Open-Ended Evolutionary Robotics: an Information Theoretic Approach

Pierre Delarboulas 1 Marc Schoenauer 1 Michèle Sebag 2
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : This paper is concerned with designing self-driven fitness functions for Embedded Evolutionary Robotics. The proposed approach considers the entropy of the sensori-motor stream generated by the robot controller. This entropy is computed using unsupervised learning; its maximization, achieved by an on-board evolutionary algorithm, implements a ``curiosity instinct'', favouring controllers visiting many diverse sensori-motor states (sms). Further, the set of sms discovered by an individual can be transmitted to its offspring, making a cultural evolution mode possible. Cumulative entropy (computed from ancestors and current individual visits to the sms) defines another self-driven fitness; its optimization implements a "discovery instinct'', as it favours controllers visiting new or rare sensori-motor states. Empirical results on the benchmark problems proposed by Lehman and Stanley (2008) comparatively demonstrate the merits of the approach.
Type de document :
Communication dans un congrès
R. Schaefer et al. PPSN XI, Sep 2010, Krakow, Poland. LNCS 6238, Springer Verlag, pp.334-343, 2010
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00494237
Contributeur : Marc Schoenauer <>
Soumis le : jeudi 24 juin 2010 - 18:01:46
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : lundi 27 septembre 2010 - 11:04:44

Fichiers

paper204-PPSN2010.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00494237, version 1
  • ARXIV : 1006.4959

Collections

Citation

Pierre Delarboulas, Marc Schoenauer, Michèle Sebag. Open-Ended Evolutionary Robotics: an Information Theoretic Approach. R. Schaefer et al. PPSN XI, Sep 2010, Krakow, Poland. LNCS 6238, Springer Verlag, pp.334-343, 2010. 〈inria-00494237〉

Partager

Métriques

Consultations de la notice

296

Téléchargements de fichiers

877