

3032 

60  

4164  

SW-only 135654.08 260508.60 381329.44 501860.74 641478.23

SW/HW 59580.79 121977.13 186415.10 256929.84 335276.90

SW wrapper 

Overhead 

2983.03 5884.87 7654.71 10814.62 11463.15 

Wrapper  overhead 

percentage 

~ 5 % ~ 5 % ~ 4 % ~ 4 % ~ 3 % 

Speedup 2.28 2.14 2.05 1.95 1.91 

6 Conclusion 
In this paper, we extended the MOLEN programming 
paradigms primitives to use them in presence of an operating 
system and in multi application, multi tasking scenarios. The 
MOLEN primitives in their current status are just for single 
application execution. We discussed the details of the SET 
and EXECUTE APIs and presented the dynamic binding 
mechanism whish is used by these APIs to bind a task call to 
a proper task implementation. Our experiments show that the 
proposed approach has a negligible overhead over the 
overall applications execution. 
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