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Abstract. This paper investigates how the parallel streaming capabil-
ities of the Cell Broadband Engine can be used to speed up a class of
agent-based plankton models generated from a domain-specific model
compiler called the Virtual Ecology Workbench (VEW). We show that
excellent speed-ups over a conventional x86 platform can be achieved for
the agent update loop. We also show that scalability of the application
as a whole is limited by the need to perform particle management, which
splits and merges agents in order to keep the global agent count within
specified bounds. Furthermore, we identify the size of the PPE L2 cache
as the main hardware limitation for this process and give an indication
of how to perform the required searches more efficiently.

1 Introduction

Multi-core stream processors have been used to provide significant performance
gains for scientific algorithms in recent years [3]. The Cell Broadband Engine in
particular has shown great promise for accelerating scientific applications due to
its Stream Processing architecture [10] [11]. This paper investigates the use of
the Cell Broadband Engine to accelerate a class of agent-based Virtual Ecology
models for use in oceanographic research.

We focus on models generated by the Virtual Ecology Workbench, a domain-
specific model compiler used by oceanographers to build and analyze models
of plankton ecosystems in the upper ocean. VEW models have been used to
study complex cause-effect relationships in ocean ecosystems, contributing to our
understanding of the biodiversity of the ocean. The effect of marine plankton on
the atmosphere and global climate, as well as the plankton ecosystem’s response
to external influences, like fishing or pollution, have also been the focus of VEW-
assisted studies [9] [5].

Models generated by the VEW simulate large numbers of plankton particles
following the Lagrangian Ensemble (LE) metamodel [12], an individual-based
approach that uses agents to simulate the biological and bio-chemical behaviour
of individual plankters. In contrast to traditional population-based models this
allows for a detailed analysis of life-histories of individual micro-organisms. LE
modelling further facilitates the study of emergent properties of the ecosystem



as a whole and avoids chaotic instabilities often observed in population-based
models [13].

The main workload of VEW-generated models involves updating large num-
bers of agents during each simulation timestep. Since the updates are indepen-
dent of each other the process can, in principle, benefit greatly from parallel
processing. Attempts to accelerate VEW models using FPGAs [7] have shown
significant speedups, prompting further investigation of dedicated hardware so-
lutions for parallel VEW simulations.

This paper investigates the use of Stream Processing principles to acceler-
ate VEW models on the Cell processor, as well as the performance limitations
imposed by agent management functions used in the VEW algorithm. We focus
on efficient parallel agent update computation and make the following contribu-
tions:

– We describe a framework for parallel agent update on the Cell’s SPE accel-
erator cores in Section 4. Our design includes buffered processing of agent
data streams, as well as meta-data exchange to provide centralized schedul-
ing. In addition to an implemented prototype simulation we also outline an
extension to the VEW model compiler that generates SPU-specific SIMD
vector code for performing agent update arithmetic.

– An evaluation of the achieved performance gains based on a simple char-
acteristic VEW simulation is given in Section 5. We show that the parallel
speedups observed for the agent update loop, although promising, are limited
by sequential overheads due to agent management functions.

– We present an analysis of the observed limitations in Section 6. This shows
that bottlenecks are caused by inefficient cache utilization. In this section
we also present a hybrid processing approach that overcomes the identified
limitations by exchanging meta-data between SPE and PPE processors to
handle data searches and copy operations more efficiently. We demonstrate
this method on a simple sequential search routine imposed through one of
our design choices and largely eliminate the sequential overhead.

– We discuss the implications of our findings for future research in Section 7.
In particular we focus on the current particle management function which is
shown to limit parallel scalability on platforms such as the Cell.

2 Background

The Virtual Ecology Workbench (VEW) is a software tool designed to aid the
creation and analysis of virtual plankton ecosystems based on the Lagrangian En-
semble (LE) metamodel [12]. These models are individual-based and use agents
(sometimes referred to as ’particles’) to simulate large numbers of plankters and
the various feedback processes needed to study oceanic ecosystems and their
various emergent demographic properties.

Since it is impossible to model every organism in the ocean individually, each
agent in LE models represents a sub-population of identical plankton particles
modelled after the behaviour of one individual plankter. Each agent follows its



own trajectory and keeps an associated sub-population size in addition to inter-
nal state variables that are application specific. The sub-population size is used
to infer demographic properties of the ecosystem, such as the global population
count and the concentration of a particular species in a given domain.

The VEW provides oceanographers with an easy way of specifying classes
of plankton species in terms of primitive phenotypic equations which are scien-
tifically sound in that they are based on reproducible laboratory experiments.
These equations define the basic behaviour for individual plankters in response
to local environmental properties [6], for example light, temperature, nutrient
concentration etc. An agent’s internal state is then updated using equations
relevant to its current biological state.

After specifying plankton species and additional environment parameteriza-
tions, the VEW automatically creates code from a high-level domain-specific
mathematical modelling language called Planktonica [5] and provides further
tools for the analysis of output data. The VEW framework substantially raises
the level of abstraction in model development and facilitates the creation and
analysis of complex virtual ecosystems without the need for conventional pro-
gramming. It is an example of a domain-specific problem solving environment.

VEW models simulate virtual plankton ecosystems in a one-dimensional vir-
tual water column that extends from the ocean surface to a specified depth
(typically 500m). The column is divided into layers of 1m depth and currently
ignores horizontal water fluxes; one imagines the column to be sealed on all
sides with an open boundary at the bottom. The upper metre of the column
is sub-divided into more fine-grained layers in order to accurately model light
absorption near the sea surface.

The combination of solar heating and cooling to the atmosphere, combined
with atmospheric wind stresses and other environmental processes determine the
depth of the turbulent Mixing Layer in the upper ocean – the so-called Turbo-
cline. The depth of the turbocline varies both diurnally and seasonally. Particles
above the turbocline are subject to turbulent mixing, which is approximated in
the model by random displacement1. Below the turbocline there is laminar flow;
here agents sink under the influence of gravity, although they may subsequently
be ‘re-entrained’ into the mixing layer, should the turbocline later deepen suffi-
ciently to catch up with them. The dynamics of individual plankters is heavily
influenced by turbulence.

Phytoplankton obtain energy from the sun through photosynthesis and ab-
sorb light in the process. Collectively, the plankton influence the profile of light
and temperature in the column and this, in turn, affects the physics of turbulence
– a process known as biofeedback.

VEW-created models simulate inter-agent processes, such as predation and
ingestion, although these are not modelled using interactions between individual
agents (an O(n2) process). Instead, the population of a particular plankton type
is aggregated into a field (a concentration for each layer); individual agents then

1 This approximation is good provided the time step is sufficiently large; we use a
30-minute time step



interact with these fields (an O(n) process). This is the essence of the Lagrangian
Ensemble approach.

Although agent updates can, in principle, proceed independently, the various
fields (including nutrient fields) are shared. Any changes to these fields resulting
from predation and the uptake or release of nutrients thus has to be negotiated
among the agents. Furthermore, predation may reduce the concentration of a
particular species which must, in turn, be reflected by a change in the agent’s
internal population counts. These processes are carefully managed in the gener-
ated code so that corrections from the previous time step and updates relevant
to the current time step are merged into a single piece of ‘update‘ code for each
agent type.

The demographic noise, i.e. the statistical variability in the populations ob-
served among identical runs of the model but with different random numbers,
is limited by ensuring that a sufficient number of agents exists in the water
column. For this purpose a Particle Management (PM) function is executed be-
tween timesteps. This splits agents with the largest sub-populations, creating
new agents with independent trajectory. Similarly, in order to limit the compu-
tational cost of an over-populated simulation, the PM may also merge the least
populated agents. The PM process thus provides a trade-off between computa-
tional cost and statistical accuracy for agent-based models.

3 Hardware

The Cell Broadband Engine is a heterogeneous stream processor which features a
unique cache hierarchy. It consists of a central general- purpose CPU, the Power
Processing Element (PPE), and eight vector processing nodes called Synergistic
Processing Elements (SPE). These are much simpler in their architecture, but
are optimized for high-throughput floating point arithmetic.

The PPE is a dual-threaded single-core general-purpose processor based on
IBM’s PowerPC architecture. It uses a typical CPU cache hierarchy including a
512KB L2 write-back cache with 128-bit cache lines. In our simulation the PPE
will delegate the main workload of updating agents to the SPE arithmetic cores,
whilst maintaining attributes of the water column in memory. In addition it is
also responsible for the particle management task of the algorithm.

A circular on-chip data bus connects the PPE with the SPEs and transports
data streams from main memory to the SPE accelerator nodes. The bus provides
the high data bandwidth required for Stream Processing and has been shown to
transport up to 196GB/sec in experiments with near perfect utilization [2]. In
practice, however, memory bandwidth is limited by the 25.6GB/sec XDR main
memory interface.

The SPE accelerator nodes provide the computational power of the Cell
through vectorized SIMD computation at 3.2GHz core frequency. Each SPE
comprises a 256KB Local Store (LS) memory area for buffering stream data, as
well as executable code. A separate Memory Flow Controller (MFC) coordinates
asynchronous data exchange with main memory for efficient data localization.



The Synergistic Processing Unit (SPU) is the functional core of the SPE. It
is optimized for SIMD vector arithmetic on vectors of four single-precision floats
and uses instruction pre-fetching on two separate pipelines for Load/Store and
arithmetic instructions. Although it is possible to use double-precision floats,
these are not implemented natively and are therefore more costly. The original
VEW works with double-precision, but we decided to only use single-precision
in our prototype in order to investigate the performance limitations of the Cell
processor available in the Playstation3.

The SPU uses branch-prediction in order to optimize loop constructs. The
compiler predicts continued execution of the loop body, resulting in a 19 cycle
penalty to exit the loop due to a pipeline flush. In order to avoid unnecessary
pipeline flushes for conditional vector statements, outcomes for both branches
are typically pre-computed. The results are then interleaved according to a vector
of flags indicating the outcome of the condition for each element.

This particular style of execution demands a special-purpose instruction set,
provided by IBM’s Cell SDK through intrinsic functions. These include mem-
ory flow controls for asynchronous Direct Memory Access (DMA) via the MFC,
message-passing primitives for communication between PPE and SPE (mail-
boxes), and vector instructions for arithmetic calculations and branch predic-
tion.

4 Implementation

The main body of a VEW simulation comprises an agent update loop, which
is the main source of parallelism in the model, and various housekeeping tasks
that are predominantly sequential. Processing agent updates in parallel requires
an efficient means of localizing agent data to the local SPE memory, as well as
the exploitation of SIMD vector code for performing agent updates.

Memory Layout

Two important attributes of each agent are its associated species and its growth
stage; these collectively define its type. There is a different update kernel for
each type. To prepare agents for parallel update on the Cell they are stored as
type-homogeneous agent arrays in memory.

Agent update is complicated by the fact that an agent may change its type
at the end of a time step. For example, it may evolve to the next growth stage
or it might die. Furthermore, agents may spawn new agents, for example as a
result of reproduction. These various processes mean that agents may have to
be moved to a different array before the start of the next timestep. This requires
an additional search through each agent array during the sequential part of the
algorithm. However, we will use this additional search routine to demonstrate
how to combine the capabilities of PPE and SPEs to solve agent management
tasks more elegantly (Section 6).



Due to the Cell’s 128-bit bus lanes agents need to be aligned to multiples of
4 floating point numbers. In the prototype simulation an agent’s state consists
of 13 variables, requiring 16 floats to be allocated and stored in main memory.
Conceptually this corresponds to an Array of Structures (AOS) layout (Figure
1(a)), which is maintained during the DMA transfer to the SPEs.

(a) AOS layout used in memory and for DMA trans-
fers

(b) SOA layout
used during vector
processing

Fig. 1. Agent data layout in global and local memory.

Vector processing on the SPU, on the other hand, requires a Structure of
Arrays (SOA) layout, where each vector holds the same variable from four re-
spective agents (Figure 1(b)). After buffering agents in the LS we therefore need
to convert the agent state variables, as well as the environment variables, to
vector float types in a small loop.

Since we are mostly processing four agents at a time, we can unroll this
conversion loop, which allows the compiler to optimize the process through in-
lining. For conversion of less than four agents the loop accesses each element
in all vectors in turn, allowing us to ignore the unused elements in incomplete
vectors. This scheme is similar to a pad-with-zeros approach and is also used
when preparing the data for export to main memory.

Agent Allocation

Since our framework aims to utilize the SPEs as pure Stream Processing nodes,
the PPE handles all agent allocation and the scheduling of update tasks to the
SPEs. This also provides the possibility of investigating different load-balancing
schemes. A descriptor data structure is used to transport meta-data to the
SPEs, which contains the memory address and size of each agent block. A two-
dimensional array of descriptor meta-objects is held in memory, mirroring the
actual maintained agent blocks one-to-one. In addition we can use similar feed-
back objects to send meta-data back to main memory after processing a block
of agents.



This meta-data exchange allows us to control SPE processing in a non-static
fashion and write an independent scheduling function that allocates a descriptor
block to each SPE. We found an Round-Robin allocation scheme for independent
agent arrays to provide sufficient load-balance between SPE processing nodes.

Agent Localization

The implemented data transfer framework follows general Stream Processing
principles by masking all data transfer latencies through asynchronous DMA.
By using three agent buffers we allow GET and PUT transfers to happen in
parallel to SPU computation, allowing for continuous SPU execution.

This Triple-Buffering approach proved sufficient to handle all data transfers
without incurring unexpected data stalls. The actual size of agent blocks showed
no noticeable effect on DMA transfer times, as long as a minimum of 2 agents
per block is maintained.

Since Stream Processing requires the agent data to be pre-fetched, we need to
load the corresponding descriptor block before initializing the data GET. Thus
we use a 2-step-lookahead loop to first fetch the meta-information, followed by
the agent data, whilst maintaining the triple-buffered loop structure. This is
illustrated in Figure 2. The different data and meta buffers are synchronized
over a common counter (n).

Load shared environment data

Read 2 initial descriptors

GET first agent block

while(work to do){

schedule agent GET to buffer n + 1

schedule descriptor fetch for block n + 2

process agent block in buffer n

schedule agent PUT from buffer n

schedule feedback store for block n

}

Store environment data

Process and PUT last agent block

Fig. 2. Pseudo code for SPE execution loop.

Agent Updates

We extended the existing VEW code generator module to produce optimized
SPU agent update code that can be compiled and executed with the designed
agent transfer framework. This allowed us to generate inlined vector intrinsics
resulting in fast agent update kernels with low-level optimizations.



Particular care needs to be taken when generating conditional statements,
where we used pre-calculation of both branches, as described in Section 3.
Through recursive compilation the model compiler is capable of handling nested
conditionals of any depth.

5 Performance Evaluation

Agents Parallel runtime Sequential runtime Parallel speedup

Cell 1.6GHz 3.2GHz 1.6GHz 3.2GHz

4000 5.4s 96.7s 30.5s 17.91 5.65
8000 9.5s 187.6s 58s 19.75 6.11
16000 17.5s 368.3s 114.3s 21.05 6.53
32000 34s 752.2s 230.8s 22.12 6.79
64000 66.7s 1478.7s 454.1s 22.17 6.81

Table 1. Runtimes of agent updates on Cell and x86 with respective parallel speedup.

The non-standard architecture of the Cell makes it hard to compare accu-
rately its performance to conventional x86 CPU architectures. For our perfor-
mance evaluation we therefore used a 1.6GHz dual-core, as well as a 3.2GHz
quad-core x86 CPU to run a single-threaded sequential version of our prototype
simulation.

The Cell implementation was developed and tested on a Playstation3 with
6 enabled SPEs, running Ubuntu 8.10 with IBM’s Cell SDK and compilers 2. A
single-precision floating point version of the prototype model was used for both
architectures 3.

For the purpose of this investigation we used a simplified version of the
LERM [9] model, which simulates a Diatom (a type of marine phytoplankton)
population in the Azores region for 2 years. This so-called Toymodel simulation
incorporates all major components of the VEW algorithm and was handcoded for
the Cell. For comparison we used an identical single-threaded sequential version
written in C on the x86 platforms.

We scaled the size of the simulation by increasing the initial number of agents.
Considering just the agent updates (i.e. turning off particle management), we
observed average parallel speedups of more than 22 over the 1.6GHz runs of the
simulation and more than 6 over the 3.2GHz version (Table 1). Furthermore, we
verified that agent update runtimes scale approximately linearly with increasing
numbers of SPE cores.

2 A PowerXCell i8, which provides improved double-precision floating point perfor-
mance, was not available to us during this project.

3 The use of single-precision only adds a small amount of random noise to an already
noisy simulation.



Figure 3(a) shows the total execution times, i.e. including particle manage-
ment and various other sequential components. The graphs show the Cell is
significantly faster than the 1.6GHz CPU but fails to provide significant overall
speedup over the 3.2GHz processor.

(a) Total execution times on Cell and x86
CPUs

(b) Total execution time and individual par-
ticle manager runtime on Cell

Fig. 3. Execution times of parallel and sequential prototype.

The overall non-linear scalability of the Cell version of the code is also quite
evident. This is due to the particle manager, which is the most significant se-
quential component running on the PPE, as shown in Figure 3(b).

6 More on Particle Management

Particle management consists of two main search functions, Split and Merge,
that exhaustively search the agent arrays in order to identify the agents that
need to be altered. The Merge function furthermore includes a O(n2) lookup
in order to find the relevant pairs for merging. The overall runtime shows a
non-linear trend, although there is a linear number invocations of the Split and
Merge functions.

Due to the AOS layout in main memory copying agents can be handled
very efficiently on the PPE, since the L2 cache will already contain the whole
agent once the first field is accessed. Similarly, the copied agent will be written
to memory in one block due to the write-back property of the cache. On the
other hand, searching through all agents whilst inspecting only one variable will
be very inefficient since each agent is still loaded anyway. However, once the
simulation contains more agents than the L2 cache can hold, each agent will be
read multiple times during the Merge process(O(n2)), resulting in poor cache
performance.

The size of the PPE’s L2 cache therefore poses the main hardware limitation.
The cache can hold 512KB which corresponds to 8K agents of 16 floats (64B),



in contrast to the 2MB cache found on the x86 CPU, which may hold up to 32K
agents.

In the x86 version of the code each timestep is dominated by the agent update
loop, so the overhead of the particle manager is less evident. In the Cell version
the cost of the update loop is substantially reduced and the cost of sequential
computations on the PPE is increased when compared with an x86, as described
above. The two combined have the effect of increasing the dominance of particle
manager (see also Figure 4(b)), as per Amdahl’s law.

Agent Type Changes

The same cache limitations can be observed when handling agent type changes
on the PPE. As described in Section 4, an agent may arbitrarily change its
growth stage during the update process. Thus we need to move all agents that
did change type to the correct sub-array to ensure type-homogeneity before the
next timestep. In contrast to particle management, however, we only need to
traverse each sub-array once to identify all agents to be moved. We can therefore
flag all state changes on the SPEs as they happen, and use the feedback meta-
data objects to send back the indices of the affected agents. Knowing the exact
location of all agents that need to be moved, we can then utilize the PPE cache
more efficiently to copy the agents, avoiding irregular memory access patterns.

(a) Linear search agent copy (b) Indexed agent copy

Fig. 4. Percentage of runtime spent in sequential and parallel parts of the main loop.

The effect of this method can be seen from Figure 4, which shows the respec-
tive contribution of parallel and sequential components. Figure 4(a) highlights
the significant amount of time spent performing the search on the PPE, while
Figure 4(b) shows improvements resulting from the parallel search strategy on
the SPEs. This demonstrates that the SPE-assisted agent copy method sub-
stantially reduces the overhead imposed by this component, indicating how we
can utilize the advantages of both types of processing core to perform agent
management tasks very efficiently.



Unfortunately, the same ideas can not be used to optimize the particle man-
agement code. This is because the current management rules limit the total
agent count globally. During parallel processing each SPE node only sees a local
subset of all agents, and is therefore not able to tell how many agents it has to
flag for Split/Merge copy operations.

7 Future Work

The original intention of this work was to explore ways to parallelize VEW mod-
els with hope of providing linear scalability with increasing numbers of agents.
This was done in in order to prepare the VEW algorithm to be applied to three
dimensional scenarios, which will inevitably feature agent counts several orders
of magnitude larger than the existing models.

The greatest obstacle to parallelizing the VEW algorithm is the particle
manager. The current rules are applied globally and thus do not scale well. We
are currently exploring alternative management strategies that predominantly
involve local computations and which avoid the need for sophisticated search
strategies, e.g. to find the k largest or smallest agents by population count.
The evaluation of new particle management algorithms involves an extensive
combination of performance analysis and statistical analysis that is by no means
trivial.

8 Conclusion

We have shown how to utilize Stream Processing capabilities of the Cell Broad-
band Engine to parallelize agent-based ecosystem models based upon the La-
grangian Ensemble metamodel. We have demonstrated parallel speedups for
agent update computation of over 22 and 6 when compared to a 1.6GHz and
3.2GHz reference CPU respectively. We have also shown that the Cell can han-
dle models with significantly large numbers of agents. The performance gains
achieved are similar to speedups achieved for other scientific codes [8] [4] and
indicate that the Cell processor has considerable potential for accelerating this
class of applications.

We have found that the Cell DMA system can be used effectively to perform
meta-data exchange in addition to agent data streaming. This adds flexibility to
the overall design and allows us to perform SPE-based searches in conjunction
with agent update computation. This approach overcomes one of the major
drawbacks of SPE computation, which has been shown to work inefficiently for
SPE-based searches without sufficient additional workload [1].

Through our investigation we also highlight that the particle management
process, which is currently implemented sequentially, becomes a significant bot-
tleneck. This highlights the importance of parallelizing the particle management
algorithm.



Our investigation also demonstrates that the size of the PPE L2 cache can
significantly limit performance. Since scientific applications often require sev-
eral different memory access patterns the heterogeneity of the Cell’s individual
cores can be a great advantage. For example, randomly copying coherent data
structures such as LE agents profits from the conventional cache hierarchy of
the PPE, while exhaustive searches can be performed efficiently on the SPEs if
combined with sufficient arithmetic workload. However, as shown in the previ-
ous section, the current implementation of the PPE does not compare well to
conventional general-purpose CPUs, limiting its use as an additional processing
core.
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