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Abstra
t: In this paper a novel dis
rete-time implementation of sliding-mode
ontrol systems is proposed, whi
h fully exploits the multivaluedness of the dy-nami
s on the sliding surfa
e. It is shown to guarantee a smooth stabilizationon the dis
rete sliding surfa
e in the disturban
e-free 
ase, hen
e avoiding the
hattering e�e
ts due to the time-dis
retization. In addition when a distur-ban
e a
ts on the system, the 
ontroller attenuates the disturban
e e�e
ts onthe sliding surfa
e by a fa
tor h (where h is the sampling period). Most im-portantly this holds even for large h. The 
ontroller is based on an impli
itEuler method and is very easy to implement with proje
tions on the interval
[−1, 1] (or as the solution of a quadrati
 program). The zero-order-hold (ZOH)method is also investigated. First and se
ond order perturbed systems (witha disturban
e satisfying the mat
hing 
ondition) without and with dynami
aldisturban
e 
ompensation are analyzed, with 
lassi
al and twisted sliding-mode
ontrollers.Key-words: No keywords
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Commande par modes glissants en temps dis
retave
 suppression du phénomène de �
hattering�Résumé : Ce travail 
on
erne la 
ommande par modes glissants en temps dis-
ret. L'aspe
t multivalué est pleinement exploité, 
e qui permet de supprimer le
hattering dû à la dis
rétisation en temps, et d'autre part d'atténuer les pertur-bations par un fa
teur h (h le pas d'intégration ou la période d'é
hantillonnage)ou par un fa
teur h2. Les méthodes d'Euler impli
ite et ZOH (zero order holder)sont étudiées.Mots-
lés : sliding-mode, ba
kward Euler method, zero-order-hold method,dis
rete-time sliding mode, disturban
e 
ompensation, twisting 
ontroller



Chattering-free digital sliding-mode 
ontrol 31 Introdu
tionSliding-mode 
ontrol is an important �eld of feedba
k 
ontrol, with many ap-pli
ations, see e.g. [6, 15, 19, 22, 27, 28℄. The issue related to the digi-tal de�nition and implementation of sliding mode systems, has been the ob-je
t of many works sin
e the publi
ation of pioneering works [9, 20℄, see e.g.[4, 12, 17, 27, 31, 28, 24, 25℄. It appears however that su
h 
ontrol methods arenot yet fully understood and their implementation is still prone to serious prob-lems like numeri
al 
hattering [13, 30, 14, 18, 16, 29, 28, 32, 5℄. The obje
tiveof this paper is threefold: a) to show that an impli
it Euler 
ontroller permitsto numeri
ally implement the multivalued part of dis
ontinuous sliding-mode
ontrollers and 
onsequently suppress the numeri
al 
hattering that is presentin the expli
it implementations, b) to extend it to the 
ase when one part ofthe state is observed, 
) to show that when a disturban
e a
ts on the system(full-state or partial-state feedba
k) the numeri
al 
hattering is still suppressedand the disturban
e is reje
ted. By disturban
e reje
tion it is meant that in theideal (analyti
al) 
ontinuous-time system, the disturban
e is exa
tly reje
ted,while in the digital implementation it is attenuated by a fa
tor h where h > 0is the sampling time. The major features of the impli
it 
ausal dis
rete-timeinput are on one hand that the 
ontinuous-time system sliding surfa
e (thatmay be of 
odimension larger than one) is not 
hanged after the dis
retization,on the other hand a �nite sampling frequen
y is su�
ient to assure the slidingmotion of the dis
rete-time system, and �nally the 
hattering e�e
ts observedon expli
it 
ontrollers (named the numeri
al 
hattering) are suppressed.De�nition 1 The numeri
al 
hattering 
orresponds to the os
illations (limit
y
les) whi
h are solely due to the digital implementation of the 
ontroller.De�nition 2 The disturban
e 
hattering 
orresponds to the os
illations that
an appear due to a high frequen
y disturban
e a
ting on the system.A �rst fundamental step is to eliminate the numeri
al 
hattering with theappli
ation of a suitable impli
it dis
rete-time 
ontroller. The disturban
e 
hat-tering will not be eliminated in the system's state around the sliding surfa
e, butthe disturban
e is attenuated by a fa
tor h (of a fa
tor h2 on the system's po-sition for an order-two system). In pra
ti
e it is expe
ted that this 
orrespondsto a high 
ompensation of the disturban
e. The 
ontrol input obtained by theimpli
it method is not of the bang-bang type when the state evolves on the slid-ing surfa
e. On the 
ontrary it is a 
ontinuous input whi
h evolves inside themultivalued part of the sign multifun
tion (the multivalued part 
orresponds inthe Filippov 
ase to the set representing the 
losed 
onvex 
losure of the ve
tor�elds on the swit
hing surfa
e, whi
h is a segment if the 
odimension is equalto one).De�nition 3 Let h = tk+1 − tk > 0 be the sampling period, k > 0. An m-dis
rete-time sliding surfa
e Σd is a 
odimension m subspa
e of the state spa
e,su
h that the dis
rete state ve
tor xk
∆
= x(tk) satis�es xk ∈ Σd for all kmin 6

k 6 kmax, kmin < kmax − 1, kmin > 0. Moreover this holds whatever h > 0.A very attra
tive feature of the digital method based on the impli
it Eulermethod is that the numeri
al sliding surfa
e Σd and the 
ontinuous-time slidingRR n° 7326



Chattering-free digital sliding-mode 
ontrol 4surfa
e Σc satisfy Σd = Σc: the dis
retization does not modify the sliding surfa
e[1℄. If, for instan
e, Σc = {x ∈ IRn | Cx + D = 0}, C ∈ IRm×n, D ∈ IRm, then
Σd = {xk ∈ IRn | Cxk + D = 0}. The 
ontrollers whi
h are designed in thispaper 
onsist of the stabilization of an unperturbed nominal plant, 
oupled tothe plant's dynami
s (see �gure 1). Both the nominal and the real plant haveto be dis
retized with the same method (impli
it Euler or zero-order holder).

nominal system
τk+1

−τk+1

xk

−

dis
rete-time plantϕk+1

solverequationgeneralizedFigure 1: The dis
rete-time 
losed-loop system.The paper is organized as follows: se
tion 2 is dedi
ated to the analysis ofa simple �rst-order system, without and with disturban
e 
ompensation. Anextension to higher-order systems is also presented, with the Euler and the ZOHmethods. In se
tion 3 se
ond-order systems are treated and several types of
ontrollers are analyzed. In all 
ases the 
ontinuous-time system is introdu
ed,then its time-dis
retization is studied, and �nally simulation results are shown.Con
lusions end the paper.Notation: In the sequel sgn(x) is the multivalued sign fun
tion: sgn(x) =






+1 if x > 0
−1 if x > 0[-1,1℄ if x = 0

. Let K ⊂ IRn be a 
losed non empty 
onvex set. Thenormal 
one to K at x ∈ K ⊂ IRn is NK(x) = {z ∈ IRn | zT (y − x) >

0 for all y ∈ K}. Let M = MT > 0 be an n × n matrix. For any x ∈ IRn and
y ∈ IRn, one has
−x+y ∈ M−1NK(x) ⇔ x = projM (K; y) ⇔ x = argminz∈K

1

2
(z−y)T M(z−y)(1)where projM(K; y) denotes the orthogonal proje
tion of y on K in the metri
de�ned by M . For any reals x and y, one has

x ∈ sgn(y) ⇔ y ∈ N[−1,1](x). (2)For x ∈ IRm, Sgn(x) = (sgn(x1) ...sgn(xm))T , ||x||∞ = max(|x1|, ..., |xm|),
||x||1 =

∑m
i=1 |xi|. For any matrix M and ve
tor x, the norms ||M || and ||x|| aresupposed to be 
ompatible norms so that ||Mx|| 6 ||M || ||x||. For a fun
tion

f : IR → IR one has ||f ||∞ = esssup
t∈IR|f(t)|. In is the n × n identity matrix.RR n° 7326



Chattering-free digital sliding-mode 
ontrol 52 A �rst-order systemWe analyze in this se
tion the simplest 
ase to illustrate how the method works.Two 
ases are treated: without and with disturban
e 
ompensation (in the
ontinuous-time system). The basi
 ideas are illustrated on a simple �rst-ordersystem.2.1 The 
ase without disturban
e 
ompensationLet us start by 
onsidering the following basi
 sliding mode system:
{

ẋ(t) = −aτ(t) + ϕ(t)

τ(t) ∈ sgn(x(t)),
(3)where ϕ(·) is the perturbation su
h that ‖ϕ‖∞ < ρ < a. The 
ontrol input ishere u(t) = τ(t). It may be seen, in the language of di�erential in
lusions theory,as a sele
tion of the set-valued right-hand-side of the system. Choosing 
orre
tlythis sele
tion is the obje
t of the following dis
retization. The system (3) has

x = 0 as its unique equilibirum point, whi
h is globally asymptoti
ally stableand is rea
hed in �nite time (this may be shown with the Lyapunov fun
tion
V (x) = x2). The dis
rete-time sliding mode system is implemented as follows:











x̃k+1 = xk − ahτk+1

τk+1 ∈ sgn(x̃k+1)

xk+1 = xk − ahτk+1 + hϕk+1

(4)The �rst two lines of (4) may be 
onsidered as the nominal unperturbed plant,from whi
h one 
omputes the input at time tk. The third line is the ba
kwardEuler approximation of the plant, on whi
h the disturban
e is a
ting. One has
u(t) = τk+1 on the time-interval [tk, tk+1).Proposition 1 Suppose that the initial state in (4) satis�es |x0| > ah > 0.Then after a �nite number of steps k0 one obtains that x̃k = 0 and xk = hϕkfor all k > k0. In other words, the disturban
e is attenuated by a fa
tor h.Moreover the approximated derivative of the state satis�es xk+1−xk

h
= ϕk+1−ϕkfor all k > k0 + 1 whereas x̃k+1−x̃k

h
= 0 for all k > k0. The 
ontrol input takesvalues inside the sign multifun
tion multivalued part on the sliding surfa
e forall k > k0.Proof: The generalized equation x̃k+1 = xk −ahτk+1 and τk+1 ∈ sgn(x̃k+1)is found to be equivalent, using (1) and (2), to the in
lusion τk+1 − xk

ah
∈

−N[−1,1](τk+1) whi
h is equivalent to τk+1 = proj([−1, 1]; xk

ah
). Thus one ob-tains:� If xk > ah then x̃k+1 = xk − ah and sgn(x̃k+1) = 1,� If xk < −ah then x̃k+1 = xk + ah and sgn(x̃k+1) = −1,� If 0 > xk > −ah then x̃k+1 ∈ (0, ah), and sgn(x̃k+1) = −1,� If 0 < xk < ah then x̃k+1 ∈ (−ah, 0), and sgn(x̃k+1) = 1.RR n° 7326



Chattering-free digital sliding-mode 
ontrol 6From the above we infer that:� If xk > ah then xk+1 = xk+hϕk+1−ah = xk+h(ϕk+1−a) < xk+h(ρ−a).Sin
e ρ − a < 0 the state is stri
tly de
reased from step k to step k + 1.� If xk < −ah then xk+1 = xk + hϕk+1 + ah = xk + h(ϕk+1 + a) > xk +
h(a−ρ). Sin
e a−ρ < 0 the state is stri
tly in
reased from step k to step
k + 1.One dedu
es that if the initial data satis�es |x0| > ah then after k0 =

⌈ x0

h|a−ρ|⌉ steps one gets x̃k0
= 0. Indeed at k0 the state xk rea
hes the interval

(−ah, ah) and then the unique solution for x̃k is zero. From x̃k0
= 0 one dedu
esthat |xk0

| < ah. To 
ompute the next value of x̃k one has to solve the generalizedequation
{

x̃k0+1 = xk0
− ahτk0+1

τk0+1 ∈ sgn(x̃k0+1),
(5)whose unique solution is found by inspe
tion to be x̃k0+1 = 0 1. The reasoning
an be repeated to 
on
lude that x̃k = 0 for all k > k0. Therefore x̃k+1−x̃k

h
= 0for all k > k0. Now let us assume that for k > k0 we have

x̃k+1 = xk − ahτk+1 = 0, k > k0, (6)that is
τk+1 =

xk

ha
. (7)In this 
ase, the state xk+1 is given by

xk+1 = hϕk+1, (8)and therefore
xk = hϕk, τk+1 =

ϕk

a
for all k > k0 + 1, (9)so that xk+1−xk

h
= ϕk+1 − ϕk for all k > k0 + 1.

�Noti
e that the ba
kward (or impli
it) Euler dis
retization of the unper-turbed plant 
oin
ides for (3) with the zero-order holder (ZOH) dis
retization.Considering the perturbed plant, the only di�eren
e between (4) and the ZOHdis
retization is that hϕk+1 be
omes ∫[tk,tk+1)
ϕ(t)dt. And hϕk+1 in (8) and (9)has to be repla
ed by ∫

[tk,tk+1)
ϕ(t)dt < ah. The attenuation of the disturban
estill holds with the ZOH method. In other words the state x(·) of the plantsatis�es x(t) =

∫

[tk,t) ϕ(t)dt 6 hρ. In a more general setting, the dis
retizationof the 
ontroller and the dis
retization of the plant have to be the same (bothimpli
it Euler, or both ZOH) in order for the disturban
e attenuation to hold.Noti
e that the above shows that Vk = |x̃k| is a Lyapunov fun
tion for thenominal system.1The underlying 
ru
ial property that makes this hold is the maximal monotoni
ity of thesign multifun
tion.
RR n° 7326



Chattering-free digital sliding-mode 
ontrol 72.2 The 
ase with disturban
e 
ompensationLet us 
onsider the 
ase with disturban
e 
ompensation. Let us de�ne ˙̂x(t) =
−aτ1(t), τ1(t) ∈ sgn(x(t)), e = x − x̂, and the 
ontroller u = −asgn(x(t)) −
αsgn(e(t)), a > 0, α > 0 and a < α. Thus the 
losed-loop system is given by:



















ẋ(t) = −aτ1(t) − ατ2(t) + ϕ(t)

ė(t) = −ατ2(t) + ϕ(t)

τ1(t) ∈ sgn(x(t))

τ2(t) ∈ sgn(e(t)) (10)where ϕ(·) is a disturban
e su
h that ‖ϕ‖∞ < ρ < min(a, α). The �xed point
(x, e) = (0, 0) of the system may be shown in a rather standard way [27℄ to beglobally strongly asymptoti
ally stable with the nonsmooth Lyapunov fun
tion
V (x, e) = |x| + |e|. Moreover, the system attains in a �nite time the slidingsurfa
e e = 0 where it evolves a

ording to the sliding dynami
s ẋ(t) = −aτ1(t)+
ϕ(t). The 
ondition a < α implies that the origin is not attained dire
tly, but�rst the system slides on the surfa
e e = 0. On this surfa
e it is apparent from(10) that the dynami
s in x evolves as a disturban
e-free system. The dis
retesliding mode system is implemented as follows:



















x̃k+1 = xk − ahτ1,k+1 − αhτ2,k+1

ẽk+1 = ek − αhτ2,k+1

τ1,k+1 ∈ sgn(x̃k+1)

τ2,k+1 ∈ sgn(ẽk+1),

(11)and the update pro
edure representing the plant dynami
s is given by:
{

xk+1 = xk − ahτ1,k+1 − αhτ2,k+1 + hϕk+1

ek+1 = ek − αhτ2,k+1 + hϕk+1.
(12)Proposition 2 Assume that |e0| > αh > 0. Then after a �nite number of steps

k0 one obtains ẽk = 0 and ek = hϕk+1 for all k > k0. Let |xk0
− hϕk0+1| >

ah > 0. Then there exists k1 < +∞ su
h that x̃k = 0 for all k > k0 + k1 and
xk = hϕk for all k > k0 + k1.Proof: From (11) we have

{

ẽk+1 = ek − αhτ2,k+1

τ2,k+1 ∈ sgn(ẽk+1),
(13)whi
h is exa
tly the �rst two lines in (4). Therefore the 
on
lusions drawnfor (4) apply, just repla
ing a by α. Thus the ek−dynami
s is ek+1 = ek −

αh proj([−1, 1]; ek

αh
) + hϕk+1. After k0 the dis
rete traje
tory evolves on thesliding surfa
e ẽk = 0 while τ2,k+1 = ek

αh
and ek = hϕk+1, and one obtains using(1):











x̃k+1 = xk − hϕk+1 − ahτ1,k+1

τ1,k+1 ∈ sgn(x̃k+1)

xk+1 = xk − ahτ1,k+1

⇔ xk+1 = xk − ah proj([−1, 1]; xk−hϕk+1

ah
)(14)RR n° 7326



Chattering-free digital sliding-mode 
ontrol 8Then we 
an redo again the same 
al
ulations as in the proof of Proposition1 (by repla
ing xk by xk − hϕk+1 in the �rst line of (4), and xk + hϕk+1 by xkin the third line), to infer that after a �nite number of steps one gets x̃k = 0,
τ1,k+1 =

xk−hϕk+1

ah
, and

xk+1 = xk − ek − (xk − hϕk+1) + hϕk+1 = hϕk+1 (15)Indeed let us now assume that:
{

x̃k+1 = xk − ahτ1,k+1 − αhτ2,k+1 = 0

ẽk+1 = ek − αhτ2,k+1 = 0,
(16)that is







τ1,k+1 =
xk − ek

ah
τ2,k+1 =

ek

αh
.

(17)After the update pro
edure (12), we get
{

xk+1 = hϕk+1

ek+1 = hϕk+1.
(18)We 
an 
on
lude that on
e the sliding mode in x̃ and ẽ is rea
hed we have,

{

xk+1 = hϕk+1

ek+1 = hϕk+1

, for all k > k0 (19)and
{

τ1,k+1 = 0

τ2,k+1 =
ϕk

α

, for all k > k0 + 1. (20)
�Consequently the dis
rete-time 
ontroller guarantees the 
onvergen
e of thestate of the nominal system in �nite time to the origin, while the plant's stateis equal to the disturban
e attenuated by a fa
tor h. To summarize, from (11)and (12) the dis
rete-time 
losed-loop system is therefore:















xk+1 = xk − ahτ1,k+1 − αhτ2,k+1 + hϕk+1

ek+1 = ek − αhτ2,k+1 + hϕk+1

τ1,k+1 = proj([−1, 1];
xk−αhτ2,k+1

ah
)

τ2,k+1 = proj([−1, 1]; ek

αh
)

(21)One sees that this is very easily implementable with nested proje
tions.2.3 Extension to higher-order systemsIn order to show that the foregoing method extends to n−th order systems withthe equivalent-
ontrol-based sliding-mode-
ontroller (ECB-SMC [28, Chapter2℄) and also to better �x the ideas on the stru
ture of the proposed 
ontrollers,let us 
onsider the linear time-invariant system with disturban
e ẋ(t) = Ax(t)+
Bu(t)+Dϕ(t) with ||ϕ(t)||1 6 pϕmax for all t, ϕmax > |ϕi|∞ for all 1 6 i 6 p andRR n° 7326



Chattering-free digital sliding-mode 
ontrol 9
D ∈ IRn×p. Let us 
hoose a sliding surfa
e Σ = {x ∈ IRn | Cx = 0, C ∈ IRm×n},where m is the dimension of the input ve
tor u(t). The ECB-SMC takes the form
u ∈ −(CB)−1CAx − α(CB)−1Sgn(Cx), provided CB is full-rank. Let z

∆
= Cx.The redu
ed 
losed-loop dynami
s is ż(t) = −ατ + CDϕ(t), τ ∈ Sgn(z), whi
his globally asymptoti
ally stable and Σ is rea
hed in �nite time provided α >

p||CD|| ϕmax (this 
an be shown with the Lyapunov fun
tion V (z) = 1
2zT z thatsatis�es along the 
losed-loop traje
tories V̇ (t) 6 ||z||1(−α + p||CD||ϕmax)).The system is dis
retized as

xk+1 = xk + hAxk + hBuk+1 + hDϕk+1, (22)and the nominal system is simply given by x̃k+1 = (I + hA)xk + hBuk+1. Theimpli
it Euler 
ontroller is de�ned as






uk+1 = −(CB)−1CAxk − α(CB)−1τk+1

τk+1 ∈ Sgn(Cx̃k+1).
(23)Therefore τk+1 is given by (see (1) and (2)):

τk+1 ∈ Sgn(Cxk − αhτk+1) ⇔ τk+1 = proj([−1, 1]m;
1

αh
Cxk), (24)where [−1, 1]m = [−1, 1] × ... × [−1, 1] m−times. Thus the 
ontroller to beapplied at time tk is

uk+1 = −(CB)−1CAxk − α(CB)−1proj([−1, 1]m;
1

αh
Cxk). (25)We therefore obtain, with zk = Cxk and z̃k = Cx̃k:







z̃k+1 = zk − αhτk+1

τk+1 ∈ Sgn(z̃k+1)
zk+1 = zk − αhτk+1 + hCDϕk+1,

(26)that is similar to (4). Thus the same 
on
lusions as in Proposition 1 may bedrawn for this dis
rete-time system provided that α > p ||CD||ϕmax: the slidingsurfa
e Cx̃k = 0 is attained after a �nite-number of steps whatever the boundedinitial state, and the dis
rete-time system evolves smoothly on this surfa
e whilethe disturban
e e�e
ts on the variable Cxk are attenuated by a fa
tor h.Remark 1 The dis
rete-time input obtained from [28, Equ.(9.36)℄ (see also[4, 17℄ and [9℄ for the original 
ontribution) when applied to (22) is 
al
ulatedto be: uk+1 = −(hCB)−1C(I + hA)xk = −(CB)−1 Cxk

h
− (CB)−1CAxk, whi
his linear. The dis
repan
y with (25) is the proje
tion on the set [−1, 1]m thatis intrinsi
ally present in the impli
it Euler input (that is nonlinear Lips
hitz
ontinuous), and is not a 
onsequen
e of adding saturations be
ause of a
tuatorlimitations. Also the 
ontroller in (25) remains bounded when h → 0, a propertyshared by all the 
ontrollers 
onsidered in this paper. One may say that both
ontroller designs share the same �philosophy� sin
e they are both 
al
ulatedin order to for
e the dis
rete sliding surfa
e to be zero, with a suitable input.However they are not at all equivalent. In pra
ti
e the 
ontrollers proposed inthis paper may be 
al
ulated using a suitable 
omplementarity problem solver [2℄.RR n° 7326



Chattering-free digital sliding-mode 
ontrol 10As alluded to in se
tion 2.1, the plant and the 
ontroller have to be dis-
retized with the same method (ba
kward Euler or ZOH) in order to assurethe disturban
e attenuation. Let us investigate the zero-order-holder method(ZOH) on this example. The input is assumed to be 
onstant on [tk, tk+1] andis 
omputed at t = tk. The ZOH dis
retization of the ECB-SMC 
ontroller on
[tk, tk+1] takes the form [32℄:

xk+1 = A∗(h)xk − αB∗(h)τk+1 + ϕ∗(h), (27)with A∗(h) = eAh −
∫ h

0 eAtdt B(CB)−1CA, B∗(h) =
∫ h

0 eAtdt B(CB)−1,
ϕ∗

k(h) =
∫ h

0
eAtDϕ((k+1)h−τ)dτ . Noti
e that as h → 0 then A∗(h) ≈ In+Ah−

hB(CB)−1CA+O(h2), B∗(h) ≈ hB(CB)−1 +O(h2), 
onsequently the impli
itEuler and ZOH methods yield the same dis
rete-time system when the samplingperiod is small. Also one may 
ompute that ||ϕ∗
k(h)||1 6 hp ||D||ϕmax +O(h2).This yields the generalized equation:

(a)







x̃k+1 = A∗(h)xk − αB∗(h)τk+1

τk+1 ∈ Sgn(Cx̃k+1)
xk+1 = A∗(h)xk − αB∗(h)τk+1 + Cϕ∗

k(h)
⇒ (b)















Cx̃k+1 = CA∗(h)xk − αCB∗(h)τk+1

τk+1 ∈ Sgn(Cx̃k+1)
Cxk+1 = CA∗(h)xk − αCB∗(h)τk+1

+Cϕ∗
k(h)(28)Suppose that the matrix CB∗(h) is symmetri
 positive de�nite (sin
e CB∗ =

hIm +O(h2) it follows that for h small enough CB∗ > 0 is guaranteed if CB isinvertible). Then from (1) and (2) the �rst two lines of (28) (b) are equivalentto:
CA∗(h)xk − αCB∗(h)τk+1 ∈ N[−1,1]m(τk+1) ⇔ τk+1 = projCB∗(h)([−1, 1]m; 1

α
(CB∗(h))−1CA∗(h)xk)

⇔ τk+1 = argminz∈[−1,1]m
1
2 (z − 1

α
(CB∗(h))−1CA∗(h)xk)T CB∗(h)(z − 1

α
(CB∗(h))−1CA∗(h)xk),(29)where projCB∗(h) is the proje
tion in the metri
 de�ned by CB∗(h). There-fore at ea
h step the 
ontroller is 
al
ulated as the solution of a quadrati
 pro-gramme and is unique. Noti
e that when h is small then CB∗(h) ≈ hIm and

CA∗(h) ≈ C so that
τk+1 = argminz∈[−1,1]m

1

2
(z−

1

hα
Cxk)T (z−

1

hα
Cxk) ⇔ τk+1 = proj([−1, 1]m;

1

hα
Cxk).The input remains bounded when the sampling time de
reases. The nextresult is obvious from (28) (b):Lemma 1 Let Cx̃k+1 = 0 for some k > 0. Then ||Cxk+1||1 = ||Cϕ∗

k(h)|| =6

hp ||C|| ||D||ϕmax.Thus the disturban
e attenuation on the nominal dis
rete-time system slid-ing surfa
e holds with the ZOH method. If the higher order terms in h2 arenegle
ted, one sees that (28) (b) is the same as (26) where only the disturban
eterm is modi�ed, so that on
e again the 
on
lusions of Proposition 1 apply: thedis
rete-time system rea
hes the nominal system sliding surfa
e in a �nite num-ber of steps. The analysis for any h > 0 is more involved be
ause the terms in
h2 introdu
e a 
oupling between (28) (b) and (a). However sin
e we are fo
usingRR n° 7326



Chattering-free digital sliding-mode 
ontrol 11on the sliding modes and �nite-time 
onvergen
e to the sliding surfa
e only, wemay assume that the solution x(·) of the 
losed-loop system is bounded for anybounded initial data, and that the solution xk of its ZOH 
ounterpart in (28)(a) is bounded as well, i.e. ||xk|| 6 M for all k > 0 and some M . Then thefollowing holds:Proposition 3 Let h > 0 be given. Suppose that the solution of (28) (a) satis-�es ||xk|| 6 M for all k > 0 and some M < +∞, and that CB∗(h) is symmetri
positive de�nite, with CB∗(h) > γIm > 0 for some known γ. Then there exists a
onstant δ(h2, M) su
h that if α > m
γ
||C|| hρ ||D|| ϕmax + δ(h2, M), Cx̃k+1 = 0for some k > 0 implies Cx̃k+n = 0 for all n > 2.Proof: from Lemma 1 the �rst line of (28) (b) rewrites at step k + 2 as:

Cx̃k+2 = (C + O(h2))xk+1 − αCB∗(h)τk+2

= Cϕ∗
k(h) + O(h2)xk+1 − αCB∗(h)τk+2

(30)Thus (30) and τk+2 ∈ Sgn(Cx̃k+2) form a generalized equation whi
h possessesa unique solution be
ause αCB∗(h) is positive de�nite. We may rewrite it as:
0 ∈

1

α
(CB∗(h))−1Cx̃k+2 −

1

α
(CB∗(h))−1(Cϕ∗

k(h) + O(h2)xk+1) + Sgn(Cx̃k+2)(31)Therefore if 1
α
(CB∗(h))−1(Cϕ∗

k(h)+O(h2)xk+1) ∈ [−1, 1]m then Cx̃k+2 = 0is the unique solution of (31). From the proposition's assumptions one has
||(CB∗(h))−1(Cϕ∗

k(h)+O(h2)xk+1)||1 6 m
γ
||C|| hp ||D||ϕmax +δ(h2, M), where

δ(h2, M) is an upper bound for O(h2)xk+1. This upper bound depends only on
M , the system's matri
es, and h. It is therefore uniform with respe
t to thestep number k.

�Then Lemma 1 may be applied to show the disturban
e attenuation on thenominal system dis
rete-time sliding surfa
e.2.4 Numeri
al simulationsThe numeri
al simulations are obtained with the si
onos software pa
kage ofthe INRIA2 that is dedi
ated to non-smooth dynami
al systems. In order toreprodu
e the 
ontinuous-time nature of the plant, the plant dynami
s is inte-grated in all the simulations with the ma
hine pre
ision, whereas the 
ontrollersampling time is mu
h larger: h = 10−1s. This is equivalent to implementinga ZOH method. The disturban
e is taken as ϕ(t) = φ sin(ωt) and we simulatethe system in (10).The above developments are illustrated on �gure 2 with a = 1, α = 2, ω = 5and φ = 0.1. Illustrations are given on Figures 3 and 4 with a = 1, α = 2,
ω = 100 and φ = 0.1. The disturban
e attenuation is 
learly shown.3 Se
ond order systemsLet us now fo
us on a more general 
lass of systems and perform the samesteps as for the �rst order 
ase (a short re
all of the 
ontinuous-time 
ase, and2http://si
onos.gforge.inria.fr/RR n° 7326
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ontrol 15then the time-dis
retization). The simulations will be given after the theoreti
alpresentations.3.1 First-order sliding-mode stabilization with disturban
e
ompensation3.1.1 The 
ontinuous-time systemThe plant dynami
s is given by
ẍ(t) = u(t) + ϕ(x(t), t), (32)where x(t) ∈ IR is the state ve
tor, u(t) ∈ IR is the 
ontrol input. The distur-ban
e ϕ(x, t) ∈ IR represents the system un
ertainty and its in�uen
e on the
ontrol pro
ess should be reje
ted. It is assumed that ϕ(x, t) is an unknownfun
tion with an a priori known upper estimate ϕmax > 0 su
h that

|ϕ(x, t)| < ϕmax (33)for almost all x, t ∈ IR. The model repeats the stru
ture of the plant and isgiven by:
¨̂x(t) = u(t) + v(t), (34)where v(t) ∈ IR is the model input. The error dynami
s is then written asfollows:

ë(t) = −v(t) + ϕ(x(t), t), (35)where e = x − x̂ is the deviation of the model state from the plant state. Theerror dynami
s, driven by the sliding-mode input, is given by:
v(t) ∈ keė(t) + ksse(t) + Mvsgn(se(t)), (36)and it is globally asymptoti
ally stabilized provided that Mv > ϕmax and se =

ė + kee where ke and ks are positive 
onstants. To reprodu
e this 
on
lusion itsu�
es to rewrite the state equation for se, thus arriving at the equation
ṡe(t) ∈ −ksse(t) − Mvsgn(se(t)) + ϕ(x(t), t), (37)whi
h has s∗e = 0 as its unique �xed point, whi
h is globally �nite-time stable.Thus, by the equivalent 
ontrol method one has that:

veq(t) = ϕ(x(t), t) (38)on the surfa
e se = 0 and it is expe
ted that the 
ontrol law
u ∈ −v − Mxsgn(sx) − kxẋ, (39)with sx = ẋ + kxx, asymptoti
ally 
ompensates for the disturban
e ϕ(x, t).Indeed, on
e the sliding mode o

urs on the surfa
e se = 0, the plant equationtakes the disturban
e-free form







ṡx(t) ∈ −Mxsgn(sx(t)) − keė(t)

ė(t) = −kee(t).
(40)RR n° 7326



Chattering-free digital sliding-mode 
ontrol 16be
ause on this sliding surfa
e one has Mvsgn(se(t)) = ϕ(x(t), t). Sin
e thedynami
s (40) has s∗x = 0 as a globally asymptoti
ally stable �xed point, thedesired disturban
e 
ompensation is thus provided. Summarizing, the followingresult, guaranteeing the global asymptoti
 stability of the 
losed-loop system,is obtained. Let us denote by z the state ve
tor z = [e se x sx]T . The 
oupledplant/error dynami
s in the 
losed-loop system is given by:


















































ż(t) =











−ke 1 0 0

0 −ks 0 0

0 0 −kx 1

−ke −ks 0 0











z(t) −











0 0

Mv 0

0 0

Mv Mx











τ(t) +











0

ϕ(x(t), t)

0

ϕ(x(t), t)











τ(t) ∈ Sgn([ 0 1 0 0

0 0 0 1

]

z(t)

)

, (41)It is noteworthy that the (e se) subdynami
s is de
oupled from the (x sx)subdynami
s.Proposition 4 Consider the 
losed-loop system (41) with positive gains ke, ks, Mx, Mvand an external disturban
e ϕ(x, t) su
h that (33) holds for almost all x ∈ IR,
t ∈ IR and Mv > ϕmax. Then after a �nite time, this system evolves in thesliding mode along the surfa
es se = 0 and sx = 0, and along these surfa
es,the system dynami
s is governed by the asymptoti
ally stable, disturban
e-freeequations (40).The proof of Proposition 4 is rather standard [27℄ and it is therefore omitted.The parameter subordination kv >> kx ensures a faster 
onvergen
e of the errordynami
s 
ompared to the state variables of the plant whereas the 
ontrollermagnitude Mx is required to be positive only. As a matter of fa
t, the higher
Mx the higher the plant 
onvergen
e rate.3.1.2 The ba
kward Euler time-dis
retizationLet us pro
eed with the same dis
retization as in the above �rst-order examples.For this let us 
onsider the �rst error dynami
s in (37), and dis
retize it on
[tk, tk+1) as:















s̃e,k+1 = se,k − hksse,k − hMvτ1,k+1

τ1,k+1 ∈ sgn(s̃e,k+1)
se,k+1 = se,k − hksse,k − hMvτ1,k+1 + hϕ(xk+1, tk+1)
ek+1 = ek + hėk+1

(42)for all k > 0. The �rst two lines are a generalized equation with unknown s̃e,k+1,whi
h we may rewrite as 0 ∈ F (s̃e,k+1) for some multifun
tion F : IR → 2IR.It has a unique solution sin
e the sign multifun
tion is maximal monotone and
F (·) is 2-monotone as the sum of a monotone and a 2-monotone multifun
tions(see De�nition 2.3.1 and Theorem 2.3.3 in [10℄, and Exer
ise 12.4 in [26℄). Noti
ethat if s̃e,k+1 = 0 then (1 − hks)se,k = hMvτ1,k+1 and se,k+1 = hϕ(xk+1, tk+1).Also τ1,k+1 is a fun
tion of se,k only, that is of ėk = ek−ek−1

h
and ek. So there isRR n° 7326



Chattering-free digital sliding-mode 
ontrol 17not an exa
t 
ompensation as in the 
ontinuous-time 
ase, but a disturban
e-attenuation by a fa
tor h. Noti
e that (42) is exa
tly (4), repla
ing xk by
(1 − hks)se,k, −a by −Mv. Hen
e the 
on
lusions of Proposition 1 hold for(42). We infer that after a �nite number of steps k0, one obtains s̃e,k = 0 and
se,k = hϕ(xk+1, tk+1) so that |se,k| < hϕmax for all k > k0 for some �nite k0.The next result 
hara
terizes the evolution of ek on the sliding surfa
e s̃e,k =
0.Lemma 2 Suppose that the sliding surfa
e Σ̃e = {s̃e,k ∈ IR | s̃e,k = 0} isattained at k = k0 and that the system stays on it. Take for simpli
ity k0 = 0.Then:

ek+1 = (1 + hke)
−k−1e0 + h2(1 + hke)

−1
k
∑

i=0

(1 + hke)
i−kϕ(xi, ti). (43)Proof: One has ek = ek−1 + hėk and se,k = ėk + keek. We infer that

ek = (1 + hke)
−1ek−1 + (1 + hke)

−1h2ϕk+1 (44)from whi
h (43) follows.
�Noti
e that if we implement ek+1 = ek + hėk then we obtain ek = (1 −

hke)ek−1 + h2ϕk and similar 
al
ulations may be done, using the fa
t that for
h > 0 small enough 0 < 1 − hke < 1. Therefore on the sliding surfa
e thedis
rete-time error is the sum of an asymptoti
ally vanishing term, plus a termthat depends on the disturban
e, attenuated by a fa
tor h2. The se
ond part ofthe error dynami
s in (40) is now dis
retized as follows:














s̃x,k+1 = sx,k − hkeėk − hksse,k − hMvτ1,k+1 − hMxτ2,k+1

τ2,k+1 ∈ sgn(s̃x,k+1)
sx,k+1 = sx,k − hkeėk − hksse,k − hMvτ1,k+1 − hMxτ2,k+1 + hϕ(xk+1, tk+1)
xk+1 = xk + hẋk+1 (45)Noti
e that if k > k0 then (1−hks)se,k = hMvτ1,k+1 and se,k = hϕ(xk+1, tk+1).For k > k0 the system evolves on the sliding surfa
e s̃e,k = 0 and we obtain:







s̃x,k+1 = sx,k − hϕ(xk+1, tk+1) − hMxτ2,k+1

τ2,k+1 ∈ sgn(s̃x,k+1)
sx,k+1 = sx,k − hkeėk − hMxτ2,k+1

(46)From (43) we infer that hkeėk = ǫk +h2αk where |αk| 6 ϕ0

∑k
i=0(1+hke)

i−k−1and ǫk is exponentially de
reasing sin
e 1 + hke > 1. It follows also that |αk|is upper bounded by a 
onstant not depending on k and we may write |αk| 6

αϕmax for some 
onstant α. We therefore rewrite (46) as






s̃x,k+1 = sx,k − hϕ(xk+1, tk+1) − hMxτ2,k+1

τ2,k+1 ∈ sgn(s̃x,k+1)
sx,k+1 = sx,k − ǫk − h2αk − hMxτ2,k+1.

(47)It is noteworthy that (47) is similar to (14) and to (4) ex
ept for the expo-nentially de
aying term ǫk. Thus the following holds, whi
h shows that thedisturban
e e�e
ts are still attenuated by a fa
tor h:RR n° 7326
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ontrol 18Proposition 5 Consider the dis
rete-time system (47) that represents the sys-tem's dynami
s on the sliding surfa
e Σ̃e = {s̃e,k ∈ IR | s̃e,k = 0}, �.e. for
k > k0. Suppose that Mx > ϕmax. There exists k1 < +∞, k1 > k0, su
h thatfor all k > k1 one has s̃x,k = 0. Then |sx,k+1| 6 hϕmax + |ǫk| + h2αϕmax.Proof: The �rst part of the proof follows the same lines as the above proofsof �nite-time 
onvergen
es and is omitted. The se
ond part follows easily from(47) by imposing s̃x,k+1 = 0 and inserting the value of hMxτ2,k+1 into the thirdline of (47).

�The next result 
hara
terizes the dynami
s of xk on the sliding surfa
e x̃k =
0. For simpli
ity we take k1 = 0 in Proposition 5.Lemma 3 Suppose that for k > 0 the system evolves on the sliding surfa
e
s̃x,k = 0, so that (negle
ting terms in h2) |sx,k+1| 6 hϕmax + |ǫk|. Then
xk = (1+hkx)−1x0 −h(1+hkx)−1

k−1
∑

i=0

(1+hkx)−i(ǫk−1−i +h2αk−1−i +hϕk−i).(48)Proof: From sx,k+1 = 0 one easily derives:
xk+1 = (1 + hkx)−1xk − h(1 + hkx)−1(ǫk + h2αk + hϕk+1) (49)from whi
h (48) is dedu
ed. �The disturban
e is therefore attenuated by a fa
tor h2 on the state �position�

xk. Similarly to (21), using (1) we may rewrite the dis
rete-time 
losed-loopsystem as:






























sx,k+1 = sx,k − hkeėk − hksse,k − hMvτ1,k+1 − hMxτ2,k+1 + hϕ(xk+1, tk+1)
se,k+1 = se,k − hksse,k − hMvτ1,k+1 + hϕ(xk+1, tk+1)
xk+1 = xk + hẋk+1

ek+1 = ek + hėk+1

τ1,k+1 = proj([−1, 1];
se,k−hksse,k

hMv
)

τ2,k+1 = proj([−1, 1];
sx,k−hke ėk−hksse,k−hMxτ1,k+1

hMx
). (50)One has also se,k = ėk +keek, sx,k = ẋk +kxxk, so that xk+1 = (1+hkx)−1(xk +

hsx,k+1) and ek+1 = (1 + hke)
−1(ek + hse,k+1). The 
ontroller has a nested-proje
tion stru
ture and is easily implementable at time t = tk with the knowl-edge of xk, xk−1 and ek, ek−1.3.2 Position feedba
k stabilization of a double integratorLet us now pass to other types of sliding-mode dis
ontinuous 
ontrollers whi
hhave been proposed in the literature, known as the twisting and super-twistingalgorithms [11℄ [28, �3.6.2, 3.6.3℄. They possess advantages (�nite-time stabilityof the origin, better disturban
e attenuation), however their stability analysisis more intri
ate.RR n° 7326
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ontrol 193.2.1 Finite-time stabilizing state feedba
k synthesisTo begin with, we present a stati
 feedba
k 
ontroller that globally stabilizesthe double integrator:
ẋ(t) = y(t), ẏ(t) = u(t). (51)A feedba
k law u(x, y) is further referred to as �nite-time stabilizing if it rendersthe origin of the 
losed-loop system (51) a �nite-time stable equilibrium asde�ned in [22℄. The following state feedba
k

u = −µ sgn(y) − ν sgn(x) (52)with parameters ν > µ > 0 is proposed to globally stabilize the double integrator(51).Theorem 1 Consider the dynami
s of the 
losed-loop system in (51) (52). Thisdynami
s has a unique �xed point (x, y) = (0, 0) whi
h is globally �nite-timestable, provided that the 
ontroller parameters are su
h that ν > µ > 0.The proof may be found in the Example 3.2 and se
tion 4.6 of [22℄. Let usnow 
onsider the disturban
e-
orrupted version:
ẋ(t) = y(t), ẏ(t) = u(t) + ϕ(x(t), y(t), t) (53)and investigate the robustness properties of the 
losed-loop system (52), (53)against external disturban
es ϕ(x, y, t), being a lo
ally integrable fun
tion on allpotential traje
tories x(t), y(t). A

ording to [22, Theorem 4.2℄, the disturbedsystem in (52) (53) renders the system �nite-time stable, regardless of whi
heverdisturban
e ϕ(·) with a uniform upper boundess sup

t>0
|ϕ(x(t), y(t), t)| 6 ϕmax (54)on its magnitude su
h that

0 < ϕmax < µ < ν − ϕmax (55)a�e
ts the system. This robustness property is a
hieved due to the high fre-quen
y 
ontroller swit
hing in the sliding mode of the se
ond order that o

ursin the origin.Theorem 2 [22, Se
tion 4.6℄ Given µ and ν > 0, the 
losed-loop system in (52)(53) has a unique �xed point (x∗, y∗) = (0, 0) whi
h is globally asymptoti
ally�nite-time stable, regardless of whi
hever disturban
e ϕ(·), satisfying (54) and(55), a�e
ts the system.Let us propose the following impli
it Euler time-dis
retization, where ϕk+1
∆
=

ϕ(xk+1, yk+1, tk+1):






























x̃k+1 = xk + hỹk+1

ỹk+1 = yk − hντ1,k+1 − hµτ2,k+1

τ1,k+1 ∈ sgn(x̃k+1)
τ2,k+1 ∈ sgn(ỹk+1)
xk+1 = xk + hyk+1

yk+1 = yk − hντ1,k+1 − hµτ2,k+1 + hϕk+1,

(56)RR n° 7326



Chattering-free digital sliding-mode 
ontrol 20from whi
h it follows applying (1) to the se
ond and the fourth lines of (56)that
τ2,k+1 = proj([−1, 1];

yk − hντ1,k+1

hµ
). (57)The dis
rete-time system in (56) is still 
onstru
ted along the same lines asthe ones in the foregoing se
tions: one 
omputes the input from a nominalunperturbed system (the �rst four lines of (56)) and then one inje
ts the 
om-puted input into the plant dynami
s (the last two lines of (56)). However thistime there is no de
oupling between the x̃k−dynami
s and the ỹk−dynami
s.Let us now 
al
ulate the 
ontrol input. One has ỹk+1 = yk − hντ1,k+1 −

hµproj([−1, 1];
yk−hντ1,k+1

hµ
). Therefore ỹk+1 = yk−hντ1,k+1−proj([−hµ, hµ]; yk−

hντ1,k+1). Thus three �modes� are possible:� (i) if yk −hντ1,k+1 > hµ one gets ỹk+1 = yk −hντ1,k+1 −hµ, yk+1 = yk −
hντ1,k+1−hµ+hϕk+1 and x̃k+1 = xk+h(yk−hντ1,k+1)−h2µ, xk+1 = xk+
h(yk −hντ1,k+1)−h2µ+h2ϕk+1. Also τ1,k+1 = 1

h2ν
proj([−h2ν, h2ν]; xk +

hyk − h2µ), τ2,k+1 = 1.There are three sub-modes:� (i-1) let xk + hyk − h2µ > h2ν: then τ1,k+1 = 1, yk > h(ν + µ),
xk+1 = xk + hyk − h2(ν + µ)+ h2ϕk+1, yk+1 = yk − h(ν + µ + ϕk+1).� (i-2) let xk + hyk − h2µ < −h2ν: then τ1,k+1 = −1, yk > h(µ − ν),
xk+1 = xk + hyk + h2(ν −µ)+ h2ϕk+1, yk+1 = yk + h(ν −µ + ϕk+1).� (i-3) let |xk + hyk − h2µ| 6 h2ν: then xk < 0, τ1,k+1 = xk+hyk−h2µ

h2ν
,

xk+1 = h2ϕk+1, yk+1 = −xk

h
+ hϕk+1, x̃k+1 = 0, ỹk+1 = −xk

h
.� (ii) if yk−hντ1,k+1 < −hµ one gets ỹk+1 = yk−hντ1,k+1+hµ, yk+1 = yk−

hντ1,k+1+hµ+hϕk+1 and x̃k+1 = xk+h(yk−hντ1,k+1)−h2µ, xk+1 = xk+
h(yk −hντ1,k+1)+h2µ+h2ϕk+1. Also τ1,k+1 = 1

h2ν
proj([−h2ν, h2ν]; xk +

hyk + h2µ), τ2,k+1 = −1.There are three sub-modes:� (ii-1) let xk + hyk + h2µ > h2ν: then τ1,k+1 = 1, yk < h(ν − µ),
xk+1 = xk + hyk − h2(ν − µ − ϕk+1, yk+1 = yk + h(ν − µ − ϕk+1).� (ii-2) let xk +hyk +h2µ < −h2ν: then τ1,k+1 = −1, yk < −h(ν +µ),
xk+1 = xk + hyk + h2(ν + µ + ϕk+1, yk+1 = yk + h(ν + µ + ϕk+1).� (ii-3) let |xk + hyk + h2µ| 6 h2µ: then τ1,k+1 = xk+hyk+h2µ

h2ν
, xk+1 =

h2ϕk+1, x̃k+1 = 0, yk+1 = −xk

h
+ hϕk+1, ỹk+1 = −xk

h
.� (iii) if |yk − hντ1,k+1| 6 hµ one gets ỹk+1 = yk − hντ1,k+1 − (yk −

hντ1,k+1) = 0, yk+1 = hϕk+1 and xk+1 = xk + h2ϕk+1. Also τ1,k+1 ∈sgn(xk), τ2,k+1 =
yk−hντ1,k+1

hµ
.One sees that the 
ontroller (τ1,k+1, τ2,k+1)

T is a 
ausal input at time t = tkand there is no singularity in τ1,k+1 as h tends to zero. In (i) and (ii) the valuefor τ1,k+1 is obtained from the generalized equation τ1,k+1 ∈ sgn(xk + hyk −
h2ντ1,k+1 − h2µ) and using (1). In all 
ases τ2,k+1 is obtained from (57).It is easily 
he
ked that (x∗, y∗) = (0, 0) is the unique �xed point of theunperturbed system (56) (take ϕk+1 = 0 in (56)). The next result holds.RR n° 7326



Chattering-free digital sliding-mode 
ontrol 21Lemma 4 Suppose ϕk ≡ 0. (a) Let |yk0
− hντ1,k0+1| 6 hµ and xk0

= 0 forsome k0 > 0. Then |yk−hντ1,k+1| 6 hµ for all k > k0, so that xk+1 = yk+1 = 0for all k > k0. (b) If xk0
= yk0

= 0 for some k0 > 0, then xk = yk = 0 and
|yk − hντ1,k+1| 6 hµ for all k > k0.Proof: (a) From (iii) above it follows that |yk0

− hντ1,k0+1| 6 hµ and
xk0

= 0 imply yk0+1 = xk0+1 = 0. Therefore |yk0+1 − hντ1,k0+2| = hν|τ1,k0+2|.Now suppose that hν|τ1,k0+2| > hµ, one obtains from (i) and (ii) that τ1,k0+2 =
1

h2ν
proj([−h2ν, h2ν]; xk0+1 + hyk0+1 ± h2µ) = 1

h2ν
proj([−h2ν, h2ν];±h2µ) = µ

νsin
e µ < ν. So indeed |yk0+1−hντ1,k0+2| = hµ, a 
ontradi
tion. It follows that
hν|τ1,k0+2| 6 hµ and therefore |yk0+1−hντ1,k0+2| 6 hµ and xk0+2 = yk0+2 = 0.Now xk0+2 = xk0+1 = 0. We 
an repeat the reasoning at the next step and (a)is proved. (b) From xk = yk = 0 we dedu
e that xk+1 = hyk+1 and yk+1 =
−hντ1,k+1 − hµτ2,k+1. Also τ1,k+1 ∈ sgn(−hντ1,k+1 − hµτ2,k+1) form whi
h weinfer that τ1,k+1 = proj([−1, 1];−µ

ν
τ2,k+1) while τ2,k+1 = proj([−1, 1];− ν

µ
τ1,k+1).Sin
e µ < ν it follows that τ1,k+1 = −µ

ν
τ2,k+1. Also | ν

µ
τ1,k+1| 6 1 so that

|τ1,k+1| 6
µ
ν

< 1. Hen
e sin
e τ1,k+1 ∈ sgn(xk+1) ne
essarily xk+1 = 0. Fromthe fa
t that xk+1 = hyk+1 it follows that yk+1 = 0. The reasoning 
an berepeated at the next step. Furthermore it easily follows that |τ1,k+1| 6
µ
ν
sopart (b) is proved.
�Lemma 4 says that (in the unperturbed 
ase), on
e the system has rea
hedthe �xed point it stays on it without any spurious os
illations. This is aninteresting property of impli
it Euler s
hemes [1℄. The lemma shows also thatmode (iii) is the unperturbed system's mode at the equilibrium point. Thefollowing results 
hara
terize the disturban
e attenuation on the nominal systemsliding mode.Proposition 6 Suppose that x̃k+1 = 0 and ỹk+1 = 0. Then yk+1 = hϕk+1 and

xk+1 = h2ϕk+1. Therefore |yk+1| 6 hϕmax and |xk+1| 6 h2ϕmax.Proof: From the �rst line of (56) it follows that xk = 0. From the thirdand last lines one has yk+1 = hϕk+1. From the �fth line it follows that xk+1 =
h2ϕk+1.

�There is however a major di�eren
e between (56) and the systems in theforegoing se
tions. Indeed the 
onditions of Proposition 6 
an hold only atone time step. Assume that x̃k+1 = ỹk+1 = 0. Then xk+1 = h2ϕk+1 and
yk+1 = hϕk+1, so that x̃k+2 = xk+1 +hỹk+2 implies ỹk+2 = −hϕk+1. One mustre�ne Proposition 6.Proposition 7 Suppose that x̃k+1 = 0 for some k > 0. Then xk+1 = h2ϕk+1.Moreover if x̃k+1 = 0 for all k > 0, then yk+1 = h(ϕk+1 − ϕk) and ∑n

k=1 yk =
h(ϕn − ϕ0), while ỹk+1 = −hϕk for all k > 0.Proof: Let x̃k+1 = 0. Then xk = −hỹk+1. Thus −hỹk+1 = xk = −hyk +
h2ντ1,k+1 + h2µτ2,k+1, so that xk + hyk = h2ντ1,k+1 + h2µτ2,k+1. Thus xk+1 =
xk + hyk − h2ντ1,k+1 − h2µτ2,k+1 + h2ϕk+1 = h2ϕk+1. Now we have x̃k+1 = 0implies xk+1 = h2ϕk+1 and x̃k+2 = 0 implies xk+2 = h2ϕk+2. Thus xk+2 =
xk+1 +hyk+1 = h2ϕk+1 +hyk+1 = h2ϕk+2 so that yk+1 = h(ϕk+2 −ϕk+1). TheRR n° 7326



Chattering-free digital sliding-mode 
ontrol 22same 
an be done for the next step if x̃k+3 = 0. The sum immediately follows.Finally yk+1 = h(ϕk+1 − ϕk) = ỹk+1 + hϕk+1 so that ỹk+1 = −hϕk.
�Propositions 6 and 7 show that the disturban
e attenuation holds for (56),however the nominal system's traje
tories 
annot slide along both x̃k = 0 and

ỹk = 0.Remark 2 The di�erential in
lusions in (3), (10), (41) and (52) (53) are writ-ten more 
ompa
tly as:






ż(t) = Az(t) − Bτ(t) + Φ(z(t), t)

τ(t) ∈ Sgn(Cz(t)),
(58)with obvious de�nitions of z, A, B, C and Φ(·). The results in [1℄ do not applyto (10), (41) and (52) (53) be
ause the �input-output� 
ondition PB = CT with

P = PT > 0 that is 
entral in [1℄ is not satis�ed for these systems. This meansthat the underlying maximal monotoni
ity arguments whi
h allow one to draw
on
lusions about the 
onvergen
e in [1℄, are absent in (10), (41) and (52) (53).The same applies to (53) (59) (64). Finally the twisting algorithm is more
omplex than (10) and (41) be
ause it is the equilibrium that is rea
hed in �nitetime, not a 
odimension one sliding surfa
e that allows one to treat the problemas a two-stage problem.3.2.2 Finite-time velo
ity observer designThe fo
us of the present study is on the stability analysis of the velo
ity observerof the supertwisting observer






˙̂x(t) = ŷ(t) + k1|x(t) − x̂(t)|
1
2 sgn(x(t) − x̂(t)) + k2(x(t) − x̂(t)),

˙̂y(t) ∈ u(t) + k3sgn(x(t) − x̂(t)) + k4(x(t) − x̂(t)),

(59)that was �rst proposed in [8℄ with k2, k4 = 0 and is now augmented with non-trivial linear gains k2, k4 > 0. Clearly, the observation error e = (e1 e2)
T , e1 =

x − x̂, e2 = y − ŷ between the state of the double integrator (51) and that ofthe velo
ity observer (59) proves to be governed by the following se
ond-ordersystem






ė1(t) ∈ e2(t) − k1

√

|e1(t)|sgn(e1(t)) − k2e1(t)

ė2(t) ∈ −k3sgn(e1(t)) − k4e1(t).
(60)The following result is extra
ted from [21, 23℄.Theorem 3 Given k1, k3 > 0, k2, k4 > 0, the system (60) is globally �nite-timestable.In the rest of this se
tion, we 
arry out the subordination for the observergains ki, i = 1, 2, 3, 4 that ensures the robustness of the perturbed dynami
s:







ė1(t) = e2(t) − k1

√

|e1(t)|sgn(e1(t)) − k2e1(t)

ė2(t) = ϕ(x(t), y(t), t) − k3sgn(e1(t)) − k4e1(t).
(61)RR n° 7326



Chattering-free digital sliding-mode 
ontrol 23As a matter of fa
t, this dynami
s 
orresponds to the observation errors e =
(e1 e2)

T , e1 = x − x̂, e2 = y − ŷ between the state of the velo
ity observer(59) and that of the double integrator (53), a�e
ted by an admissible externaldisturban
e.Theorem 4 Let the system (61) be a�e
ted by a uniformly bounded disturban
e(54). Furthermore, let the system gains be su
h that
k1, k3 > 0, k2, k4 > 0, if k4 = 0 then k2 = 0. (62)Then the system (61) is globally �nite-time stable whenever the upper bound

ϕmax on the magnitude of the external disturban
e ϕ(x, y, t) meets the 
ondition
ϕmax < min{

k1

2
,

k1k3

1 + k1
}. (63)The proof of Theorem 4 follows the same line of reasoning as that proposed in[21, 23℄ and it is therefore omitted.3.2.3 Finite-time stabilizing position feedba
k synthesisIn this se
tion, we pro
eed with the design of the position feedba
k, stabilizingthe double integrator in �nite time. For this purpose, we substitute the velo
ityestimate ŷ in the state feedba
k (52) for y and, if desired, augment the resulting
ontrol law with the term k3sgn(e1) that 
ompensates the disturban
e w on thesliding manifold e1 = e2 = 0, to arrive at the �nite-time stabilizing positionfeedba
k law:

u ∈ −µ sgn(ŷ) − ν sgn(x), (64)(or at that
u ∈ −µ sgn(ŷ) − ν sgn(x) − k3 sgn(e1) (65)with the disturban
e 
ompensating term). Then the 
losed-loop system (53)(59), driven by (64) (or by (65), respe
tively) proves to be globally �nite-timestable regardless of whi
hever admissible disturban
e a�e
ts the system.Theorem 5 Let the system (53) be a�e
ted by a uniformly bounded distur-ban
e (54) and let it be driven by the observer-based dynami
 feedba
k (59) (64)(respe
tively (65)) with positive 
ontroller gains µ, ν subje
t to (55), and withobserver parameters ki, i = 1, 2, 3, 4, satisfying 
onditions (62) (63). Then the
losed-loop system (53) (59) (64) is globally �nite-time stable.Proof: the 
losed-loop system (53) (59) (64) rewritten in terms of the ob-servation error (61), meets the 
onditions of Theorem 4. By applying Theorem4 to the observation error system (61), we 
on
lude that starting from a �nitetime instant T , the 
losed-loop system evolves on the manifold e = 0 where

ŷ = y, thereby ensuring that the position 
ontrol signal (64) 
oin
ides with thestate feedba
k signal (52). To 
omplete the proof it remains to apply Theorem 2to (53) (59) (64) for t > T when the position feedba
k equals the state feedba
k.RR n° 7326



Chattering-free digital sliding-mode 
ontrol 24The global asymptoti
 stability of the 
losed-loop system (53) (59) (64) is thusestablished. �The system in (53) (64) and (59) is dis
retized as follows:






































x̃k+1 = xk + hỹk+1

ỹk+1 = yk − hµτ2,k+1 − hντ1,k+1

x̂k+1 ∈ x̂k + hk1|xk − x̂k|
1
2 sgn(x̃k+1 − x̂k+1) + hk2(x̃k+1 − x̂k+1) + hŷk+1

ŷk+1 ∈ ŷk − hµτ2,k+1 − hντ1,k+1 + hk3sgn(x̃k+1 − x̂k+1) + hk4(x̃k+1 − x̂k+1)
xk+1 = xk + hyk+1

yk+1 = yk − hµτ2,k+1 − hντ1,k+1 + hϕk+1

τ1,k+1 ∈ sgn(x̃k+1), τ2,k+1 ∈ sgn(ŷk+1) (66)Lemma 5 The unperturbed dis
rete-time multivalued system (66) possesses theunique equilibrium point (x̃∗, ỹ∗, x̂∗, ŷ∗, x∗, y∗)T = (0, 0, 0, 0, 0, 0)T .Proof: re
all that in the unperturbed 
ase we may 
onsider that x̃k = xkand ỹk = yk for all k. From the �rst line of (66) it follows that x∗ = x∗ +
hy∗ ⇒ y∗ = 0. From the se
ond line one has y∗ = y∗ − hµτ∗

2 − hντ∗
1 , sothat µτ∗

2 + ντ∗
1 ∋ 0 ⇔ 0 ∈ sgn(x∗) + ν

µ
sgn(ŷ∗) whi
h is satis�ed if andonly if x∗ = ŷ∗ = 0 be
ause ν > µ from (55). From the third line x̂∗ =

x̂∗ +hk1

√

|x∗ − x̂∗|sgn(x∗− x̂∗)+hk2(x
∗− x̂∗)+hŷ∗ whi
h is equivalent to 0 ∈

k1

√

|x∗ − x̂∗|sgn(x∗− x̂∗)+k2(x
∗− x̂∗). The unique solution of this generalizedequation is x∗ = x̂∗, therefore x̂∗ = 0.

�Noti
e from the fourth and seventh lines of (66) that
τ2,k+1 = proj([−1, 1];

ŷk

h
− ντ1,k+1 + k3sgn(x̃k+1 − x̂k+1) + k4(x̃k+1 − x̂k+1)

µ
)(67)where (1) has been used. Similarly to the twisting algorithm we may determinethree main modes for (66):� (i) if ŷk

h
−ντ1,k+1 +k3sgn(x̃k+1− x̂k+1)+k4(x̃k+1− x̂k+1) > µ: τ2,k+1 = 1,

τ1,k+1 = proj([−1, 1];
yk−hµ+

xk
h

hν
), ỹk+1 = yk−hµ−hνproj([−1, 1];

yk−hµ+
xk
h

hν
);� (ii) if h ŷk

h
−ντ1,k+1+k3sgn(x̃k+1−x̂k+1)+k4(x̃k+1−x̂k+1) 6 −µ: τ2,k+1 =

−1, τ1,k+1 = proj([−1, 1];
yk+hµ+

xk
h

hν
), ỹk+1 = yk+hµ−hνproj([−1, 1];

yk+hµ+
xk
h

hν
);� (iii) if | ŷk

h
− ντ1,k+1 + k3sgn(x̃k+1 − x̂k+1) + k4(x̃k+1 − x̂k+1| < µ: thenone obtains τ2,k+1 =

ŷk
h

−ντ1,k+1+k3sgn(x̃k+1−x̂k+1)+k4(x̃k+1−x̂k+1)

µ
; let α =

1+h2k4+hk2

h2k3+hk1|xk−x̂k+1|
1
2

and β = xk−x̂k+hyk

h2k3+hk1|xk−x̂k+1|
1
2

, then x̃k+1−x̂k+1 = 1
α
(β−proj([−1, 1]; β); �nally

τ1,k+1 = proj([−1, 1];
xk+hyk−hµτ2,k+1

hν
);The de
omposition into sub-modes be
omes 
umbersome and is not done herefor the sake of paper's brevity. To provide an idea on how this works let us
al
ulate x̂k+1 in a sub-mode of mode (i). Let us 
onsider (i-1) su
h that

yk − hµ + xk

h
> hν. Then τ1,k+1 = 1. The 
ondition for the a
tivation of modeRR n° 7326



Chattering-free digital sliding-mode 
ontrol 25(i) thus boils down to ŷk

h
− ν + k3sgn(x̃k+1 − x̂k+1) + k4(x̃k+1 − x̂k+1) > µ,whi
h is equivalent to k3sgn(x̃k+1 − x̂k+1) + k4(x̃k+1 − x̂k+1) > µ + ν − hŷk ⇔

x̃k+1−x̂k+1 > max(0,
ŷk
h

+µ+ν−k3

k4
). Then x̂k+1 = x̂k+hk1|xk−x̂k|

1
2 +hk2(x̃k+1−

x̂k+1) + hŷk+1. Sin
e τ2,k+1 = 1 we have x̃k+1 = xk + h(yk − hµ − hν) > 0 sothat x̂k+1 = x̂k +hk1|xk − x̂k|
1
2 +hk2(xk +hyk −h2µ−h2ν)−hk2x̂k+1 +hŷk+1,and ŷk+1 = ŷk − hµ − hν + hk3 + hk4(x̃k+1 − x̂k+1). Hen
e

(1 + hk2 + h2k4)x̂k+1 = x̂k + hk1|xk − x̂k|
1
2 + h(k2 + hk4)xk − h2(h2k4 + hk2 + 1)(µ + ν)

+h2(k2 + hk4)yk + hŷk. (68)The 
omputation of ŷk+1 is done in the same way, showing that the dis
rete-timeobserver dynami
s (the third, fourth and seventh lines of (66)) is 
ausal. Similar
al
ulations may be done for the sub-modes (i-2): yk − hµ + xk

h
< −hν, (ii-1):

yk + hµ + xk

h
> hν, (ii-2): yk + hµ + xk

h
< −hν, and so on. Let us now provethat the disturban
e attenuation holds on the nominal system sliding mode:Lemma 6 Suppose that x̃k+1 = 0, then xk+1 = h2ϕk+1. If x̃k+n = 0 for all

n > 1 then yk+n+1 = h(ϕk+n − ϕk+n−1).Proof: From (66) it follows that x̃k+1 = 0 ⇒ ỹk+1 = −xk

h
. Thus −xk

h
=

yk −hµτ2,k+1 − hντ1,k+1, so that yk+1 = yk −
xk

h
− yk +hϕk+1 = −xk

h
+ hϕk+1.Thus xk+1 = xk − hxk

h
+ h2ϕk+1 = h2ϕk+1. The se
ond part of the lemmafollows easily. �Remark 3 (Twisting 
ontrollers implementation) For both the twisting (se
-tion 3.2.1) and the super-twisting (se
tion 3.2.3) 
ontrollers, we have shown thatin all 
ases the inputs τ1,k+1 and τ2,k+1 
an be 
omputed from the knowledge ofthe state values at t = tk only. In pra
ti
e the 
ontroller may be 
omputed asfollows. Let zk

∆
= (x̃k ỹk x̂k ŷk)T and τk

∆
= (τ1,k τ2,k)T . Then the �rst four linesin (66) are rewritten 
ompa
tly as:

zk+1 = hFzk+1 + Gzk − hBτk+1 + hH(zk)Sgn(Czk+1)
m

zk+1 = (I4 − hF )−1[Gzk − hBτk+1 + hH(zk)Sgn(Czk+1)]
m

zk+1 = (I4 − hF )−1[Gzk + h
(

−B H(zk)
)Sgn(Dzk+1)]

(69)where the matri
es F , G, H(·), B, C, D 
an be easily identi�ed from (66).The generalized equation (69) with unknown zk+1 may be solved at ea
h stepusing a spe
i�
 iterative solver like those implemented in the software pa
kagesi
onos [1, 2, 3℄ (on Figure 1 this is the �generalized equation solver� blo
k).In the simulations of this paper Lemke's algorithm has been used. The 
ontrolalgorithms presented in this paper 
an therefore easily be implemented on-line.The same applies to (56).3.3 Numeri
al simulationsThe system in (50) is simulated with ϕ = ϕ(t) under the same 
onditions asthose of se
tion 2.4, with the software pa
kage si
onos. With ϕ(t) ≡ 0, theresults are depi
ted on Figure 5. With ϕ(t) = φ sin(ωt) φ = 0.1, ω = 5, theRR n° 7326
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(b) Sliding variable s(t)Figure 5: Simulation of (50) with ϕ(t) = 0.results are depi
ted on Figure 6. We have 
hosen ke = ks = 5 , kx = 1.5,
Mx = 1, Mv = 2. On Figure 6(
) and 6(d), sin
e τ1,k and τ2,k are inside (−1; 1),one noti
es that the sliding surfa
es se = 0 and sx = 0 are rea
hed in �nite timeas expe
ted from Proposition 4.The system in (66) is simulated with ϕ = ϕ(t) with the same 
onditionex
ept for the sampling time 
hosen as h = 10−2. The initial 
onditions are
x0 = 2, y0 = 6, x̂0 = 1, ŷ0 = 1. We have 
hosen µ = 1, ν = 2 and k1 = k2 =
k3 = k4 = 5. With ϕ(t) = φ sin(ωt) φ = 0.1, ω = 5, the results are depi
tedon Figure 7. On Figure 7(d), one noti
es again that the sliding surfa
es arerea
hed in �nite time as expe
ted in Theorem 5. The attenuation is shown onFigure 8 and we noti
e that e1,k = O(h2) and e2,k = O(h). It is worth notingthat the origin is attained after an in�nite number of events (the swit
hes of thesign fun
tions) in the 
ontinuous-time twisting 
ontrollers. This 
an be seen onFigures 7(b) and 7(d). Despite we have no 
onvergen
e proof for the dis
rete-time solutions of the twisting algorithms, it is known that a very ni
e feature ofba
kward Euler time-stepping methods is that they 
an handle a

umulationsRR n° 7326
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-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0  2  4  6  8  10

PSfragrepla
ementsi) i)ii)iii)iv)i)ii)ii)i)

(b) Control vs. time i) uk

-1.5

-1

-0.5

 0

 0.5

 1

 0  2  4  6  8  10

PSfragrepla
ementsi)i)ii)iii)iv) i)ii)
ii)i)

(
) Multiplier vs. time: i) τ1,k , ii) τ2,k

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  2  4  6  8  10

PSfragrepla
ementsi)i)ii)iii)iv)i)ii) ii)i)

(d) Sliding variable i) ii)Figure 6: Simulation of (50) with .
RR n° 7326



Chattering-free digital sliding-mode 
ontrol 28of events (Zeno phenomena), see e.g. [2, Chapters 1 and 10℄. For this reasonthey are sometimes 
alled event-
apturing methods.4 Con
lusionIn this paper a novel dis
rete-time implementation of sliding-mode 
ontrollersis proposed. It is based on an impli
it Euler method, and also applies to thezero-order holder dis
retization. The 
ontrollers are simple and take the form ofproje
tions on the interval [−1, 1], or may be 
omputed from simple quadrati
programs. Most importantly the dis
rete-time 
ontrollers are able to representthe intrinsi
 multivalued feature of their 
ontinuous-time 
ounterparts hen
eavoiding fast swit
hes and high-gain behaviours. The analysis shows that asmooth stabilization on the sliding surfa
es is obtained in the 
ase there is nodisturban
e (
hattering-free 
ontrollers), while when a disturban
e is presentits e�e
ts are attenuated by fa
tors h or h2. These properties are independentof the sampling period magnitude, whi
h 
an be large. The 
ontroller has theni
e property that the 
ontinuous-time and the dis
rete-time sliding surfa
esare the same. Many simulation results illustrate the theory. Future worksshould 
on
ern the proof of 
onvergen
e to the origin in a �nite number of stepsfor the dis
rete-time twisting and super-twisting algorithms (as a 
omplementto the numeri
al simulations presented in this paper), the extension towardsother sliding-mode 
ontrollers (like systems with mismat
hed un
ertainties),the numeri
al study of some optimal 
ontrol problems that take the form ofnonlinear variable-stru
ture systems [6℄, and experimental 
omparisons withexisting solutions for 
hattering redu
tion [5℄.Referen
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