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universityHard Real-Time Systems

Safety critical applications:
Avionics, automotive, train industries, manufacturing control

Sideairbag in car, Reaction in <10 mSec

Crankcraft-synchronous tasks,

Reaction in <45 µSec

Embedded controllers must finish
their tasks within given time bounds.
Developers would like to know the
Worst-Case Execution Time (WCET)
to give a guarantee
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universityHard Real-Time Systems

Embedded controllers are expected to finish their tasks reliably
within time bounds
Task scheduling must be performed
Essential: upper bound on the execution times of all tasks
statically known
Commonly called Worst-Case Execution Time (WCET)
Analogously, Best-Case Execution Time (BCET)
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the Application Domain

The Problem:

Given
1 a software to produce some reaction,
2 a hardware platform, on which to execute the software,
3 required reaction time.

Derive:
I a guarantee for timeliness.
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universityWhat does the execution time depends on?

the input—this has always been so and will remain so,
the initial state of the platform—this is (relatively new)

I Caused by caches, pipelines, speculation, etc.
I Explosion of the space of inputs and initial states
⇒ all exhaustive approaches infeasible

interferences from the environment—this depends on whether the
system design admits it (preemptive scheduling, interrupts,
multi-core)

I External interferences as seen from analyzed task
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x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 6 / 64



computer science

saarland
universityTiming Analysis

di
st

rib
ut

io
n

of
ex

ec
ut

io
n

tim
es

Exec-timeLB BCET WCET UB

Analysis-guaranteed timing bounds

Overest.
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IST Project DAEDALUS final review report:
"The AbsInt tool is probably the best kind in
the world and it is justified to consider this
result as a breakthrough."

Several time-critical subsystems of the airbus A380 have been certified using aiT;
aiT is the only validated tool for these applications.
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1995

Lim et al.

2002
Thesing et al.

2005
Souyris et al.
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The explosion of penalties has been
compensated by the improvement
of the analyses!
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Input
Executable
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Control-
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Loop
Bound
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Value
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Predictability: not a boolean property
Some performance-enhancing features, like certain

I Caches
I Pipelines

are analyzable, others are not...
Explore trade-offs between (worst-case )predictability,
(average-case) performance, and cost
Goal:
Design architectures with high worst-case performance
which can be precisely and efficiently determined
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Predictable cores are a prerequisite for predictable multi-cores
General problem: Sharing of resources

I Main memory, caches
I Busses
I I/O
I Flash memory
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1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core
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Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

“hit”
[ab]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops
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Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3?

“miss”
[ab]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops
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Bridge the gap between speed of CPU and main memory
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3 cycles

2 MB
100 cycles

c3? c?

“miss”
[ab]
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Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3? c = 〈c1c2c3c4〉!

“miss”
[ac]

Why caches work: principle of locality
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Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c4?

“hit”
[ac]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops
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Tag Block 
offset

Address:

B b
b

k s

log2(s) log2(8 ∗ b)

•
•
•

Tag Data Block

Tag Data Block
...

Tag Data Block

B b
b

k s

log2(s) log2(8 ∗ b) s

•
•
•

=?

No: 
Miss!

Yes: 
Hit! MUX

Data

= associativity
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...

B b
b

k s

log2(s) log2(8 ∗ b) s

•
•
•

Tag Index Block 
offset

Address:

B b
b

k s

log2(s) log2(8 ∗ b)

•
•
•

B b
b

k s

log2(s) log2(8 ∗ b)

•
•
•

Tag Data Block

Tag Data Block
...

Tag Data Block
Cache Set:

B b
b

k s

log2(s) log2(8 ∗ b) s

•
•
•

Tag Data Block

Tag Data Block
...

Tag Data Block
Cache Set:

=?

No: 
Miss!

Yes: 
Hit! MUX

Data
Special cases:

direct-mapped cache: only one line per cache set
fully-associative cache: only one cache set
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Least-Recently-Used (LRU) used in
INTEL PENTIUM I and MIPS 24K/34K

First-In First-Out (FIFO or Round-Robin) used in
MOTOROLA POWERPC 56X, INTEL XSCALE, ARM9, ARM11

Pseudo-LRU (PLRU) used in
INTEL PENTIUM II-IV and POWERPC 75X

Most-Recently-Used (MRU) as described in literature

Each cache set is treated independently:
−→ Set-associative caches are compositions of fully-associative caches.
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1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core
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Two types of cache analyses:

1 Local guarantees: classification of individual accesses
I May-Analysis −→ Overapproximates cache contents
I Must-Analysis −→ Underapproximates cache contents

2 Global guarantees: bounds on cache hits/misses

Cache analyses almost exclusively for LRU
In practice: FIFO, PLRU, . . .
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read
z

read
y

read
x

write
z

Always a cache hit/always a miss?

1. Initial cache contents unknown.

2. Different paths lead to these points.

3. Cannot resolve address of z.
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“Cache Miss”:

z
y
x
t

s

s
z
y
x

LRU has
notion of age

“Cache Hit”:

z
y
s
t

s

s
z
y

t
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Used to predict cache hits.
Maintains upper bounds on ages of memory blocks.
Upper bound ≤ associativity −→ memory block definitely cached.

Example

Abstract state:

{x}

{}

{s,t}

{}

age 0

age 3

. . . and its interpretation:

Describes the set of all concrete cache
states in which x , s, and t occur,

x with an age of 0,
s and t with an age not older than 2.

γ([{x}, {}, {s, t}, {}]) =
{[x , s, t ,a], [x , t , s,a], [x , s, t ,b], . . .}
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“Definite Cache Hit”:

{x}

{}

{s,t}

{}

s

{s}

{x}

{t}

{}

“Potential Cache Miss”:

{x}

{}

{s,t}

{}

z

{z}

{x}

{}

{s,t}

Why does t not age in the second case?
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Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}
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Used to predict cache misses.
Maintains lower bounds on ages of memory blocks.
Lower bound ≥ associativity

−→ memory block definitely not cached.

Example

Abstract state:

{x,y}

{}

{s,t}

{u}

age 0

age 3

. . . and its interpretation:

Describes the set of all concrete cache states in
which no memory blocks except x , y , s, t , and
u occur,

x and y with an age of at least 0,
s and t with an age of at least 2,
u with an age of at least 3.

γ([{x , y}, {}, {s, t}, {u}]) =
{[x , y , s, t ], [y , x , s, t ], [x , y , s,u], . . .}
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“Definite Cache Miss”:

{x}

{}

{s,t}

{y}

z

{z}

{x}

{}

{s,t}

“Potential Cache Hit”:

{x}

{}

{s,t}

{y}

s

{s}

{x}

{}

{y,t}

Why does t age in the second case?
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Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Union + Minimal Age”

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e}

{f}

{d}
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Amount of uncertainty determines precision of WCET analysis
Uncertainty in cache analysis depends on replacement policy

execution
time

BCET ACET WCET upper
bound

uncertainty
×

penalty
variation due to inputs

and initial hardware state
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read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=⇒ Amount of uncertainty determined
by ability to recover information
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Evict
Fill

[dex]
[fde]

[gfd ]

[hgf ][fec]

[gfe]

[fed ]

Sequence: 〈a, . . . , e, f, g, h〉
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Evict
I Number of accesses to obtain any may-information.
I I.e. when can an analysis predict any cache misses?

Fill
I Number of accesses to complete may- and must-information.
I I.e. when can an analysis predict each access?

−→ Evict and Fill bound the precision of any static cache analysis.
Can thus serve as a benchmark for analyses.
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LRU “forgets” about past quickly:
I cares about most-recent access to each block only
I order of previous accesses irrelevant

?
?
?
?

a
a
?
?
?

b

b
a
?
?

c

c
b
a
?

d

d
c
b
a

In the example: Evict = Fill = 4
In general: Evict(k) = Fill(k) = k , where k is the associativity of
the cache
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Like LRU in the miss-case
But: “Ignores” hits

?
a
b
c

a

?
a
b
c

b

?
a
b
c

c

?
a
b
c

d

d
?
a
b

In the worst-case k − 1 hits and k misses: (k = associativity)
−→ Evict(k) = 2k − 1
Another k accesses to obtain complete knowledge:
−→ Fill(k) = 3k − 1
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Policy Evict(k) Fill(k) Evict(8) Fill(8)
LRU k k 8 8
FIFO 2k − 1 3k − 1 15 23
MRU 2k − 2 ∞/3k − 4 14 ∞/20
PLRU k

2 log2 k + 1 k
2 log2 k + k − 1 13 19

LRU is optimal w.r.t. metrics.
Other policies are much less predictable.

−→ Use LRU if predictability is a concern.

How to obtain may- and must-information within the given limits for
other policies?
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universityMeasurement-Based Timing Analysis

Run program on a number of inputs and
initial states.
Combine measurements for basic blocks
to obtain WCET estimation.
Sensitivity Analysis demonstrates this
approach may be dramatically wrong.
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execution
time

BCET WCET upper
bound

variation due to
initial cache state

Definition (Miss sensitivity)

Policy P is (k , c)-miss-sensitive if

mP(q, s) ≤ k ·mP(q′, s) + c

for all access sequences s ∈ M∗ and cache-set states q,q′ ∈ CP.
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Policy 2 3 4 5 6 7 8
LRU 1,2 1,3 1,4 1,5 1,6 1,7 1,8

FIFO 2,2 3,3 4,4 5,5 6,6 7,7 8,8
PLRU 1,2 − ∞ − − − ∞
MRU 1,2 3,4 5,6 7,8 MEM MEM MEM

LRU is optimal. Performance varies in the least possible way.
For FIFO, PLRU, and MRU the number of misses may vary
strongly.
Case study based on simple model of execution time by
Hennessy and Patterson (2003):
WCET may be 3 times higher than a measured execution time
for 4-way FIFO.
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universityCaches: Summary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
−→ LRU is the most predictable policy.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.
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Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
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2 Predictability of architectures
Pipeline Analysis
Timing anomalies
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Why multi-core?
Predictable multi-core
Analysis of current multi-core
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Cyclewise evolution of processor model

Ba
sic

 B
lo

ck

Instruction
Instruction

Cycle semantics:
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instruction MUL

Fetch
I-cache miss?

Issue
Unit occupied?

Execute
Multicycle?

Retire
Pending instructions?

30

1
3

1
3 6
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Abstract Domain of Pipeline Analysis
I Power set domain

F Elements: sets of states of a state machine
I Join: set union

Pipeline Analysis
I Manipulate sets of states of a state machine
I Store sets of states to detect fixpoint
I Forward state traversal
I Exhaustively explore non-deterministic choice
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When local worst-case does not lead to the global worst-case

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

A

A

Cache Miss

Cache Hit

C

Branch Condition 
Evaluated

Prefetch B - Miss C

Scheduling anomaly. Speculation anomaly.
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One event triggers another one which triggers another one...
Unbounded effect of a timing accident

⇒ Always analyse all cases
⇒ Particularly, there doesn’t exist an upper-bound on a delay is not

representing the worst-case:
→ All possible delays to access a shared ressource
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Timing compositional
I No timing anomalies
I e. g., ARM7

Compositional with bounded effects
I Timing anomalies but no domino effects
I e. g., TriCore (probably)

Non-compositional architectures
I Timing anomalies, domino effects
I e. g., PPC 755

from Wilhelm et al.: Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-critical Embedded Systems, IEEE TCAD, July 2009
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Applications
I AUTOSAR
I IMA

Behavior of the system
I Compositionality:

Composition of components
I Composability:

Behavior of each components should not change by the
composition
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PROMPT

Minimise sharing in multi-processor architectures:
Interferences might be huge (bus contention, cache pollution)
Huge overestimation when analysis is possible

I Set of tasks that might be executed in parallel
I Cache contents

PROMPT (PRedictability Of Multi-Processor Timing)
Start with a generic, parameterisable architecture with predictable
(fully timing compositional) cores
Instantiate architecture for given set of applications, based on their
resource requirements
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Design Principles

Simplification of individual components
Elimination of interferences on shared resources:

I Wherever it is not absolutely needed
I Private resources for private uses
I Shared resource for global state

⇒ Delays for accesses to the shared global state
I Determination of delays, or
I Cumulative analyses of WCET, bus arbiter and scheduling
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Design guidelines

single Fully timing compositional architectures
I delay bounded by a constant:

access to shared resources, preemptions

single Disjoint instruction and data caches
single Caches with LRU
multi A shared bus protocol with bounded access delay
multi Private caches
multi Private memories, or, only share the lonely resources
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MPC5668G - An automotive processor

e200z0
No Cache

e200z6
32KB
Cache

AMBA crossbar switch (AXBS)

FLASH
2MB

SRAM A
80KB

SRAM B
512KB

Peripherals
e.g. CAN
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MPC8641D - An avionics processor

e600
32KB L1 Cache
1MB L2 Cache

e600
32KB L1 Cache
1MB L2 Cache

MPX Bus

MPX Coherency
Module

DDR SDRAM
Controller

DDR SDRAM
Controller

Ethernet
Controller
Ethernet
Controller

Peripherals
e.g. PCI
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Static timing analysis
I Efficiency and precision
I Strongly depends on the architecture

Caches
I predictabiliy and sensitivity metrics
I LRU is the most predictable policy

Timing analysis of multi-core
I Hard but possible
I Predictable multi-core: less complexity and more precise results

Recommendations for the design of multi-core
I Predictable single-core
I Sharing only if needed
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Embedded SystemsEmbedded Systems
Information processing system that is physically 

embedded within a larger system

ABS
gear box entertainment

motor control

climate control
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Big PictureBig Picture

Large-scaleCentralized Networked Large scale
Distributed Systems

Centralized
Systems

Networked
Systems

New Applications and
System Paradigms

Internet
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Analysis and DesignAnalysis and Design 

Embedded System =  
Computation + Communication + Resource Interaction

Analysis: 
I f t ti fInfer system properties from 
subsystem properties.

Design: 
Build a system from subsystemsBuild a system from subsystems 
while meeting requirements.
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System CompositionSystem Composition
Communication Templates Computation Templates

DSP
SDRAM ECU

C CAN
interface

RISC

Scheduling and Arbitration
Templates

Architecture

proportional
shareWFQ

EDF
TDMA

FCFS

RISCSDRAM

priority

EDF

shareWFQ

staticdynamic
fixed priority

FCFS

ECU

priority

ECU

13Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory  

ECU ECU



Why Performance Analysis ?Why Performance Analysis ?

Prerequisite for design space exploration (design decisionsPrerequisite for design space exploration (design decisions 
and optimization)
 part of the feedback cyclepart of the feedback cycle
 get inside into design characteristics and bottlenecks
 support early design decisionspp y g

Design validationg
 verify system properties
 used at various design stages from early design until final 

implementation
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Distributed Embedded SystemDistributed Embedded System

Input
Stream

PDSP

Input I/O I/OStream I/O I/O

Computational Resources ...
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Distributed Embedded SystemDistributed Embedded System

Input
Stream

PDSP

Input I/O I/OStream I/O I/O

Computational Resources ...

... Communication Resources ...
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Distributed Embedded SystemDistributed Embedded System

Input
Stream

mP

Input I/OStream I/O

Computational Resources ...

... Communication Resources ...

Tasks

17Swiss Federal
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Why Is Evaluation Difficult ?Why Is Evaluation Difficult ?
Non-determinism:
 uncertain system environment, e.g. load scenarios
 (non-deterministic) computations in processing nodes

Interference: 
 sharing exclusive resources (scheduling and arbitration)
 interaction between resource types: exclusive 

(computation, communication) and shared (energy)
Long-term dependencies
 resource feedback: internal data streams interact on 

l i hi h i t h texclusive resources which in turn change stream 
characteristics
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DifficultiesDifficulties

ProcessorProcessor
Task

ab acc b
BufferInput

Stream

ab   acc   b

Stream

Task Communication Variable Resource AvailabilityTask Communication
Task Scheduling
Complex Input:

Variable Resource Availability
Variable Execution Demand
- Input (different event types)Complex Input:

- Timing (jitter, bursts, ...)
- Different Event Types

- Input (different event types)
- Internal  State (Program, Cache, ...)
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System-Level Evaluation Methods

e g delay

System Level Evaluation Methods

e.g. delay

Worst-Case

Real System

Best-Case

Measurement Simulation Worst CaseProbabilisticReal System Measurement Simulation Worst Case
Analysis

Probabilistic
Analysis
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Overview

System

Overview

Measurements Formal Analysis StatisticsSimulation

Develop a 
mathematical

Develop a 
program whichUse existing

Develop a 
statisticalmathematical 

abstraction of the 
system and 

derive formulas 

program which 
implements a 
model of the 

system. Perform 

Use existing 
instance of the 

system to 
perform 

statistical 
abstraction of the 

system and 
derive statistic de e o u as

which describe 
the system 

performance.

syste e o
experiments by 

running the 
program.

pe o
performance 

measurements.

de e stat st c
performance via 

analysis or 
simulation.
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Performance Estimation MethodsPerformance Estimation Methods
component
simulation

designers
experience

model of

p

model of system

input
traces

application

model of

data
sheets

model of
environment

system
model

spec. of
inputs

model of
architecture

platform 
benchmarks

estimation 
tool (method)

estimation
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Formal Analysis - Dynamic ModelsFormal Analysis Dynamic Models
Combination between
 Static models possibly extended by non-determinism in run-

time and event processing
D i d l f d ibi h i Dynamic models for describing e.g. resource sharing 
mechanisms (scheduling and arbitration).

Existing approaches
 Classical real-time scheduling theoryClassical real time scheduling theory 
 Stochastic queuing theory (statistical bounds)
 Non-deterministic queuing theory (worst case/best case o dete st c queu g t eo y ( o s case/bes case

behavior)
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Example - Queuing SystemsExample Queuing Systems

 Example: clients request some service from a server over a network Example: clients request some service from a server over a network.
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Stochastic Models - Queuing SystemsStochastic Models Queuing Systems
A queuing system is described by
 Arrival rate

Performance measures
 average delay in queueArrival rate

 Service mechanism
 Queuing discipline

average delay in queue
 time-average number of customers 

in queue.
 proportion of time server is busy

The classical M/M/1 queuing system: 
(M M k i ( ) di t ib ti )(M = Markovian (exp.) distribution )
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Nondeterministic Models - Queuing SystemsNondeterministic Models Queuing Systems
A queuing system is described by

A i l f ti (b d
Performance measures

t d l i Arrival function (bounds on 
arrival times)

 Service functions (bounds on 

 worst case delay in queue
 worst-case number of customers in 

queue.(
server behavior)

 Resource interaction

q
 worst-case and best-case end-to-

end delay in the system

TDMA

GPC GPCGPC

TDMA

GPC GPC
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Compositionalp
Analysisy

- Real-Time Calculus -
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Network/Real-time Calculus MethodsNetwork/Real time Calculus Methods
Advantages
 More powerful abstraction than “classical” real-time analysis
 Resources are first-class citizens of the method

f ( ) ( ) ( ) Allows composition in terms of (a) tasks, (b) streams, (c) 
resources, (d) sharing strategies. 

Disadvantages
 Needs some effort to understand and implement Needs some effort to understand and implement
 Extension to new arbitration schemes not always simple
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Abstract Models for Performance AnalysisAbstract Models for Performance Analysis

ProcessorProcessor
Task

InputInput
Stream

Concrete 
Instance
Abstract 
Representation

Service
Model

p

Load
Model

Processing
Model
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Modular System CompositionModular System Composition
CPU BUS DSP

RM TDMA

TDMA

GPC GPCGPC GSC

TDMA

GPC GPC
30Swiss Federal
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Load Model (Environment)
Service
Model

Load
Model

Processing
ModelLoad Model (Environment)

events
E t St

Model Model

Event Stream

number of events in

t [ms] 2.5 

number of events in 
in t=[0 .. 2.5] ms

[ ]

Arrival Curve 
d ddemand

l
u

maximum / minimum
arriving demand in any

interval of length 2.5 ms
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Example 1: Periodic with JitterExample 1: Periodic with Jitter
A common event pattern that is used in literature can be 

ifi d b h i l ( j d) h dspecified by the parameter triple (p, j, d), where p denotes 
the period, j the jitter, and d the minimum inter-arrival 
distance of events in the modeled streamdistance of events in the modeled stream.

periodic

p

periodicperiodic
jitter

p j  d
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Example 1: Periodic with JitterExample 1: Periodic with Jitter

periodic periodic with jitter
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Service Model (Resources)
Service
Model

Load
Model

Processing
ModelService Model (Resources)

availability
R A il bilit

Model Model

Resource Availability

available service

t [ms] 

available service 
in t=[0 .. 2.5] ms

2.5 [ ]

uService Curves [l, u]
i 

l
service

maximum/minimum
available service in any
interval of length 2.5 ms

34Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory  

g
 [ms] 2.5 



Example 2: TDMA ResourceExample 2: TDMA Resource
Consider a real-time system consisting of n applications
h d i h b d id h B hthat are executed on a resource with bandwidth B that 
controls resource access using a TDMA policy. 
Analogo sl e co ld consider a distrib ted s stem ith nAnalogously, we could consider a distributed system with n 
communicating nodes, that communicate via a shared 
bus with bandwidth B with a bus arbitrator that implementsbus with bandwidth B, with a bus arbitrator that implements 
a TDMA policy.
TDMA policy: In every TDMA cycle of length   , one single cp y y y g , g
resource slot of length si is assigned to application i.

appl 1 appl 2 appl n appl 1 appl 2 appl n

c c

appl.1 appl.2 appl. n appl.1 appl.2 appl. n... ...
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Example 2: TDMA ResourceExample 2: TDMA Resource
Service curves available to the applications / node i:

B si

csi c-si c2
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Service Model - Examples
Service
Model

Load
Model

Processing
ModelService Model Examples

full resource bounded delay

Model Model

full resource bounded delay

TDMA resource periodic resourceTDMA resource periodic resource
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Processing Model (HW/SW)
Service
Model

Load
Model

Processing
ModelProcessing  Model (HW/SW)

HW/SW C t

Model Model

HW/SW Components

Processing semantics 
d f ti lit fand functionality of 
HW/SW tasks

t
HW/SW

Task

Abstract Components

t






’ 
RTC
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FoundationFoundation
Real-Time Calculus can be regarded as a worst-
case/best case variant of classical queuing theory It iscase/best-case variant of classical queuing theory. It is 
a formal method for the analysis of distributed real-time 
embedded systems.y
Related Work:
 Min-Plus Algebra: F. Baccelli, G. Cohen, G. J. Olster, and J. 

P Q d t S h i ti d Li it A Al b fP. Quadrat, Synchronization and Linearity --- An Algebra for 
Discrete Event Systems, Wiley, New York, 1992.

 Network Calculus: J.-Y. Le Boudec and P. Thiran, Network ,
Calculus - A Theory of Deterministic Queuing Systems for 
the Internet, Lecture Notes in Computer Science, vol. 2050, 
Springer Verlag, 2001.Springer Verlag, 2001.

 Adversarial Queuing Theory [Andrews, Borodin, Kleinberg, 
Leighton, … 1996]
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Greedy Processing ComponentGreedy Processing Component

C t i t i d b

Behavioral Description
• Component is triggered by 

incoming events. 

• A fully preemptable task is

GPC

A fully preemptable task is 
instantiated at every event arrival 
to process the incoming event.

• Active tasks are processed in a 
greedy fashion in FIFO order.

P i i t i t d b th• Processing is restricted by the 
availability of resources. 
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Greedy Processing Component (GPC)Greedy Processing Component (GPC)
available
resources

FIFO bufferinput outputinput
event

stream

output
event

stream

remaining
resourcesresources

Examples:
 computation (event – task instance, resource – computing p ( p g

resource [tasks/second])
 communication (event – data packet, resource – bandwidth 

[packets/second])
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AbstractionAbstraction

GPC GPCGPC GPC

time domain time-interval domain
cumulative functions variability curves

42Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory  



Greedy Processing Component (GPC)Greedy Processing Component (GPC)

Conservation Laws

C(t) C(t)
R(t)

R(t) R’(t)

R(t)

R’(t)GPC

C’(t)
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Tight BoundsTight Bounds

[l, u]

[l, u] [l’, u’][ , ] [ , ]

GPC
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Delay and BacklogDelay and Backlog

delay D

maximum delay D

GPC

maximum
backlog B

GPC

backlog B
backlog B
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Celebrated Result on Delay and BacklogCelebrated Result on Delay and Backlog
maximum 
end-to-end

delay D

accumulated
maximum
backlog Bbacklog B

end to end delay Dend-to-end delay D

GPC1 GPC2 GPCn
…
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System Composition
Service
Model

Load
Model

Processing
ModelSystem Composition

CPU BUS DSP

Model Model

RM TDMA

How to inter-
connect service?

GPC GPCGPC GSC
Scheduling!

GPC GPCGPC GSC
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Scheduling and Arbitration
Service
Model

Load
Model

Processing
Model

FP/RM EDF RR

Scheduling and Arbitration Model Model

GPC

GPC

EDF RR

TDMAGPS

share TDMA

GPC

share

GPC

TDMA

GPC

sum

GPC
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Complete System Composition
Service
Model

Load
Model

Processing
ModelComplete System Composition

CPU BUS DSP

Model Model

RM TDMA

TDMA

GPC GPCGPC GSC

TDMA

GPC GPC
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Compositionalp
Analysisy

- Artificial Examples-
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Greedy Traffic ShaperGreedy Traffic Shaper

Access ShaperAccess Shaper 
 delays access requests such that the resulting access pattern 

conforms to a given specificationg p

Greedy Access Shapery p
 no access request gets delayed any longer than necessary


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Why Access Shaping?Why Access Shaping?
Internal Re-Shaping
 Reduces global buffer requirements
 Reduces end-to-end delays

External Input-Shaping
E ifi ti f t t i t Ensures specification conformant system inputs

How to model and 
analyze greedy shapers?analyze greedy shapers?
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Modeling of Greedy Shapers
Service
Model

Load
Model

Processing
ModelModeling of Greedy Shapers

G d Sh

Model Model


Greedy Shaper

t

Abstract Greedy Shaper

t

y p 

 ’ 

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Internal Re-ShapingInternal Re Shaping
Delay?

Buffer?

Stream 1 T3

CPU3

T1

CPU1

GPC GPC1

1 3

Stream 1 T3T1 GPC GPC1

2

Stream 2 T2

CPU2

T4GPC GPC2

2
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Internal Re-Shaping
Delay?– 7.4%

Internal Re Shaping

44%Buffer?– 44%
GPC GPC1

1 3

GPC GPC1

2



GPC GPC2

2



40%
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Case StudyCase Study
S1 6 Real-Time Input Streams

with jitter

ECU1 CC1
S2

S3

- with jitter
- with bursts
- deadline > period

BUS ECU3CC3

3
3 ECU’s with own CC’s

13 Tasks & 7 Messages
S6

ECU2 CC2
S4

S5

13 Tasks & 7 Messages
- with different WCED

2 Scheduling Policiesg
- Earliest Deadline First (ECU’s)
- Fixed Priority (ECU’s & CC’s)

Hierarchical Sched lingHierarchical Scheduling
- Static & Dynamic Polling Servers

Bus with TDMA

Total Utilization:
- ECU1 59 %
- ECU2 87 %

56Swiss Federal
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Bus with TDMA
- 4 time slots with different lengths
(#1,#3 for CC1, #2 for CC3, #4 for CC3)

- ECU3 67 %
- BUS 56 %



Specification DataSpecification Data

57Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory  



The Distributed Embedded System...The Distributed Embedded System...
ECU1 BUS

(TDMA)
CC1

ECU3CC3S1 (TDMA)

C1.1
T1.1PS

FPFP ECU3

T1 2

FP FP

CC3

PS

S1

S1

C1.2

T1.3T2.1

T3.1

T1.2

EDF

PS
S2

S3

C3.2T3.3
FP

T2.2

PS

S3

T6 1S6
C2.1

C3.1ECU2 CC2

T3.2

T4.2

T6.1S6

S6

C4.1
T4.1

FP T5.2

S4
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... and its MPA Model... and its MPA Model
CPU CPUECU1 ECU3BUS

S1 T1 1

PS

T1 2C1 1

PS
CC1

TDMA

S1

S2

T1.1

T1.3
T2 1

T1.2

C1.2
C2 1

C1.1

T2 2S2

S3

T2.1

T3.1
PS

C2.1

C3.1

T2.2
CC3

EDF

T3.2C3.2

T6.1S6

T3.3

S4 C4.1

CPU

T4.1 T4.2

ECU2
CC2
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C5.1

T4.1
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Buffer & Delay Guarantees
d

b
y

CPU CPUECU1 ECU3BUS

b

TDMA

S1 T1.1

PS

T1.2C1.1

PS
CC1 313

TDMA

S2
T1.3

T2.1
C1.2

C2.1 T2.25
7 1

5

7.12

1.80

S3 T3.1
PS

T3 2C3 2

C3.1
CC3

T3.3 62

2 4

65.30

EDF

T3.2C3.2

T6.1S6

T3.3 62

5

65 3

3 69

S4 C4.1

CPU

T4.1 T4.2

ECU2
CC251

3.69

0.50
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Available & Remaining Service of ECU1Available & Remaining Service of ECU1
CPU CPUECU1 ECU3BUS

S1 T1 1

TDMA
PS

T1 2C1 1

PS

CC1S1

S

T1.1

T1.3
T

T1.2

C1.2
C

C1.1

TS2

S3

T2.1

T3.1
PS

C2.1

C3.1

T2.2
CC3

T3.3
EDF

T3.2C3.2

ECU

S4 C4.1

CPU

T4.1 T4.2

ECU2

CC2
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Input of Stream 3Input of Stream 3
CPU CPUECU1 ECU3BUS

S1 T1 1

PS

T1 2C1 1

PS
CC1

TDMA

S1

S2

T1.1

T1.3
T2 1

T1.2

C1.2
C2 1

C1.1

T2 2S2

S3

T2.1

T3.1
PS

C2.1

C3.1

T2.2
CC3

EDF

T3.2C3.2

T6.1S6

T3.3

S4 C4.1

CPU

T4.1 T4.2

ECU2
CC2
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Output of Stream 3Output of Stream 3
CPU CPUECU1 ECU3BUS

S1 T1.1

PS

T1.2C1.1

PS
CC1

TDMA

S2
T1.3

T2.1
C1.2

C2.1 T2.2

S3 T3.1
PS

T3 2C3 2

C3.1
CC3

T3 3

EDF

T3.2C3.2

T6.1S6

T3.3

S4 C4.1

CPU

T4.1 T4.2

ECU2
CC2
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RTC Toolbox (www mpa ethz ch/rtctoolbox)RTC Toolbox (www.mpa.ethz.ch/rtctoolbox)

M tl b C d Li Si li kMatlab Command Line Simulink

RTC Toolbox
MPA Library RTI Library

RTC Toolbox

Min-Plus/Max-Plus Algebra Library

Matlab / Java Interface

Java API

Min Plus/Max Plus Algebra Utilities

Efficient Curve Representation

Min-Plus/Max-Plus Algebra, Utilities
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ContentsContents
Drivers
Compositional Analysis
 Overview
 Real-Time Calculus
 Artificial Example

A hi l I iArchitectural Interactions
 Shared Resources in Multicore Systems
 Compilation for Multiprocessors

Challenges
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Architectural Interactions

- Shared Resources in Multicore Systems -- Shared Resources in Multicore Systems -
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Interferences: 
CPU1/Core2 blocked by CPU1/Core1 on L2 Cache
CPU2/Core1 blocked by CPU1/Core1 on Main Memoryy y
CPU1/Core2 blocked by CPU2/Core1 on Main Memory

Motivation

 COTS Systems use shared resources (Memory, Bus)
 Multiple entities competing for shared resourcesp p g
 waiting for other entities to release the resource
 accessing the resources

CCC CCC CM i M t dCC CC

67

Task executing on Core 1L1 Cache accessedL2 Cache accessedMain Memory accessed
Task executing on Core 2L1 Cache accessedL2 Cache is blocked by Core 1 - stall

Task is executing on Core 1L1 Cache accessedL2 Cache accessedMain Memory is blocked by CPU 1 - stallMain Memory request served Main Memory is accessedL2 Cache request served
L2 Cache accessedMain Memory blocked by CPU 2 - stall

Main Memory request served
Main Memory accessed
L1 Cache request served L2 Cache request servedL1 Cache request served
Main Memory access servedL2 Cache request servedL1 Cache request served



Motivation (2)

Multi-Core Architecture with shared resource
 shared memory, communication peripherals, I/O peripherals

Stalling due to InterferenceStalling due to Interference
 Depends on structure of tasks on the cores
 Depends on blocking vs. non-blocking execution semantics
 Depends on arbitration policy on the shared resource

 static access, for example TDMA
 dynamic access, for example round robin, FCFS, priority driveny p p y

68



Related Work

 Schliecker et al. [CODES 2006, CODES 2008, DATE 2010][ ]
 Event models specify tasks interference in time windows
 tasks active time increases by number of interferences
 Iterative approach to compute WCET Iterative approach to compute WCET

 Rosen et al. [RTSS 2007]
 static analysis delivers feasible execution traces

 i  TDMA h d l  th  WCET i  t d a given TDMA schedule the WCET is computed
 efficient TDMA schedules are obtained using EA
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Task / Superblock Model (1)

 Tasks are structured as sequences of superblocks
 fixed order of execution

 b d   i  d i i  d d upper bounds on execution and communication demands
 Dedicated phases for resource access and computation
 phases have different amount of access requests phases have different amount of access requests
 structure increases predictability (in terms of WCRT)
 model motivated by industrial applications in the automotive industry

70



Task / Superblock Model (2)

 3 Models to specify resource accesses:

di d d l Dedicated Model

 General Model

 Hybrid Model

 2 Models to execute superblocks:
 Sequential

Ti t i d ( bl k  h )

71

 Time-triggered (superblocks, phases)



Static execution on the processing element

72



TDMA on the shared resource
I d d b t t k i l f i t fIndependence between tasks single source of interference
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Static Arbitration (1)

 Generate worst-case
trace

 Read/Write access 
whenever slot is activewhenever slot is active

 Execution is performed p
immediately

A  PE2 t  
74

 Assume PE2 grants 
access:



Static Arbitration (2)

 Generate worst-case
trace

 Where to place the
access requests ?access requests ?

 Algorithm for WCCT g
by maximizing 
stalling

 Assume PE2 grants 

75

Assume PE2 grants 
access:



Analysis for static arbitration  - Summary

 analysis is complex
 makes use of arrival and service curves (real-time calculus)
 has been extended to dynamic resource sharing as well

 analysis handles dedicated and general phasesy g p
 sequential and time-triggered execution

 analysis of mixed models possible by compositionanalysis of mixed models possible by composition
 superblocks can be specified using different models

 Time complexity Time complexity
 Dedicated phase:
 General phase:  

( )O M Q
( lo )g m axO M exec
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 General phase:  ( lo )gO M execQ



Resource Access Models (1)

 Influence of different access models on schedulabilityy
 Influence of the execution model on predictability 

(equivalent WCRT) 

 Intuition:
 Separation of resource access and computation increases 

predictability
 Everything time-triggered increases predictability ?Everything time triggered increases predictability ?
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Resource Access Models (2) - Reminder

 3 Models to specify resource accesses:

di d d l Dedicated Model

 General Model

 Hybrid Model

 2 Models to execute superblocks:
 Sequential

Ti t i d 
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 Time-triggered 



Resource Access Models (3)
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Schedulability between Models
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Comparisons of Access Models

 Intuition:

? Separation of resource access and computation increases 
predictability

 Everything time-triggered increases predictability  Everything time triggered increases predictability 

 Excessive time-triggering may degrade performance
 No advantage in terms of predictability No advantage in terms of predictability
 Model DS is model choice for resource sharing systems
 Separate Memory Access and Computation 
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Separate Memory Access and Computation 



Conclusion

 Resource Sharing in Multi-Core Systems is an important 
issue in terms of
 Analyzability
 Predictability
 Efficiency Efficiency

 Static arbitration policies
Eli i ti  f I t f Elimination of Interference

 Tight bounds on WCCT can be derived

 Excessive time-triggering is counter productive

Even for simple models:
83

Even for simple models:
Resource Sharing is a hard Problem



Architectural Interactions

Compilation for Multiprocessors- Compilation for Multiprocessors-
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Versatile MPSoC Software Design FlowVersatile MPSoC Software Design Flow
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DOL Design FlowDOL Design Flow
CorrectnessCorrectness ScalabilityScalability OptimalityOptimality AccuracyAccuracy

Scheduling -Mapping Optimizercalibr.
data

Performance EstimationPerformance Estimation

data

architecture application mapping

HdS / OS

application architecture mapping

HdS / OS

Compiler

binary VP simulator
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Application SpecificationApplication Specification
Structure

Process Network
 Processes 
 SW channels (FIFO behavior)SW channels (FIFO behavior)

Iterators
 Scalability for processes, SW 

channels entire structureschannels, entire structures

Functional specification
Language: C/C++
API: DOL  primitives
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Target Platform Abstraction (1)Target Platform Abstraction (1)
Topology modeled by a graph
 two node types: DXM interface DXM two node types: 

• execution and comm. resources
• storage resources

DXM interface

NoC

DXM

DSP sub-system

Multi-layer BUS

g
Execution resources
 RISCs, DSPs, … DSP Int. Data Memory

AHB Slave
AHB Master 

DMA
DNP sub-

system

Communication resources
 buses, switches, links, I/Os

core

Storage resources
 RAMs, HW FIFOs, … DXM

DMA

DMX interface

buf mem.
of switchbus

DSP switch

of switch

DNP

bus
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Target Platform Abstraction (2)Target Platform Abstraction (2)

ATMEL DiopsisATMEL Diopsis
Platform

Specification
in XML syntax
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Mapping SpecificationMapping Specification
Binding
 Processes to 

execution 
resources

 SW channels to 
read/write paths

Schedulingg
 Processors
 Communication

Constraints

Specification
in XML syntax

Constraints 
 For Hardware-

dependent
Software (HdS)Software (HdS) 
generation
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DOL Design FlowDOL Design Flow

Scheduling -Mapping Optimizer

Performance EstimationPerformance Estimation

architecture application mappingapplication architecture mapping

HdS / OSHdS / OS

Compiler

binary VP simulator
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Multiobjective OptimizationMultiobjective Optimization

Pareto optimal

y2x2

decision
space 

objective
space 

Pareto optimal
=

not dominated

dominated

x1 y1
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Design Space ExplorationDesign Space Exploration
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Design Space ExplorationDesign Space Exploration
Example for ATMEL Multitile Platform:
 64 processes, 16 processors, optimal mapping known
 32 processes execute efficiently on ARM, 32 efficiently on mAgic

diff t i t ti t t b t different interconnection structures between processes
 1664  1.15  1077 possible mappings (including symmetric ones)
 Evaluation of 10 000 mappingsEvaluation of 10.000 mappings

max processor load
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max. processor load
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PISA WebsitePISA Website

http://www tik ee ethz ch/pisahttp://www.tik.ee.ethz.ch/pisa
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DOL Design FlowDOL Design Flow

Scheduling -Mapping Optimizercalibr.
data

Performance EstimationPerformance Estimation

data

architecture application mappingapplication architecture mapping

HdS / OSHdS / OS

Compiler

binary VP simulator
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Multitile CalibrationMultitile Calibration
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Functional SimulationFunctional Simulation
process network processes 

C2_0 C2_i

iterator_i
p
(with iterators)

.c.c

p
behavior

generator consumer

XML

.c.c …

flattened 
process network

(w/o iterators)

XML
Flattener

Simulation 
GeneratorC2_0 C2_1 C2_2

square_1 square_2

visualization
generator consumer

SystemC 
Si l ti
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Workload ExtractionWorkload Extraction
functional simulation workload bounds

accumulated
amount after

accumulated
workload

amount after
communication
event

number of
consecutive
events
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DOL Design FlowDOL Design Flow

Scheduling -Mapping Optimizer

Performance EstimationPerformance Estimation

architecture application mappingapplication architecture mapping

HdS / OSHdS / OS

Compiler

binary VP simulator
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IntegrationIntegration
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Example: Wave Field SynthesisExample: Wave Field Synthesis

+WFS Signal
Processing

+WFS Signal
Processing

+WFS Signal
Processing

WFS Signal

Processing

+WFS Signal
Processing
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Example: Architecture TemplateExample: Architecture Template
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Example: Application ModelingExample: Application Modeling
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Example: Compilation TimesExample: Compilation Times

105Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory  



Example: AccuracyExample: Accuracy

observed estimatedobserved estimated
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ContentsContents
Drivers
Compositional Analysis
 Overview
 Real-Time Calculus
 Artificial Example

A hi l I iArchitectural Interactions
 Shared Resources in Multicore Systems
 Compilation for Multiprocessors

Challenges
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Challengesg

- Abstractions -
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WCET

LOAD r2 a

WCET 

LOAD     r2, a

LOAD     r1, _b

ADD      r3,r2,r1

x = a + b;

Execution Time (Clock Cycles)

PPC 755

200

250

300

350

0

50

100

150

200
Clock Cycles

© R i h d Wilh l
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0

Best Case Worst Case
© Reinhard Wilhelm



(Timing) Predictability(Timing) Predictability
response timep

WCRT

WCRT
Bound

WCRT

BCRT

year

BCRT
BCRT
Bound
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WCETWCET

© Reinhard Wilhelm
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Application and ArchitectureApplication and Architecture
fixed cycle

CPU
multiple
cores

distributedsingle
processor

Application
Architecture

CPU coresprocessor

single
tasktask

staticstatic
tasks

dynamic
tasks
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Classification of Predictability LossClassification of Predictability Loss

d i
analysis

system design

BCRT
bound

BCRT WCRT WCRT
bound

Analysis Loss: 
 Construct system that can be easily analyzed
 Use appropriate abstractions (models and methods)

System Design Loss:
 Decrease interference, long-range dependencies
 Increase robustness of components

U i t i t f
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 Use appropriate interfaces



Interfaces
WCET arbitration

schedulerInterfaces
HW/SW

A task is (classically) characterized by its WCET.
 May be useful in case of simple processors, but we have 

long range state dependent uni processor behaviorlong-range state-dependent uni-processor behavior 
(pipelines, caches, speculation).

 In case of multi-processors, we have additional interferences p ,
on the communication system which heavily influences 
WCET. We also may have intra-task parallelism.

 WCET can no longer be considered as a useful interface 
between these abstraction layers.

What about the other interfaces ?What about the other interfaces ?
 Is the classical ISA (using instructions that abstract away 

time) still appropriate?
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time) still appropriate?
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