
HAL Id: inria-00494283
https://hal.inria.fr/inria-00494283

Submitted on 22 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Continuation-Passing Style
Christoph M. Angerer, Thomas R. Gross

To cite this version:
Christoph M. Angerer, Thomas R. Gross. Parallel Continuation-Passing Style. Pespma 2010 - Work-
shop on Parallel Execution of Sequential Programs on Multi-core Architecture, Jun 2010, Saint Malo,
France. �inria-00494283�

https://hal.inria.fr/inria-00494283
https://hal.archives-ouvertes.fr


Parallel Continuation-Passing Style
A Compiler Representation for Incremental Parallelization

Christoph M. Angerer

Computer Systems Institute
ETH Zurich, Switzerland
angererc@inf.ethz.ch

Thomas R. Gross

Computer Systems Institute
ETH Zurich, Switzerland

trg@inf.ethz.ch

Abstract
We present a parallel version of continuation passing
style, called pCPS. Using pCPS as the intermediate
representation allows a compiler to first translate a se-
quential program into a form with explicit scheduling
and then gradually increase the parallelism by remov-
ing happens-before constraints whenever possible.

1. Introduction
Many compiler optimizations require a program to be
first transformed into a suitable internal representation
(IR). The two most common IR forms are static sin-
gle assignment (SSA) and continuation-passing style
(CPS).

In SSA, every variable is assigned exactly once.
Multiple assignments to the same variable are trans-
lated into single assignments to different versions of
this variable. A versioned variable is written as the orig-
inal variable name with a unique subscript. Because
this subscript makes it easy to find the one point where
a variable has been defined, use-def chains are ex-
plicit in SSA form. This greatly simplifies the analysis
of the program and thus benefits optimizations working
with SSA.

While SSA is widely used in compilers for imper-
ative languages, many compilers for functional lan-
guages prefer CPS, even though both forms are techni-
cally equivalent [1, 7]. In CPS, a function never returns
to its caller as in the more familiar direct style. Instead,
it expects a continuation function as an additional pa-
rameter. When the function has finished its computa-
tion, it will call this continuation function and pass it
the result value. Similar to SSA, CPS is easier to ana-
lyze than a program in direct style because it makes the
control flow explicit.

For both forms, algorithms exist that can automat-
ically transform a direct style source program into
SSA or CPS. These algorithms work on the unmodi-
fied source code and do not require the programmers to
change anything—an important factor for their success.

Both forms, however, have a serious drawback when
it comes to multicore systems: Neither one has any
support for parallelism. In CPS, for example, the call to
the continuation function must be in tail-position; that
is, it must be the last thing the function does. Because
there can be only one such tail-call, a function cannot
fork computation in CPS. This makes CPS inherently
single-threaded. A program can start parallel tasks by
calling library functions, but this makes it hard for the
compiler to analyze and optimize.

In this paper, we present parallel continuation-passing
style (pCPS) as a superset of single threaded CPS.
pCPS is a superset of CPS in the sense that there ex-
ists a simple substitution that transforms a program in
CPS into a program in pCPS with equivalent behavior.
Unlike CPS, however, pCPS allows the program to be
transformed into a parallel version through a combina-
tion of automatic, semi-automatic, and manual means.
The transformation of a program can be done in one
pass or gradually over multiple iterations, increasing
the parallelism incrementally with every optimization
pass.

2. Parallel Continuation-Passing Style
In this section, we present pCPS in the context of Java.
The basic building blocks in pCPS are tasks. A task
is similar to a method in that it contains code that is
executed in the context of a this object (or the class in
the case of static methods/tasks). Unlike a method,
however, one does not call a task, which would result

2



in the immediate execution of the body, but instead
schedules it for later execution.

Consider the following snippet of a Java class with
explicit pCPS task scheduling:

class Main {

task t() {

Activation a = sched(this.foo());

Activation b = sched(this.bar(42));

a→b;

}

task foo() { ... }

task bar(int x) { ... }

...

}

A schedule is represented as a directed graph of
〈object, task()〉 pairs. A statement such as
sched(this.foo()) creates a new node in the sched-
ule with the given object (this, in this example) and
task (here the task called foo()). The instruction
sched() returns an object of type Activation rep-
resenting the node. Like any other object, Activation
objects can be kept in local variables, passed around as
parameters, and stored in fields.

At runtime, a scheduler constantly chooses activa-
tions that are eligible for execution and executes them.
The order in which the scheduler is allowed to start the
activations is specified by happens-before edges in the
schedule graph. If the schedule contains a happens-
before edge 〈o1, t1()〉 → 〈o2, t2()〉, for example,
the scheduler must guarantee that activation 〈o1, t1()〉
has finished execution before activation 〈o2, t2()〉 is
started.

In the code, the currently executing activation is
accessible through the keyword now. Whenever a new
task is scheduled, the scheduler automatically adds an
initial happens-before relationship between now and
the new activation node. This prevents the immediate
execution of the new activation and therefore allows
the current task to add additional constraints to the
schedule before it finishes.

In addition to those implicit happens-before relation-
ships, the example contains the statement a→b. This
explicitly adds an edge to the schedule between the two
activation objects a and b.

Because pCPS does not have call-return semantics,
an activation cannot directly return a value. To sim-
plify the passing of results between activations, how-
ever, Activation provides a built-in field called res

that we can use by convention to store the result of a
computation.

3. Example
As an example, consider a method fib() for comput-
ing fibonacci numbers.

int fib(int k) {

if (k <= 2) return 1;

else return fib(k-1) + fib(k-2);

}

The else case contains two recursive calls to fib().
Because of the +, however, none of these calls is a tail
call because we have to wait until both functions return
before we can add their results.

A translation into CPS splits the else case into three
inner functions generated by the compiler1:

int fib(int k, fun ret) {

if (k <= 2) ret(1);

else fib(k-1, fun(left) {

fib(k-2, fun(right) {

ret(left+right);

})})

}

This example demonstrates how the translation into
CPS adds the additional parameter ret for the contin-
uation to fib(). A return in direct style is translated
into a tail call to this continuation function, passing the
result as a parameter. A function call that is not in tail
position requires the CPS transformation to split the
function at that point, packaging the rest of the func-
tion body inside a newly generated block that is passed
to the called function.

Such a CPS function can be trivially translated into
pCPS by simply wrapping each tail call to the contin-
uation with a sched() statement. Scheduling a single
task without adding any other happens-before edges re-
sults in a linear schedule a → b which has the same
execution behavior as a tail call.

However, there is often a more direct translation into
pCPS that generates less anonymous functions, which
is beneficial for finding parallelization opportunities.
A sequence of function calls can be directly translated

1 In the current version, Java does not contain function pointers
and real closures, which are both important for CPS translation.
Both could be somewhat simulated with anonymous classes at the
expense of much increased verbosity. For the sake of this example,
however, we just use an imaginary notation fun(param){body}
for creating closures.

3



1 task fib(int k, Activation later) {

2 if (k <= 2) {

3 now.res = 1;

4 } else {

5 //make left and right available inside closure

6 Activation left;

7 Activation right;

8 Activation then = now;

9 Activation sum = sched(fun(){

10 //sum ’returns’ for fib()

11 then.res = ((int)left.res)

12 + ((int)right.res);

13 });

14

15 left = sched(fib(k-1, sum));

16 right = sched(fib(k-2, sum));

17 left→right; //inserted by naive translation

18 right→sum;

19

20 sum→later;

21 }

22 }

Figure 1. Fibonacci in pCPS.

into a sequence of sched() statements in pCPS. Only
the parts that use the results (the + in the fib() exam-
ple) need to be wrapped inside a single task so that we
can correctly schedule it.

Figure 1 shows a pCPS version of the fib() func-
tion with this more direct translation. In contrast to
CPS, we do not pass a continuation function but an ac-
tivation object. For this, we have added an additional
parameter later to the task on line 1.

Unlike a continuation function, an activation object
allows us to join two parallel flows. Consider passing a
continuation function to two parallel activations. Both
activations will ultimately call the continuation inde-
pendently from each other; but there will still be two
execution threads. By passing the same activation ob-
ject, however, we can schedule subtasks relative to that
common activation object allowing the parallel execu-
tion threads to eventually join at that single activation.

On line 8 we store a reference to the current activa-
tion now it in the local variable then. Inside the closure
of sum(), then allows us to set the result slot in behalf
of the outer fib() activation so that our clients can
read it from there. We must wrap the summation + in-
side its own task because it is dependent on the results
of fib(k-1) and fib(k-2) and must be scheduled af-
ter those.

The actual recursive invokations are scheduled on
lines 15 and 16. By passing our sum activation we
make sure that sum is not executed before both subtasks
have finished their computations. Because the recursive
calls to fib() and their summation were ordered in
the original program, the translation also added two
ordering constraints on lines 17 and 18. The return

in the original program is translated into sum→later

to accomodate the fact that the return happens before
the parent continues.

4. Introducing Automatic, Semi-automatic,
and Manual Parallelism

The last section demonstrated the translation of a se-
quential program into pCPS. The transformed program
used explicit task scheduling but still obeyed all order-
ing constraints of the original program. As a result, the
pCPS version is still a sequential program.

The difference, however, is that it is now in a form
that allows different optimizations to gradually in-
crease the parallelism. Optimizations may add or re-
move edges and split or combine tasks whenever they
think it is beneficial.

There exist analyses that can identify parallelism in
a fully automated way, such as polyhedral optimization
[4]. In other cases, the programmer must provide pro-
gram annotations allowing or disallowing certain opti-
mizations, as in, for example, OpenMP [3, 11] or Cilk
[12].

By exposing pCPS features to the source program-
ming language, programmers can additionally hand-
optimize certain parts in the program. The lightweight,
ad hoc nature of pCPS allows adding parallelism with
minimal impact on the rest of the program. Adding par-
allelization through threads, on the other hand, often
requires major redesigns of the overall application ar-
chitecture to incorporate the thread management and
synchronization.

After an optimization found an opportunity to intro-
duce parallelism, the compiler will transform the IR to
incorporate this result. As an example, we show how to
transform the example from Figure 1 into a parallelized
version.

In the pCPS version, the happens-before edge on line
17 is not strictly necessary and can be removed. The
edge was introduced by the pCPS translation only be-
cause of the implicit ordering in the original expression
fib(k-1) + fib(k-2).

4



⟨fib(k)⟩

⟨fib(k-1)⟩

⟨fib(k-2)⟩

⟨sum()⟩

⟨later⟩

⟨fib(k)⟩

⟨fib(k-1)⟩

⟨fib(k-2)⟩

⟨sum()⟩

⟨later⟩
(a) (b)

e

f

g

e'

g'

e

g

Figure 2. (a) The schedule extracted from Figure 1
after transitive edges have been removed; (b) deleting
the unnecessary edge f requires the addition of e′ and
g′ to keep the transitive ordering intact.

Figure 2(a) shows the schedule that can be extracted
from the code in Figure 1. As expected, the schedule
is a linear list of activations representing the sequential
control flow.

Consider an optimization that checks whether each
edge in a schedule is required or not. Because fib()

only accesses local variables, it is trivial for the com-
piler to see that the two recursive calls to fib() can
be parallelized and therefore the edge f is unnecessary.
For more complex scenarios, the compiler may use a
more advanced data-race detection mechanism to fig-
ure out whether two activations would interfere with
each other when parallelized.

Removing the edge f requires us to adjust the sched-
ule to ensure that the transitive ordering of the pre-
decessors and successors of the edge source and tar-
gets remain intact. Simply deleting the edge f , for ex-
ample, would destroy the transitive ordering of nodes
〈fib(k − 1)〉 and 〈sum()〉.

When deleting an edge a → b, the transitive or-
dering is maintained by adding additional edges to the
schedule: for each incoming edge x → a into node a
we create a new edge x→ b; similarly, for each outgo-
ing edge b→ y from b we create an edge a→ y.

The result of this transformation for our example
can be seen in Figure 2(b). The two new edges e′ and
g′ were created to retain the transitive ordering through
edges e and g. In this schedule, 〈fib(k − 1)〉 and
〈fib(k−2)〉 can be executed in parallel while 〈sum()〉
is still (correctly) ordered. For the source code, this
transformation changes the happens-before edge on
line 17 to left→sum.

5. Related Work
SSA for parallel programs [8, 13], OpenMP [11] and
Cilk [12] are examples of programming systems with
lightweight ad hoc parallelism. Similar to pCPS, in
these systems parallelism can be incrementally added
to a program by gradual refinement. pCPS, however,
allows for unstructured parallelism whereas the fork-
join style constructs of parallel SSA, OpenMP and Cilk
are lexically scoped. Lexical scoping comes at the cost
of flexibility, making it difficult to model common pat-
terns such as futures or producer-consumer [3].

Futures [2, 10] are a mechanism for encapsulating
computations. When a future is resolved before the
computation has finished, the resolution blocks until
the result is available. This behavior is very similar to
task scheduling. While being convenient for program-
mers, however, futures are not very well suited as a
compiler IR. Because futures do not make the happens-
before edges explicit, as pCPS does, it is much harder
for the compiler to statically reason about the schedule
and derive optimizations from that.

The join-calculus [5] and π-calculus [9] are exam-
ples of process calculi for concurrent systems. A pro-
cess calculus defines an algebra for describing and
analyzing the interaction, communication, and syn-
chronization between concurrent processes. As alge-
bras, process calculi permit formal reasoning about
many of their properties, such as behavioral equiva-
lence through bisimulation [6]. For a program to make
use of this formal foundation, however, it must have
been designed and written with the process calculus in
mind. For this reason, process calculi are used as the
basis for programming languages, but not for compiler
IRs. We do not know of any successful translation of
an imperative, shared-memory program into a process
calculus that would allow for further optimizations.

6. Concluding Remarks
Most compilers use SSA or CPS as their intermediate
representation. Neither form, however, has any support
for parallelism but are inherently single threaded.

In this paper we propose a parallel version of CPS,
called pCPS. pCPS allows a compiler to incremen-
tally increase the parallelism using multiple optimiza-
tion phases. If pCPS is used as the common in- and
output for each optimization, different independent op-
timizations can be seamlessly integrated into a single
optimizing compiler.

5



References
[1] Andrew W. Appel. SSA is functional programming.

ACM SIGPLAN Notices, 33(4):1720, 1998.
[2] H. Baker and C. Hewitt. The Incremental Garbage

Collection of Processes. ACM SIGPLAN Notices, pp.55–
59, 1977.

[3] J. Balart, A. Duran, M. Gonzalez, X. Martorell, E.
Ayguade, and J. Labarta. Experiences Parallelizing a
Web Server with OpenMP. In Lecture Notes in Computer
Science LNCS vol. 4315, pp.191–202, 2008.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sa-
dayappan A Practical Automatic Polyhedral Parallelizer
and Locality Optimizer. In PLDI (2008), ACM.

[5] C. Fournet and G. Gonthier, The Join-Calculus: A
Language for Distributed Mobile Programming. In Proc.
Applied Semantics Summer School (APPSEM), 2000.

[6] C. Fournet and C. Laneve. Bisimulations in the Join-
Calculus. In Theor. Comput. Sci., vol. 266, pp.569–603,
2001.

[7] Richard A. Kelsey. A Correspondence Between
Continuation-Passing Style and Static Single Assignment
form. ACM SIGPLAN Notices, pp.13-22, 1995.

[8] J. Lee, S. Midkiff, and D. A. Padua. Concurrent Static
Single Assignment Form and Constant Propagation for
Explicitly Parallel Programs. In W. on Lang. and Comp.
for Par. Comp. (LCPC), Aug. 1997.

[9] R. Milner. Communicating and Mobile Systems: the
π-Calculus. Cambridge University Press, New York, NY,
USA, 1999.

[10] J. Niehren, J. Schwinghammer, and G. Smolka. A
Concurrent Lambda Calculus with Futures. In Theor.
Comput. Sci., vol. 364, pp.338–356, 2006.

[11] OpenMP Specification: Version 3.0.
http://openmp.org/, May 2008.

[12] K. Randall. Cilk: Efficient Multithreaded Computing.
PhD thesis, Dept. of EECS, MIT, May 1998.

[13] H. Srinivasan, J. Hook, and M. Wolfe. Static Single
Assignment Form for Explicitly Parallel Programs. In
PoPL (1993), ACM.

6




