N
N

N

HAL

open science

Performance Estimation for the Exploration of
CPU-Accelerator Architectures
Tobias Kenter, Marco Platzner, Christian Plessl, Michael Kauschke

» To cite this version:

Tobias Kenter, Marco Platzner, Christian Plessl, Michael Kauschke.
the Exploration of CPU-Accelerator Architectures. WARP - 5th Annual Workshop on Architectural

Research Prototyping, Jun 2010, Saint Malo, France. inria-00494171

HAL 1d: inria-00494171
https://inria.hal.science/inria-00494171

Submitted on 22 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Performance Estimation for

https://inria.hal.science/inria-00494171
https://hal.archives-ouvertes.fr

Performance Estimation for the Exploration of
CPU-Accelerator Architectures

Tobias Kenter, Marco Platzner and Christian Plessl

University of Paderborn
Paderborn, Germany
Email: kenter @uni-paderborn.de

Abstract—In this paper we present an approach for studying
the design space when interfacing reconfigurable accelerators
with a CPU. For this purpose we introduce a framework based
on the LLVM infrastructure that performs hardware/software
partitioning with runtime estimation utilizing profiling informa-
tion and code analysis. We apply it to reconfigurable accelerators
that are controlled by a CPU via a direct low-latency interface
but also have direct access to the memory hierarchy. Our results
show that a shared L2 cache for CPU and accelerator seems to
be the most promising design point for a range of applications.

I. INTRODUCTION AND RELATED WORK

Reconfigurable hardware accelerators promise to improve
performance and energy efficiency over conventional CPUs
for a wide range of applications. The integration of CPU and
accelerator is an essential design decision since the charac-
teristics of the chosen interface have a major impact on the
granularity of functions that can be offloaded to the accelerator,
on feasible execution models, and on the achievable perfor-
mance. Related work has proposed numerous approaches for
this interface [1], such as accelerators integrated as functional
units into a CPU’s data-path or attached to a CPU via the
co-processor interface, the multi-processor interconnect, the
memory subsystem, or an 1O bus.

In our work the accelerator is embedded into the compute
system through two interfaces. First a direct low latency inter-
face to an adjacent general purpose CPU allows fine grained
interaction mainly on control level like steering, synchroniza-
tion and reconfiguration of the accelerator. This may also
include exchange of small data entities like predicates, flags
and small scalars. The second interface gives the accelerator
access to the memory hierarchy independent from the CPU. It
may be tailored to the needs of the accelerator without com-
promising the CPU architecture, thus simplifying the overall
design. Figure 1 illustrates an example. The distinctive feature
of this coupling is the support of a wide range of granularities
of accelerated code parts, reaching from custom instructions
via kernel loops to functions or threads. Although the proposed
interface does not require a complete CPU redesign, it still
allows for the acceleration of fine grained tasks and, thus,
increases single thread performance, an area where current
CPU designs face diminishing returns.

Performance estimation and design space exploration for
CPU-accelerator architectures are challenging problems. Sim-

Michael Kauschke
Intel Microprocessor Technology Lab
Braunschweig, Germany

Reconf.

Accelerator
g
Private L1 Private L1

L ~N
| Shared L2 |

S

| Main Memory |

CPU

Fig. 1. Architecture with shared L2 and two private L1 caches

ulation is the most common approach to evaluate the architec-
tural integration of reconfigurable accelerators before proto-
typing. For example, Garcia et al. [2] rely on co-simulation to
evaluate an architecture where CPU and accelerator work on
the same memory hierarchy. While such a pure co-simulation
approach provides some insight, its time-consuming design
process often limits it to assume a specific interface and hard-
ware/software partitioning. The challenge for an automated
design space exploration is that the characteristics of the inter-
face affect what parts of the application can be mapped to the
accelerator during hardware/software partitioning. We consider
this interdependency between interface and partitioning the
reason why the systematic exploration of the design space for
the architectural integration has so far not received significant
attention in academic research.

The main contribution of this paper is a fast and fully
automated performance estimation method for assessing the
speedup potential of various CPU-accelerator architecture de-
sign points. Among known high level estimation methods,
e.g. [3], the approach of Spacey et al. [4] is most closely
related to our work. In contrast to the x86 assembly based esti-
mation method of Spacey et al., our framework includes cache
models and leverages the LLVM infrastructure [5], which will
allow us to extend the framework towards automated code
generation for various targets.

II. METHOD AND FRAMEWORK

In this section we present our estimation method together
with some aspects of the data generation before giving an
overview of its limits that are to be addressed in future work.

A. Estimation Method

Our estimation framework is based on the LLVM compiler
infrastructure. The investigated software is compiled into
LLVM assembly language, which is the intermediate code
representation on which LLVM’s analysis and optimization
passes work. We model a program as a set of instruc-
tions I = {I1,I5,..., Inins}, and classify the instructions
into load/stores and operations: I € {1d/st,op}. The
instructions are grouped into a set of basic blocks B =
{B1, Ba, ..., Buixs }- The basic blocks form a control flow
graph where an edge B; — B,, denotes that block B,,, might
be executed directly after block B;. The instructions of B; use
a set of register values R, (B;) and produce a set of register
values R, (B;).

The architecture comprises two cores, the CPU and the
accelerator (ACC), and a memory hierarchy consisting of
private L1 caches, shared L2 cache, and memory (MEM). We
model the execution efficiencies €(CPU) and €(ACC) of the
cores through the average number of clock cycles spent per
instruction. Load/store instructions access a certain level in
the memory hierarchy. We describe the corresponding access
latencies as with \,,,(L1), A\, (L2) and \,,, (MEM), expressed in
clock cycles. For communication between the CPU and the
accelerator, we define). as latency for transferring control
between the cores and A, as latency for transferring a register
value. Refining the register value transfer model, we foresee
a push method with a low latency of A, ;uen and a somewhat
slower pull method with latency A, pu11.

The partitioning process maps each basic block to either the
CPU or the accelerator. We denote the mapping of block B; as
p(B;) with the two possible values p(B;) = CPU or p(B;) =
ACC. Obviously, the partitioning of basic blocks also implies
a partitioning p(Iy) of instructions Ij into p(Ix) = CPU or
p(Ii) = ACC, since Vk,l : I;, € B — p(Ii) = p(By).

Using the LLVM compiler infrastructure to profile program
executions, we determine the execution count for an instruction
I as n(1Iy), for a basic block B; as n(B;), and the number of
control flows over an edge B; — B,, of the control flow graph
as n(By, Byn)- Furthermore, we denote the jth execution of
instruction I, as I{ and use this separation to determine the
level accessed in the memory hierarchy for each load/store
instruction as v(I3,), with the possible values L1,L2 and MEM.
To determine these values v([}), we added a memory profiling
pass to LLVM and perform a simulation of an inclusive, direct
mapped cache hierarchy that enables us together with a data
dependency analysis to compute the memory access time for
each partitioning step without a repeated cache simulation.

We estimate the total program runtime as sum of four
components: the execution time ¢, of instructions with only
register operands, the memory access time t,, for load and
store instructions, the time t. for transferring control between
successive basic blocks mapped to different cores, and the
time ¢, for exchanging register values between CPU and
accelerator:

t=1te +tm +1tc+ 1

Execution time:

te =

ST n(l) - e(p(li))

k:Ip=reg
Memory access time:

TL(Ik

)
tm= Y > Am(v(I})

k:Ir,=1d/st j=1
Control transfer time:

> n(Bi, Bm) - A

(I,m)
V(l,m) : (Bi — By) A p(Bi) # p(Bm)

Register value transfer time:

tr = Zmln (n(Bl)) >\7',push7 n(Bm) :)\7',pu11)
R

te =

VR:Rc Rw(Bl) ANR € Ru(Bm) /\p(Bl) 7’é p(Bm)
B. Limitations of the Method

Our method contains some aspects that need to be refined
in future work. The presented latency based approach neglects
benefits of modern CPU’s parallel memory accesses that result
from superscalar load/store units, pipelining and out-of-order
execution and speculative prefetching. Yet we assume that
an accelerator working on rather regular tasks can achieve at
least a similar effectivity for its memory interface. Therefore
the method is inaccurate in that it overestimates the memory
access time t,,, but it does not favor the accelerator.

Another aspect that is neglected in our framework is the
register allocation, which has not taken place in the LLVM
intermediate code. Hence register spills caused by capacity
limits are missing in our estimation of the memory access
time t,, and would also change the communication patterns
assumed by our register value transfer time ,.

We utilize a greedy partitioning algorithm that iteratively
moves basic blocks with the highest ratio of estimated speedup
to area requirements to the accelerator, as long as the cumu-
lative area of all moved blocks fits the size of the accelerator.
We observe, that while our partitioning produces reasonable
results, the greedy approach fails, when several basic blocks,
e.g. of a complex loop, would have to be moved together to
the accelerator before any speedup occurs.

III. RESULTS

The results presented in this section have been obtained
based on the estimation method of Section II and two re-
finements. First, when a core requires data resident in the
private cache of the other core we include a latency penalty for
writing back the data to the shared cache. Second, we added
the option to differentiate between instruction classes and use
this feature to assume cast instructions to be implemented on
the accelerator through wiring and thus executing in zero time.

All presented experiments use the default parameters listed
in Table I, unless stated otherwise. The default memory hier-
archy is a configuration with shared L2 and private L1 caches

1.4
1.3

1.2

1.1 I
1 |

Iy
4& N MOS Jﬁ@@ Ry SO) VV/)@ [Sl‘o
e

Speedup

Benchmark

Fig. 2. Speedups for six benchmarks on the architecture specified in Table I

as depicted in Figure 1. The accelerator size is expressed by
the number of LLVM instructions that can be mapped to the
reconfigurable hardware core.

TABLE I
DEFAULT MODEL PARAMETERS

Execution efficiencies Cache sizes

€(CPU) 1.0 cycles | L1 32KB
€(ACC) 0.5 cycles | L2 4MB
Communication latencies | Cache latencies

Ac 2 cycles | A(L1) 3 cycles
Ar push 1 cycles | A(L2) 15 cycles
Ar.pull 3 cycles | A(MEM) 200 cycles
Accelerator size: 128

A. Speedups

We evaluate our performance estimation framework with
six benchmarks that represent compute intense kernels from
various application domains: The block cipher AES and the
hash function MD5 from cryptography, JPEG as multime-
dia application, FFT and Successive Over-relaxation (SOR)
kernels as representatives of scientific computing applications
and, finally, the Whetstone benchmark. Figure 2 shows the
resulting overall speedups for these benchmarks, which range
from 0.16% to 38.16%. The main reason for the poor speedups
of the cryptographic benchmarks is that our estimation method
does not capture the bit level parallelism that is typically
exploited to accelerate cryptographic functions on reconfig-
urable hardware. Furthermore, the cryptographic benchmarks
suffer from high memory access times t,, compared to the
execution times ¢, and, in the case of AES, from an insufficient
accelerator size.

In the following, we use as an evaluation metric the achieved
percentage of the theoretical speedup, also denoted as relative
speedup. The theoretical speedup merely serves as a baseline
for comparing architecture alternatives and is computed by
mapping all instructions to the accelerator, neglecting any
resource limitations, communication latencies, increased mem-
ory latencies, and the fact that a practical accelerator will not
be able to execute all instruction classes.

B. Memory integration

We investigate the impact of different models for integrating
the accelerator into the memory hierarchy. The analyzed

=3 60

T 50 —1 AVG w/o pen.
g mmmm AVG with pen.
@ 40

<

S 30

1S

g 20

<

I m 0
o

X 0

SL1 SL2+ SL2- SMM+ SMM-

Cache configuration

Fig. 3. Relative speedups for different memory integrations with and without
a 1 cycle latency penalty for shared caches, averaged over six benchmarks

design points are: shared L1 data cache (SL1), shared L2
cache where both CPU and accelerator have private L1 caches
(SL2+) (shown in Figure 1), shared L2 cache where only the
CPU has a private L1 cache and the accelerator has no local
memory at all (SL2-), shared main memory with private caches
for both components (SMM+), and shared main memory with
a private cache only for the CPU (SMM-). In order to account
for the increased complexity of a shared cache over a private
one, we also investigate how much of the speedup remains
after applying a penalty by increasing the latency of the shared
cache by 1 cycle. Figure 3 shows the results averaged over all
six benchmarks.

We note that without penalty, a shared L1 cache (SL1) de-
livers the best performance. However, this architectural design
point turns out to be highly sensitive to latency penalties.
Overall, the shared L2 cache with private L1 caches for
both CPU and accelerator (SL2+) is a well-performing and
also robust design point since it retains most of its speedup
potential when applying the latency penalty to the shared L2
cache. Design points with shared main memory as well as
those where the accelerator does not have a private cache
show similar performance which, however, is much lower than
the performance for SL2+. While this experiment underlines
the necessity for the accelerator to have access to low latency
memory, it is not proven that this memory actually needs to be
a cache. We leave it for further work to investigate alternative
models for local accelerator memory.

C. Accelerator size

Figure 4 shows that the useful size of the accelerator
strongly depends on the application. We can make two ob-
servations. First, for the individual benchmarks there are
different regions in the accelerator size for which the speedups
increase more slowly or more rapidly. Whenever the accel-
erator becomes large enough to utilize beneficial mappings
of basic blocks, we can observe a steep increase in the
relative performance. In Figure 4, this effect is visible for
AES for accelerator sizes between 512 and 2048 and for
FFT for accelerator sizes between 32 and 128, respectively.
Second, some benchmarks do not show a saturation effect
when scaling the accelerator size in the considered range.
Since manufacturing limits and costs certainly constrain the

% 100 T T T T T T T P
° 90 - AVG —+— — H—Bﬁtj
8 80 AES 7
& 70} / s
o JPEG —+—) .

g SO R oo VA
2 50 b) A—— i
£ 40t o / E
2 30 + B / B
= 20 |- 1
s} 10 | +a Y j‘: e ——
X 0 e Al e | | |

2 4 8 16 32 64 128 256 512 10242048

Accelerator size

Fig. 4. Relative speedups for different accelerator sizes

g. 100 T T T T T T

S O AG - a5 o
g 80 AES 1
@ gg:JPEG+ i
1 I SRR
e 40 p]
@ 30 / g
s 20/ i
S T s B m——
S 0 o — S f f

09 08 07 06 05 04 03 02 01

Efficiency of accelerator [cycles per instruction]

Fig. 5. Relative speedups for different accelerator execution efficiencies

maximum size of an accelerator, one should investigate tempo-
ral partitioning in tandem with rapid reconfiguration to further
improve performance.

D. Execution efficiency

Figure 5 presents the relative performance over the exe-
cution efficiency of the accelerator. We have to note that in
this illustration the baseline theoretical speedup grows with
the accelerator efficiency. We observe that even at moderate
accelerator execution efficiencies it is possible to identify basic
blocks that can be mapped to reconfigurable hardware with
a low enough overhead to achieve a speedup. For the JPEG
benchmark it turns out that the relative performance decreases
when the execution efficiency improves from 0.9 to 0.2. This
results from the significant number of typecast instructions,
which get mapped to the accelerator at zero execution time.
When improving the accelerator’s execution efficiency, the
typecasts can not contribute to higher speedups while the
theoretical speedup, depending to a larger part on register
instructions, further increases with the execution efficiency.

E. Interface latency

Figure 6 depicts the relative performance over the latency
of the interface between CPU and accelerator. We apply one
scaling factor to all three parameters of the interface latency,
Ae> Arputt and Ay pysh, and investigate both lower and higher
latencies than the default settings of Table I. Even though it
might be architecturally infeasible to reach the lowest studied
latencies, the experiment provides insights into the nature
of the design space. Interestingly, for the JPEG benchmark
we observe very similar partitioning results, which keep a
significant portion of their speedup potential as the latency
factor increases from 0.5 to 64 (corresponding to A, = 1 to

T
AVG —+—
AES ——
JPEG —+—

FFT —o—

% of theoretical speedup

T —
+_
.
{ * A
o o & & & A

8 16 32 64 128 256 512

Latency factor compared to default setting

02505 1 2 4

Fig. 6. Relative speedups for different interface latencies

A = 128). At a latency factor of 0.25 a different partitioning
with a much higher speedup becomes possible. The AES and
FFT benchmark show a different behavior. With the given
design parameters these benchmarks require very low latencies
to achieve speedups at all.

IV. CONCLUSION

This paper presents our estimation and hardware/software
partitioning framework that we utilize to investigate architec-
tural integration of accelerators to CPUs. The results show that
considering a latency penalty for designing a shared cache,
the best design point is to share the L2 cache between CPU
and accelerator. We also point out that some sort of local
memory is important for an accelerator to achieve speedups.
Furthermore our tests show, that some speedups can already
been achieved with moderate improvements of the accelerator
for the execution efficiency or with a rather slow communica-
tion interface. Yet more optimistic design parameters can lead
to significantly better speedups by enabling new partitioning
results that don’t pay of otherwise.

Our framework produces fully automated estimation and
partitioning results. As it is based on the LLVM infrastructure,
it is possible to utilize and extend LLVM’s optimization and
code generation features in order to build complete tool flow
to compile software for the proposed architecture.

ACKNOWLEDGMENT

This work is supported by Intel Corporation through a grant
for the project ”A multimode reconfigurable processing unit
(MM-RPU)”.

REFERENCES

[1] K. Compton and S. Hauck, “Reconfigurable computing: A survey of
systems and software,” ACM Computing Surveys, vol. 34, no. 2, pp. 171-
210, Jun. 2002.

[2] P. Garcia and K. Compton, “A reconfigurable hardware interface for
a modern computing system,” in Proc. 15th IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM). 1EEE Computer
Society, Apr. 2007, pp. 73-84.

[3] B. Holland, K. Nagarajan, and A. D. George, “RAT: RC amenability
test for rapid performance prediction,” ACM Trans. on Reconfigurable
Technology and Systems, vol. 1, no. 4, pp. 1-31, 2009.

[4] S. A. Spacey, W. Luk, P. H. J. Kelly, and D. Kuhn, “Rapid design space
visualization through hardware/software partitioning,” in Proc. Southern
Programmable Logic Conference (SPL). 1EEE, Apr. 2009, pp. 159-164.

[5] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. 2004 Int. Symp. on Code
Generation and Optimization (CGO). 1EEE Computer Society, Mar
2004, pp. 75-86.

