
HAL Id: inria-00494540
https://inria.hal.science/inria-00494540

Submitted on 23 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architectural Aspects of Deriving Performance
Guarantees: Timing Analysis and Timing Predictability

Reinhard Wilhelm, Jan Reineke

To cite this version:
Reinhard Wilhelm, Jan Reineke. Architectural Aspects of Deriving Performance Guarantees: Timing
Analysis and Timing Predictability. ISCA tutorial on ”Architectural Aspects of Deriving Performance
Guarantees, Jun 2010, St Malo, France. �inria-00494540�

https://inria.hal.science/inria-00494540
https://hal.archives-ouvertes.fr

computer science

saarland
university

Timing Analysis and Timing Predictability:
Architectural Dependences

Reinhard Wilhelm and Jan Reineke

Department of Computer Science
Saarland University

Saarbrücken, Germany

ISCA 2010, Tutorial on:
Architectural Aspects of Deriving Performance Guarantees:

Timing Analysis and Timing Predictability
June 20, 2010

computer science

saarland
university

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 1 / 64

computer science

saarland
universityHard Real-Time Systems

Safety critical applications:
Avionics, automotive, train industries, manufacturing control

Sideairbag in car, Reaction in <10 mSec

Crankcraft-synchronous tasks,

Reaction in <45 µSec

Embedded controllers must finish
their tasks within given time bounds.
Developers would like to know the
Worst-Case Execution Time (WCET)
to give a guarantee

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 2 / 64

computer science

saarland
universityHard Real-Time Systems

Embedded controllers are expected to finish their tasks reliably
within time bounds
Task scheduling must be performed
Essential: upper bound on the execution times of all tasks
statically known
Commonly called Worst-Case Execution Time (WCET)
Analogously, Best-Case Execution Time (BCET)

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 3 / 64

computer science

saarland
universityStatic Timing Analysis

the Application Domain

The Problem:

Given
1 a software to produce some reaction,
2 a hardware platform, on which to execute the software,
3 required reaction time.

Derive:
I a guarantee for timeliness.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 4 / 64

computer science

saarland
universityWhat does the execution time depends on?

the input—this has always been so and will remain so,
the initial state of the platform—this is (relatively new)

I Caused by caches, pipelines, speculation, etc.
I Explosion of the space of inputs and initial states
⇒ all exhaustive approaches infeasible

interferences from the environment—this depends on whether the
system design admits it (preemptive scheduling, interrupts,
multi-core)

I External interferences as seen from analyzed task

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 64

computer science

saarland
universityWhat does the execution time depends on?

the input—this has always been so and will remain so,
the initial state of the platform—this is (relatively new)

I Caused by caches, pipelines, speculation, etc.

I Explosion of the space of inputs and initial states
⇒ all exhaustive approaches infeasible

interferences from the environment—this depends on whether the
system design admits it (preemptive scheduling, interrupts,
multi-core)

I External interferences as seen from analyzed task

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 64

computer science

saarland
universityWhat does the execution time depends on?

the input—this has always been so and will remain so,
the initial state of the platform—this is (relatively new)

I Caused by caches, pipelines, speculation, etc.
I Explosion of the space of inputs and initial states
⇒ all exhaustive approaches infeasible

interferences from the environment—this depends on whether the
system design admits it (preemptive scheduling, interrupts,
multi-core)

I External interferences as seen from analyzed task

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 64

computer science

saarland
universityWhat does the execution time depends on?

the input—this has always been so and will remain so,
the initial state of the platform—this is (relatively new)

I Caused by caches, pipelines, speculation, etc.
I Explosion of the space of inputs and initial states
⇒ all exhaustive approaches infeasible

interferences from the environment—this depends on whether the
system design admits it (preemptive scheduling, interrupts,
multi-core)

I External interferences as seen from analyzed task

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 64

computer science

saarland
universityAccess Time

x=a+b;
LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 6 / 64

computer science

saarland
universityTiming Analysis

di
st

rib
ut

io
n

of
ex

ec
ut

io
n

tim
es

Exec-timeLB BCET WCET UB

Analysis-guaranteed timing bounds

Overest.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 7 / 64

computer science

saarland
universityaiT WCET Analyzer

IST Project DAEDALUS final review report:
"The AbsInt tool is probably the best kind in
the world and it is justified to consider this
result as a breakthrough."

Several time-critical subsystems of the airbus A380 have been certified using aiT;
aiT is the only validated tool for these applications.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 8 / 64

computer science

saarland
universityTremendous Progress during the 15 past Years

1995

Lim et al.

2002
Thesing et al.

2005
Souyris et al.

ca
ch

e-
m

is
s

pe
na

lty

4

25

60

200

ov
er

-e
st

im
at

io
n

20-30%

15%

30-50%

25%

10%

The explosion of penalties has been
compensated by the improvement
of the analyses!

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 9 / 64

computer science

saarland
universityTremendous Progress during the 15 past Years

1995

Lim et al.

2002
Thesing et al.

2005
Souyris et al.

ca
ch

e-
m

is
s

pe
na

lty

4

25

60

200
ov

er
-e

st
im

at
io

n

20-30%

15%

30-50%

25%

10%

The explosion of penalties has been
compensated by the improvement
of the analyses!

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 9 / 64

computer science

saarland
universityTremendous Progress during the 15 past Years

1995

Lim et al.

2002
Thesing et al.

2005
Souyris et al.

ca
ch

e-
m

is
s

pe
na

lty

4

25

60

200
ov

er
-e

st
im

at
io

n

20-30%

15%

30-50%

25%

10%

The explosion of penalties has been
compensated by the improvement
of the analyses!

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 9 / 64

computer science

saarland
universityStatic Timing Analysis

Input
Executable

CFG
Recon-

struction

Control-
flow Graph

Loop
Bound

Analysis

Value
Analysis

Control-
flow

Analysis

Annotated
CFG

Basic
Block

Timing Info

Micro-
architectural

Analysis

Path
Analysis

Legend:

Data

Phase

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 10 / 64

computer science

saarland
universityPredictability

Predictability: not a boolean property
Some performance-enhancing features, like certain

I Caches
I Pipelines

are analyzable, others are not...
Explore trade-offs between (worst-case)predictability,
(average-case) performance, and cost
Goal:
Design architectures with high worst-case performance
which can be precisely and efficiently determined

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 11 / 64

computer science

saarland
universityPredictable Multi-Core Architecture

Predictable cores are a prerequisite for predictable multi-cores
General problem: Sharing of resources

I Main memory, caches
I Busses
I I/O
I Flash memory

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 12 / 64

computer science

saarland
universityOutline

1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 13 / 64

computer science

saarland
universityOutline

1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 14 / 64

computer science

saarland
universityOutline

1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 15 / 64

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

“hit”
[ab]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 16 / 64

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

a1

“hit”
[ab]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 16 / 64

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

a1!

“hit”
[ab]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 16 / 64

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3?

“miss”
[ab]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 16 / 64

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3? c?

“miss”
[ab]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 16 / 64

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3? c = 〈c1c2c3c4〉!

“miss”
[ac]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 16 / 64

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c3!

“miss”
[ac]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 16 / 64

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c4?

“hit”
[ac]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 16 / 64

computer science

saarland
universityCaches

Small but very fast memories that buffer part of the main memory
Bridge the gap between speed of CPU and main memory

CPU Cache Main Memory

Capacity:
Latency:

32 KB
3 cycles

2 MB
100 cycles

c4!

“hit”
[ac]

Why caches work: principle of locality
I spatial: e.g. in sequential instructions, accessing arrays
I temporal: e.g. in loops

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 16 / 64

computer science

saarland
universityFully-Associative Caches

Tag Block
offset

Address:

B b
b

k s

log2(s) log2(8 ∗ b)

•
•
•

Tag Data Block

Tag Data Block
...

Tag Data Block

B b
b

k s

log2(s) log2(8 ∗ b) s

•
•
•

=?

No:
Miss!

Yes:
Hit! MUX

Data

= associativity

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 17 / 64

computer science

saarland
universitySet-Associative Caches

...

B b
b

k s

log2(s) log2(8 ∗ b) s

•
•
•

Tag Index Block
offset

Address:

B b
b

k s

log2(s) log2(8 ∗ b)

•
•
•

B b
b

k s

log2(s) log2(8 ∗ b)

•
•
•

Tag Data Block

Tag Data Block
...

Tag Data Block
Cache Set:

B b
b

k s

log2(s) log2(8 ∗ b) s

•
•
•

Tag Data Block

Tag Data Block
...

Tag Data Block
Cache Set:

=?

No:
Miss!

Yes:
Hit! MUX

Data
Special cases:

direct-mapped cache: only one line per cache set
fully-associative cache: only one cache set

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 18 / 64

computer science

saarland
universityCache Replacement Policies

Least-Recently-Used (LRU) used in
INTEL PENTIUM I and MIPS 24K/34K

First-In First-Out (FIFO or Round-Robin) used in
MOTOROLA POWERPC 56X, INTEL XSCALE, ARM9, ARM11

Pseudo-LRU (PLRU) used in
INTEL PENTIUM II-IV and POWERPC 75X

Most-Recently-Used (MRU) as described in literature

Each cache set is treated independently:
−→ Set-associative caches are compositions of fully-associative caches.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 19 / 64

computer science

saarland
universityOutline

1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 20 / 64

computer science

saarland
universityCache Analysis

Two types of cache analyses:

1 Local guarantees: classification of individual accesses
I May-Analysis −→ Overapproximates cache contents
I Must-Analysis −→ Underapproximates cache contents

2 Global guarantees: bounds on cache hits/misses

Cache analyses almost exclusively for LRU
In practice: FIFO, PLRU, . . .

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 21 / 64

computer science

saarland
universityChallenges for Cache Analysis

read
z

read
y

read
x

write
z

Always a cache hit/always a miss?

1. Initial cache contents unknown.

2. Different paths lead to these points.

3. Cannot resolve address of z.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 22 / 64

computer science

saarland
universityChallenges for Cache Analysis

read
z

read
y

read
x

write
z

Always a cache hit/always a miss?

1. Initial cache contents unknown.

2. Different paths lead to these points.

3. Cannot resolve address of z.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 22 / 64

computer science

saarland
universityLeast-Recently-Used (LRU): Concrete Behavior

“Cache Miss”:

z
y
x
t

s

s
z
y
x

LRU has
notion of age

“Cache Hit”:

z
y
s
t

s

s
z
y

t

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 23 / 64

computer science

saarland
universityLRU: Must-Analysis: Abstract Domain

Used to predict cache hits.
Maintains upper bounds on ages of memory blocks.
Upper bound ≤ associativity −→ memory block definitely cached.

Example

Abstract state:

{x}

{}

{s,t}

{}

age 0

age 3

. . . and its interpretation:

Describes the set of all concrete cache
states in which x , s, and t occur,

x with an age of 0,
s and t with an age not older than 2.

γ([{x}, {}, {s, t}, {}]) =
{[x , s, t ,a], [x , t , s,a], [x , s, t ,b], . . .}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 24 / 64

computer science

saarland
universityLRU: Must-Analysis: Update

“Definite Cache Hit”:

{x}

{}

{s,t}

{}

s

{s}

{x}

{t}

{}

“Potential Cache Miss”:

{x}

{}

{s,t}

{}

z

{z}

{x}

{}

{s,t}

Why does t not age in the second case?

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 25 / 64

computer science

saarland
universityLRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 26 / 64

computer science

saarland
universityLRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 26 / 64

computer science

saarland
universityLRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 26 / 64

computer science

saarland
universityLRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 26 / 64

computer science

saarland
universityLRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 26 / 64

computer science

saarland
universityLRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 26 / 64

computer science

saarland
universityLRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Intersection + Maximal Age”

How many memory blocks
can be in the must-cache?

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 26 / 64

computer science

saarland
universityLRU: May-Analysis: Abstract Domain

Used to predict cache misses.
Maintains lower bounds on ages of memory blocks.
Lower bound ≥ associativity

−→ memory block definitely not cached.

Example

Abstract state:

{x,y}

{}

{s,t}

{u}

age 0

age 3

. . . and its interpretation:

Describes the set of all concrete cache states in
which no memory blocks except x , y , s, t , and
u occur,

x and y with an age of at least 0,
s and t with an age of at least 2,
u with an age of at least 3.

γ([{x , y}, {}, {s, t}, {u}]) =
{[x , y , s, t], [y , x , s, t], [x , y , s,u], . . .}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 27 / 64

computer science

saarland
universityLRU: May-Analysis: Update

“Definite Cache Miss”:

{x}

{}

{s,t}

{y}

z

{z}

{x}

{}

{s,t}

“Potential Cache Hit”:

{x}

{}

{s,t}

{y}

s

{s}

{x}

{}

{y,t}

Why does t age in the second case?

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 28 / 64

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Union + Minimal Age”

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e}

{f}

{d}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 29 / 64

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Union + Minimal Age”

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e}

{f}

{d}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 29 / 64

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Union + Minimal Age”

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e}

{f}

{d}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 29 / 64

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Union + Minimal Age”

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e}

{f}

{d}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 29 / 64

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Union + Minimal Age”

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e}

{f}

{d}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 29 / 64

computer science

saarland
universityLRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative:
γ(A) ⊆ γ(A t B)

γ(B) ⊆ γ(A t B)

“Union + Minimal Age”

t
{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e}

{f}

{d}

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 29 / 64

computer science

saarland
universityOutline

1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 30 / 64

computer science

saarland
universityUncertainty in WCET Analysis

Amount of uncertainty determines precision of WCET analysis
Uncertainty in cache analysis depends on replacement policy

execution
time

BCET ACET WCET upper
bound

uncertainty
×

penalty
variation due to inputs

and initial hardware state

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 31 / 64

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=⇒ Amount of uncertainty determined
by ability to recover information

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 32 / 64

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=⇒ Amount of uncertainty determined
by ability to recover information

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 32 / 64

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=⇒ Amount of uncertainty determined
by ability to recover information

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 32 / 64

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=⇒ Amount of uncertainty determined
by ability to recover information

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 32 / 64

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=⇒ Amount of uncertainty determined
by ability to recover information

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 32 / 64

computer science

saarland
universityPredictability Metrics

Evict
Fill

[dex]
[fde]

[gfd]

[hgf][fec]

[gfe]

[fed]

Sequence: 〈a, . . . , e, f, g, h〉

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 33 / 64

computer science

saarland
universityMeaning of Metrics

Evict
I Number of accesses to obtain any may-information.
I I.e. when can an analysis predict any cache misses?

Fill
I Number of accesses to complete may- and must-information.
I I.e. when can an analysis predict each access?

−→ Evict and Fill bound the precision of any static cache analysis.
Can thus serve as a benchmark for analyses.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 34 / 64

computer science

saarland
universityEvaluation of Least-Recently-Used

LRU “forgets” about past quickly:
I cares about most-recent access to each block only
I order of previous accesses irrelevant

?
?
?
?

a
a
?
?
?

b

b
a
?
?

c

c
b
a
?

d

d
c
b
a

In the example: Evict = Fill = 4
In general: Evict(k) = Fill(k) = k , where k is the associativity of
the cache

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 35 / 64

computer science

saarland
universityEvaluation of First-In First-Out (sketch)

Like LRU in the miss-case
But: “Ignores” hits

?
a
b
c

a

?
a
b
c

b

?
a
b
c

c

?
a
b
c

d

d
?
a
b

In the worst-case k − 1 hits and k misses: (k = associativity)
−→ Evict(k) = 2k − 1
Another k accesses to obtain complete knowledge:
−→ Fill(k) = 3k − 1

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 36 / 64

computer science

saarland
universityEvaluation of Policies

Policy Evict(k) Fill(k) Evict(8) Fill(8)
LRU k k 8 8
FIFO 2k − 1 3k − 1 15 23
MRU 2k − 2 ∞/3k − 4 14 ∞/20
PLRU k

2 log2 k + 1 k
2 log2 k + k − 1 13 19

LRU is optimal w.r.t. metrics.
Other policies are much less predictable.

−→ Use LRU if predictability is a concern.

How to obtain may- and must-information within the given limits for
other policies?

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 37 / 64

computer science

saarland
universityMeasurement-Based Timing Analysis

Run program on a number of inputs and
initial states.
Combine measurements for basic blocks
to obtain WCET estimation.
Sensitivity Analysis demonstrates this
approach may be dramatically wrong.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 38 / 64

computer science

saarland
universityMeasurement-Based Timing Analysis

Run program on a number of inputs and
initial states.
Combine measurements for basic blocks
to obtain WCET estimation.
Sensitivity Analysis demonstrates this
approach may be dramatically wrong.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 38 / 64

computer science

saarland
universityInfluence of Initial Cache State

execution
time

BCET WCET upper
bound

variation due to
initial cache state

Definition (Miss sensitivity)

Policy P is (k , c)-miss-sensitive if

mP(q, s) ≤ k ·mP(q′, s) + c

for all access sequences s ∈ M∗ and cache-set states q,q′ ∈ CP.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 39 / 64

computer science

saarland
universitySensitivity Results

Policy 2 3 4 5 6 7 8
LRU 1,2 1,3 1,4 1,5 1,6 1,7 1,8

FIFO 2,2 3,3 4,4 5,5 6,6 7,7 8,8
PLRU 1,2 − ∞ − − − ∞
MRU 1,2 3,4 5,6 7,8 MEM MEM MEM

LRU is optimal. Performance varies in the least possible way.
For FIFO, PLRU, and MRU the number of misses may vary
strongly.
Case study based on simple model of execution time by
Hennessy and Patterson (2003):
WCET may be 3 times higher than a measured execution time
for 4-way FIFO.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 40 / 64

computer science

saarland
universityCaches: Summary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
−→ LRU is the most predictable policy.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 41 / 64

computer science

saarland
universityCaches: Summary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
−→ LRU is the most predictable policy.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 41 / 64

computer science

saarland
universityCaches: Summary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
−→ LRU is the most predictable policy.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 41 / 64

computer science

saarland
universityOutline

1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 42 / 64

computer science

saarland
universityOutline

1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 43 / 64

computer science

saarland
universityPipeline analysis

Cyclewise evolution of processor model

Ba
sic

 B
lo

ck

Instruction
Instruction

Cycle semantics:

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 44 / 64

computer science

saarland
university(Concrete) Instruction Execution

instruction MUL

Fetch
I-cache miss?

Issue
Unit occupied?

Execute
Multicycle?

Retire
Pending instructions?

30

1
3

1
3 6

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 45 / 64

computer science

saarland
university(Concrete) Instruction Execution

instruction MUL

Fetch
I-cache miss?

Issue
Unit occupied?

Execute
Multicycle?

Retire
Pending instructions?

30

1
3

1
3 6

1
= 4

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 45 / 64

computer science

saarland
university(Concrete) Instruction Execution

instruction MUL

Fetch
I-cache miss?

Issue
Unit occupied?

Execute
Multicycle?

Retire
Pending instructions?

30

1
3

1
3 6

1
= 4

30

3 6
= 41

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 45 / 64

computer science

saarland
university(Abstract) Instruction Execution

instruction MUL

Fetch
I-cache miss?

Issue
Unit occupied?

Execute
Multicycle?

Retire
Pending instructions?

30

1
3

1
3 6

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 46 / 64

computer science

saarland
university(Abstract) Instruction Execution

instruction MUL

Fetch
I-cache miss?

Issue
Unit occupied?

Execute
Multicycle?

Retire
Pending instructions?

30

1
3

1
3 6

30

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 46 / 64

computer science

saarland
university(Abstract) Instruction Execution

instruction MUL

Fetch
I-cache miss?

Issue
Unit occupied?

Execute
Multicycle?

Retire
Pending instructions?

30

1
3

1
3 6

30

1

1
3

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 46 / 64

computer science

saarland
universityCharacteristics of Pipeline analysis

Abstract Domain of Pipeline Analysis
I Power set domain

F Elements: sets of states of a state machine
I Join: set union

Pipeline Analysis
I Manipulate sets of states of a state machine
I Store sets of states to detect fixpoint
I Forward state traversal
I Exhaustively explore non-deterministic choice

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 47 / 64

computer science

saarland
universityOutline

1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 48 / 64

computer science

saarland
universityTiming anomalies

When local worst-case does not lead to the global worst-case

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

A

A

Cache Miss

Cache Hit

C

Branch Condition
Evaluated

Prefetch B - Miss C

Scheduling anomaly. Speculation anomaly.

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 49 / 64

computer science

saarland
universityDomino effects

One event triggers another one which triggers another one...
Unbounded effect of a timing accident

⇒ Always analyse all cases
⇒ Particularly, there doesn’t exist an upper-bound on a delay is not

representing the worst-case:
→ All possible delays to access a shared ressource

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 50 / 64

computer science

saarland
universityOutline

1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 51 / 64

computer science

saarland
universityClassification of architectures

Timing compositional
I No timing anomalies
I e. g., ARM7

Compositional with bounded effects
I Timing anomalies but no domino effects
I e. g., TriCore (probably)

Non-compositional architectures
I Timing anomalies, domino effects
I e. g., PPC 755

from Wilhelm et al.: Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-critical Embedded Systems, IEEE TCAD, July 2009

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 52 / 64

computer science

saarland
universityOutline

1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 53 / 64

computer science

saarland
universityOutline

1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 54 / 64

computer science

saarland
universityContext

Applications
I AUTOSAR
I IMA

Behavior of the system
I Compositionality:

Composition of components
I Composability:

Behavior of each components should not change by the
composition

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 55 / 64

computer science

saarland
universityOutline

1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 56 / 64

computer science

saarland
universityPredictability of Multi-Core Architectures

PROMPT

Minimise sharing in multi-processor architectures:
Interferences might be huge (bus contention, cache pollution)
Huge overestimation when analysis is possible

I Set of tasks that might be executed in parallel
I Cache contents

PROMPT (PRedictability Of Multi-Processor Timing)
Start with a generic, parameterisable architecture with predictable
(fully timing compositional) cores
Instantiate architecture for given set of applications, based on their
resource requirements

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 57 / 64

computer science

saarland
universityPredictability of Multi-Core Architectures

PROMPT

Minimise sharing in multi-processor architectures:
Interferences might be huge (bus contention, cache pollution)
Huge overestimation when analysis is possible

I Set of tasks that might be executed in parallel
I Cache contents

PROMPT (PRedictability Of Multi-Processor Timing)
Start with a generic, parameterisable architecture with predictable
(fully timing compositional) cores
Instantiate architecture for given set of applications, based on their
resource requirements

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 57 / 64

computer science

saarland
universityPredictability of Multi-Core Architectures

Design Principles

Simplification of individual components
Elimination of interferences on shared resources:

I Wherever it is not absolutely needed
I Private resources for private uses
I Shared resource for global state

⇒ Delays for accesses to the shared global state
I Determination of delays, or
I Cumulative analyses of WCET, bus arbiter and scheduling

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 58 / 64

computer science

saarland
universityPredictability of Multi-Core Architectures

Design Principles

Simplification of individual components
Elimination of interferences on shared resources:

I Wherever it is not absolutely needed
I Private resources for private uses
I Shared resource for global state

⇒ Delays for accesses to the shared global state
I Determination of delays, or
I Cumulative analyses of WCET, bus arbiter and scheduling

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 58 / 64

computer science

saarland
universityPredictability of Multi-Core Architectures

Design guidelines

single Fully timing compositional architectures
I delay bounded by a constant:

access to shared resources, preemptions

single Disjoint instruction and data caches
single Caches with LRU
multi A shared bus protocol with bounded access delay
multi Private caches
multi Private memories, or, only share the lonely resources

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 59 / 64

computer science

saarland
universityOutline

1 Timing analysis and predictability of caches
Caches
Cache Analysis for Least-Recently-Used
Beyond Least-Recently-Used

Predictability Metrics
Sensitivity – Caches and Measurement-Based Timing Analysis

2 Predictability of architectures
Pipeline Analysis
Timing anomalies
Classification of architectures

3 Extension to multi-core
Why multi-core?
Predictable multi-core
Analysis of current multi-core

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 60 / 64

computer science

saarland
universitySmart configuration of existing multi-core

MPC5668G - An automotive processor

e200z0
No Cache

e200z6
32KB
Cache

AMBA crossbar switch (AXBS)

FLASH
2MB

SRAM A
80KB

SRAM B
512KB

Peripherals
e.g. CAN

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 61 / 64

computer science

saarland
universitySmart configuration of existing multi-core

MPC8641D - An avionics processor

e600
32KB L1 Cache
1MB L2 Cache

e600
32KB L1 Cache
1MB L2 Cache

MPX Bus

MPX Coherency
Module

DDR SDRAM
Controller

DDR SDRAM
Controller

Ethernet
Controller
Ethernet
Controller

Peripherals
e.g. PCI

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 62 / 64

computer science

saarland
universitySummary

Static timing analysis
I Efficiency and precision
I Strongly depends on the architecture

Caches
I predictabiliy and sensitivity metrics
I LRU is the most predictable policy

Timing analysis of multi-core
I Hard but possible
I Predictable multi-core: less complexity and more precise results

Recommendations for the design of multi-core
I Predictable single-core
I Sharing only if needed

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 63 / 64

computer science

saarland
universityReferences

C. Ferdinand et al.: Cache Behavior Prediction by Abstract Interpretation. Science of
Computer Programming 35(2): 163-189 (1999)
C. Ferdinand et al.: Reliable and Precise WCET Determination of a Real-Life
Processor, EMSOFT 2001
R. Heckmann et al.: The Influence of Processor Architecture on the Design and the
Results of WCET Tools, IEEE Proc. on Real-Time Systems, July 2003
St. Thesing et al.: An Abstract Interpretation-based Timing Validation of Hard
Real-Time Avionics Software, IPDS 2003
L. Thiele, R. Wilhelm: Design for Timing Predictability, Real-Time Systems, Dec. 2004
R. Wilhelm: Determination of Execution Time Bounds, Embedded Systems Handbook,
CRC Press, 2005
St. Thesing: Modeling a System Controller for Timing Analysis, EMSOFT 2006
J. Reineke et al.: Predictability of Cache Replacement Policies, Real-Time Systems,
Springer, 2007
R. Wilhelm et al.:The Determination of Worst-Case Execution Times - Overview of the
Methods and Survey of Tools. ACM Transactions on Embedded Computing Systems
(TECS) 7(3), 2008.
R.Wilhelm et al.: Memory Hierarchies, Pipelines, and Buses for Future Architectures in
Time-critical Embedded Systems, IEEE TCAD, July 2009
R. Wilhelm et al.: Designing Predictable Multicore Architectures for Avionics and
Automotive Systems, RePP Workshop, Grenoble, Oct. 2009

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 64 / 64

Tutorial ISCA 2010

Architectural Aspects of Deriving
Performance GuaranteesPerformance Guarantees

P t IIPart II
Timing analysis of parallel and distributed

b dd d tembedded systems

© Lothar Thiele

1Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

ContentsContents
Drivers
Compositional Analysis
 Overview
 Real-Time Calculus
 Artificial Example

A hi l I iArchitectural Interactions
 Shared Resources in Multicore Systems
 Compilation for Multiprocessors

Challenges

2Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Drivers

3Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Embedded SystemsEmbedded Systems
Information processing system that is physically

embedded within a larger system

ABS
gear box entertainment

motor control

climate control

4Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Target PlatformsTarget Platforms

ACC

ABS
ESP

ASR

engineg
control powertrain

control

5Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

A Sample HW Architecture (EU-SHAPES)A Sample HW Architecture (EU SHAPES)
OFF-CHIP

MEM
OFF-CHIP

MEM
OFF-CHIP

MEM
OFF-CHIP

MEM

Heterogeneous Tiles
Regular Tile-Structure

F
P
G
A

Tile Tile

MEM MEM

Tile Tile

MEM

ADC sensor

On-chip and off-chip
networks

A

DAC actuatorTile Tile

OFF-CHIP
MEM

OFF-CHIP
MEM

Tile Tile

OFF-CHIP
MEM

OFF-CHIP
MEM

Tile Tile

OFF-CHIP
MEM

OFF-CHIP
MEM

Tile Tile

OFF-CHIP
MEM

OFF-CHIP
MEM

ADC sensor

Tile Tile

OFF-CHIP OFF-CHIP

Tile Tile

OFF-CHIP OFF-CHIP
DSPDNP

NoC

RISC

3DT Off-chip
communication

Tile
DAC actuator

MEM MEM MEM MEMMulti-Layer BUS

POTDXM

ADC/DAC

6Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

A Sample HW Architecture (EU-SHAPES)A Sample HW Architecture (EU SHAPES)
OFF-CHIP

MEM
OFF-CHIP

MEM
OFF-CHIP

MEM
OFF-CHIP

MEM

Heterogeneous Tiles
Regular Tile-Structure

F
P
G
A

Tile Tile

MEM MEM

Tile Tile

MEM

ADC sensor

On-chip and off-chip
networks

A

DAC actuatorTile Tile

OFF-CHIP
MEM

OFF-CHIP
MEM

Tile Tile

OFF-CHIP
MEM

OFF-CHIP
MEM

Tile Tile

OFF-CHIP
MEM

OFF-CHIP
MEM

Tile Tile

OFF-CHIP
MEM

OFF-CHIP
MEM

ADC sensor

Tile Tile

OFF-CHIP OFF-CHIP

Tile Tile

OFF-CHIP OFF-CHIP
DSPDNP

NoC

RISC

3DT Off-chip
communication

Tile
DAC actuator

MEM MEM MEM MEMMulti-Layer BUS

POTDXM

ADC/DAC

7Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

IBM Cell ProcessorIBM Cell Processor

8Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Big PictureBig Picture

Large-scaleCentralized Networked Large scale
Distributed Systems

Centralized
Systems

Networked
Systems

New Applications and
System Paradigms

Internet

9Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

System Paradigms

9

ContentsContents
Drivers
Compositional Analysis
 Overview
 Real-Time Calculus
 Artificial Example

A hi l I iArchitectural Interactions
 Shared Resources in Multicore Systems
 Compilation for Multiprocessors

Challenges

10Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Compositionalp
Analysisy

- Overview -

11Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Analysis and DesignAnalysis and Design

Embedded System =
Computation + Communication + Resource Interaction

Analysis:
I f t ti fInfer system properties from
subsystem properties.

Design:
Build a system from subsystemsBuild a system from subsystems
while meeting requirements.

12Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

System CompositionSystem Composition
Communication Templates Computation Templates

DSP
SDRAM ECU

C CAN
interface

RISC

Scheduling and Arbitration
Templates

Architecture

proportional
shareWFQ

EDF
TDMA

FCFS

RISCSDRAM

priority

EDF

shareWFQ

staticdynamic
fixed priority

FCFS

ECU

priority

ECU

13Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

ECU ECU

Why Performance Analysis ?Why Performance Analysis ?

Prerequisite for design space exploration (design decisionsPrerequisite for design space exploration (design decisions
and optimization)
 part of the feedback cyclepart of the feedback cycle
 get inside into design characteristics and bottlenecks
 support early design decisionspp y g

Design validationg
 verify system properties
 used at various design stages from early design until final

implementation

14Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Distributed Embedded SystemDistributed Embedded System

Input
Stream

PDSP

Input I/O I/OStream I/O I/O

Computational Resources ...

15Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Distributed Embedded SystemDistributed Embedded System

Input
Stream

PDSP

Input I/O I/OStream I/O I/O

Computational Resources ...

... Communication Resources ...

16Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Distributed Embedded SystemDistributed Embedded System

Input
Stream

mP

Input I/OStream I/O

Computational Resources ...

... Communication Resources ...

Tasks

17Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

... Tasks

Why Is Evaluation Difficult ?Why Is Evaluation Difficult ?
Non-determinism:
 uncertain system environment, e.g. load scenarios
 (non-deterministic) computations in processing nodes

Interference:
 sharing exclusive resources (scheduling and arbitration)
 interaction between resource types: exclusive

(computation, communication) and shared (energy)
Long-term dependencies
 resource feedback: internal data streams interact on

l i hi h i t h texclusive resources which in turn change stream
characteristics

18Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

DifficultiesDifficulties

ProcessorProcessor
Task

ab acc b
BufferInput

Stream

ab acc b

Stream

Task Communication Variable Resource AvailabilityTask Communication
Task Scheduling
Complex Input:

Variable Resource Availability
Variable Execution Demand
- Input (different event types)Complex Input:

- Timing (jitter, bursts, ...)
- Different Event Types

- Input (different event types)
- Internal State (Program, Cache, ...)

19Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Different Event Types

System-Level Evaluation Methods

e g delay

System Level Evaluation Methods

e.g. delay

Worst-Case

Real System

Best-Case

Measurement Simulation Worst CaseProbabilisticReal System Measurement Simulation Worst Case
Analysis

Probabilistic
Analysis

20Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Overview

System

Overview

Measurements Formal Analysis StatisticsSimulation

Develop a
mathematical

Develop a
program whichUse existing

Develop a
statisticalmathematical

abstraction of the
system and

derive formulas

program which
implements a
model of the

system. Perform

Use existing
instance of the

system to
perform

statistical
abstraction of the

system and
derive statistic de e o u as

which describe
the system

performance.

syste e o
experiments by

running the
program.

pe o
performance

measurements.

de e stat st c
performance via

analysis or
simulation.

21Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

p p g

Performance Estimation MethodsPerformance Estimation Methods
component
simulation

designers
experience

model of

p

model of system

input
traces

application

model of

data
sheets

model of
environment

system
model

spec. of
inputs

model of
architecture

platform
benchmarks

estimation
tool (method)

estimation

22Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

results

Formal Analysis - Dynamic ModelsFormal Analysis Dynamic Models
Combination between
 Static models possibly extended by non-determinism in run-

time and event processing
D i d l f d ibi h i Dynamic models for describing e.g. resource sharing
mechanisms (scheduling and arbitration).

Existing approaches
 Classical real-time scheduling theoryClassical real time scheduling theory
 Stochastic queuing theory (statistical bounds)
 Non-deterministic queuing theory (worst case/best case o dete st c queu g t eo y (o s case/bes case

behavior)

23Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example - Queuing SystemsExample Queuing Systems

 Example: clients request some service from a server over a network Example: clients request some service from a server over a network.

24Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Stochastic Models - Queuing SystemsStochastic Models Queuing Systems
A queuing system is described by
 Arrival rate

Performance measures
 average delay in queueArrival rate

 Service mechanism
 Queuing discipline

average delay in queue
 time-average number of customers

in queue.
 proportion of time server is busy

The classical M/M/1 queuing system:
(M M k i () di t ib ti)(M = Markovian (exp.) distribution)

25Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Nondeterministic Models - Queuing SystemsNondeterministic Models Queuing Systems
A queuing system is described by

A i l f ti (b d
Performance measures

t d l i Arrival function (bounds on
arrival times)

 Service functions (bounds on

 worst case delay in queue
 worst-case number of customers in

queue.(
server behavior)

 Resource interaction

q
 worst-case and best-case end-to-

end delay in the system

TDMA

GPC GPCGPC

TDMA

GPC GPC

26Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Compositionalp
Analysisy

- Real-Time Calculus -

27Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Network/Real-time Calculus MethodsNetwork/Real time Calculus Methods
Advantages
 More powerful abstraction than “classical” real-time analysis
 Resources are first-class citizens of the method

f () () () Allows composition in terms of (a) tasks, (b) streams, (c)
resources, (d) sharing strategies.

Disadvantages
 Needs some effort to understand and implement Needs some effort to understand and implement
 Extension to new arbitration schemes not always simple

28Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Abstract Models for Performance AnalysisAbstract Models for Performance Analysis

ProcessorProcessor
Task

InputInput
Stream

Concrete
Instance
Abstract
Representation

Service
Model

p

Load
Model

Processing
Model

29Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Modular System CompositionModular System Composition
CPU BUS DSP

RM TDMA

TDMA

GPC GPCGPC GSC

TDMA

GPC GPC
30Swiss Federal

Institute of Technology
Computer Engineering

and Networks Laboratory

GPC GPC

Load Model (Environment)
Service
Model

Load
Model

Processing
ModelLoad Model (Environment)

events
E t St

Model Model

Event Stream

number of events in

t [ms] 2.5

number of events in
in t=[0 .. 2.5] ms

[]

Arrival Curve 
d ddemand

l
u

maximum / minimum
arriving demand in any

interval of length 2.5 ms

31Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

g
 [ms] 2.5

Example 1: Periodic with JitterExample 1: Periodic with Jitter
A common event pattern that is used in literature can be

ifi d b h i l (j d) h dspecified by the parameter triple (p, j, d), where p denotes
the period, j the jitter, and d the minimum inter-arrival
distance of events in the modeled streamdistance of events in the modeled stream.

periodic

p

periodicperiodic
jitter

p j  d

32Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example 1: Periodic with JitterExample 1: Periodic with Jitter

periodic periodic with jitter

33Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Service Model (Resources)
Service
Model

Load
Model

Processing
ModelService Model (Resources)

availability
R A il bilit

Model Model

Resource Availability

available service

t [ms]

available service
in t=[0 .. 2.5] ms

2.5 []

uService Curves [l, u]
i 

l
service

maximum/minimum
available service in any
interval of length 2.5 ms

34Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

g
 [ms] 2.5

Example 2: TDMA ResourceExample 2: TDMA Resource
Consider a real-time system consisting of n applications
h d i h b d id h B hthat are executed on a resource with bandwidth B that
controls resource access using a TDMA policy.
Analogo sl e co ld consider a distrib ted s stem ith nAnalogously, we could consider a distributed system with n
communicating nodes, that communicate via a shared
bus with bandwidth B with a bus arbitrator that implementsbus with bandwidth B, with a bus arbitrator that implements
a TDMA policy.
TDMA policy: In every TDMA cycle of length , one single cp y y y g , g
resource slot of length si is assigned to application i.

appl 1 appl 2 appl n appl 1 appl 2 appl n

c c

appl.1 appl.2 appl. n appl.1 appl.2 appl. n... ...

35Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

c csn

Example 2: TDMA ResourceExample 2: TDMA Resource
Service curves available to the applications / node i:

B si

csi c-si c2

36Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Service Model - Examples
Service
Model

Load
Model

Processing
ModelService Model Examples

full resource bounded delay

Model Model

full resource bounded delay

TDMA resource periodic resourceTDMA resource periodic resource

37Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Processing Model (HW/SW)
Service
Model

Load
Model

Processing
ModelProcessing Model (HW/SW)

HW/SW C t

Model Model

HW/SW Components

Processing semantics
d f ti lit fand functionality of
HW/SW tasks

t
HW/SW

Task

Abstract Components

t






’ 
RTC

38Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Predicate 

FoundationFoundation
Real-Time Calculus can be regarded as a worst-
case/best case variant of classical queuing theory It iscase/best-case variant of classical queuing theory. It is
a formal method for the analysis of distributed real-time
embedded systems.y
Related Work:
 Min-Plus Algebra: F. Baccelli, G. Cohen, G. J. Olster, and J.

P Q d t S h i ti d Li it A Al b fP. Quadrat, Synchronization and Linearity --- An Algebra for
Discrete Event Systems, Wiley, New York, 1992.

 Network Calculus: J.-Y. Le Boudec and P. Thiran, Network ,
Calculus - A Theory of Deterministic Queuing Systems for
the Internet, Lecture Notes in Computer Science, vol. 2050,
Springer Verlag, 2001.Springer Verlag, 2001.

 Adversarial Queuing Theory [Andrews, Borodin, Kleinberg,
Leighton, … 1996]

39Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Greedy Processing ComponentGreedy Processing Component

C t i t i d b

Behavioral Description
• Component is triggered by

incoming events.

• A fully preemptable task is

GPC

A fully preemptable task is
instantiated at every event arrival
to process the incoming event.

• Active tasks are processed in a
greedy fashion in FIFO order.

P i i t i t d b th• Processing is restricted by the
availability of resources.

40Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Greedy Processing Component (GPC)Greedy Processing Component (GPC)
available
resources

FIFO bufferinput outputinput
event

stream

output
event

stream

remaining
resourcesresources

Examples:
 computation (event – task instance, resource – computing p (p g

resource [tasks/second])
 communication (event – data packet, resource – bandwidth

[packets/second])

41Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

[packets/second])

AbstractionAbstraction

GPC GPCGPC GPC

time domain time-interval domain
cumulative functions variability curves

42Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Greedy Processing Component (GPC)Greedy Processing Component (GPC)

Conservation Laws

C(t) C(t)
R(t)

R(t) R’(t)

R(t)

R’(t)GPC

C’(t)

43Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

()
t

Tight BoundsTight Bounds

[l, u]

[l, u] [l’, u’][,] [,]

GPC

44Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

[l’, u’]

Delay and BacklogDelay and Backlog

delay D

maximum delay D

GPC

maximum
backlog B

GPC

backlog B
backlog B

45Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Celebrated Result on Delay and BacklogCelebrated Result on Delay and Backlog
maximum
end-to-end

delay D

accumulated
maximum
backlog Bbacklog B

end to end delay Dend-to-end delay D

GPC1 GPC2 GPCn
…

46Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

System Composition
Service
Model

Load
Model

Processing
ModelSystem Composition

CPU BUS DSP

Model Model

RM TDMA

How to inter-
connect service?

GPC GPCGPC GSC
Scheduling!

GPC GPCGPC GSC

47Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

GPC GPC

Scheduling and Arbitration
Service
Model

Load
Model

Processing
Model

FP/RM EDF RR

Scheduling and Arbitration Model Model

GPC

GPC

EDF RR

TDMAGPS

share TDMA

GPC

share

GPC

TDMA

GPC

sum

GPC

48Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

sum

Complete System Composition
Service
Model

Load
Model

Processing
ModelComplete System Composition

CPU BUS DSP

Model Model

RM TDMA

TDMA

GPC GPCGPC GSC

TDMA

GPC GPC
49Swiss Federal

Institute of Technology
Computer Engineering

and Networks Laboratory

GPC GPC

Compositionalp
Analysisy

- Artificial Examples-

50Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Greedy Traffic ShaperGreedy Traffic Shaper

Access ShaperAccess Shaper
 delays access requests such that the resulting access pattern

conforms to a given specificationg p

Greedy Access Shapery p
 no access request gets delayed any longer than necessary



51Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Why Access Shaping?Why Access Shaping?
Internal Re-Shaping
 Reduces global buffer requirements
 Reduces end-to-end delays

External Input-Shaping
E ifi ti f t t i t Ensures specification conformant system inputs

How to model and
analyze greedy shapers?analyze greedy shapers?

52Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Modeling of Greedy Shapers
Service
Model

Load
Model

Processing
ModelModeling of Greedy Shapers

G d Sh

Model Model


Greedy Shaper

t

Abstract Greedy Shaper

t

y p 

 ’ 


53Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Internal Re-ShapingInternal Re Shaping
Delay?

Buffer?

Stream 1 T3

CPU3

T1

CPU1

GPC GPC1

1 3

Stream 1 T3T1 GPC GPC1

2

Stream 2 T2

CPU2

T4GPC GPC2

2

54Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Delay?

Internal Re-Shaping
Delay?– 7.4%

Internal Re Shaping

44%Buffer?– 44%
GPC GPC1

1 3

GPC GPC1

2



GPC GPC2

2



40%
55Swiss Federal

Institute of Technology
Computer Engineering

and Networks Laboratory

Delay?– 40%

Case StudyCase Study
S1 6 Real-Time Input Streams

with jitter

ECU1 CC1
S2

S3

- with jitter
- with bursts
- deadline > period

BUS ECU3CC3

3
3 ECU’s with own CC’s

13 Tasks & 7 Messages
S6

ECU2 CC2
S4

S5

13 Tasks & 7 Messages
- with different WCED

2 Scheduling Policiesg
- Earliest Deadline First (ECU’s)
- Fixed Priority (ECU’s & CC’s)

Hierarchical Sched lingHierarchical Scheduling
- Static & Dynamic Polling Servers

Bus with TDMA

Total Utilization:
- ECU1 59 %
- ECU2 87 %

56Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Bus with TDMA
- 4 time slots with different lengths
(#1,#3 for CC1, #2 for CC3, #4 for CC3)

- ECU3 67 %
- BUS 56 %

Specification DataSpecification Data

57Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

The Distributed Embedded System...The Distributed Embedded System...
ECU1 BUS

(TDMA)
CC1

ECU3CC3S1 (TDMA)

C1.1
T1.1PS

FPFP ECU3

T1 2

FP FP

CC3

PS

S1

S1

C1.2

T1.3T2.1

T3.1

T1.2

EDF

PS
S2

S3

C3.2T3.3
FP

T2.2

PS

S3

T6 1S6
C2.1

C3.1ECU2 CC2

T3.2

T4.2

T6.1S6

S6

C4.1
T4.1

FP T5.2

S4

58Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

C5.1
T5.1S5

... and its MPA Model... and its MPA Model
CPU CPUECU1 ECU3BUS

S1 T1 1

PS

T1 2C1 1

PS
CC1

TDMA

S1

S2

T1.1

T1.3
T2 1

T1.2

C1.2
C2 1

C1.1

T2 2S2

S3

T2.1

T3.1
PS

C2.1

C3.1

T2.2
CC3

EDF

T3.2C3.2

T6.1S6

T3.3

S4 C4.1

CPU

T4.1 T4.2

ECU2
CC2

59Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

S5

S4 C4.1

C5.1

T4.1

T5.1 T5.2

T4.2

Buffer & Delay Guarantees
d

b
y

CPU CPUECU1 ECU3BUS

b

TDMA

S1 T1.1

PS

T1.2C1.1

PS
CC1 313

TDMA

S2
T1.3

T2.1
C1.2

C2.1 T2.25
7 1

5

7.12

1.80

S3 T3.1
PS

T3 2C3 2

C3.1
CC3

T3.3 62

2 4

65.30

EDF

T3.2C3.2

T6.1S6

T3.3 62

5

65 3

3 69

S4 C4.1

CPU

T4.1 T4.2

ECU2
CC251

3.69

0.50

60Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

S5 C5.1T5.1 T5.22 5 0.70

Available & Remaining Service of ECU1Available & Remaining Service of ECU1
CPU CPUECU1 ECU3BUS

S1 T1 1

TDMA
PS

T1 2C1 1

PS

CC1S1

S

T1.1

T1.3
T

T1.2

C1.2
C

C1.1

TS2

S3

T2.1

T3.1
PS

C2.1

C3.1

T2.2
CC3

T3.3
EDF

T3.2C3.2

ECU

S4 C4.1

CPU

T4.1 T4.2

ECU2

CC2

61Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

S5 C5.1T5.1 T5.2

Input of Stream 3Input of Stream 3
CPU CPUECU1 ECU3BUS

S1 T1 1

PS

T1 2C1 1

PS
CC1

TDMA

S1

S2

T1.1

T1.3
T2 1

T1.2

C1.2
C2 1

C1.1

T2 2S2

S3

T2.1

T3.1
PS

C2.1

C3.1

T2.2
CC3

EDF

T3.2C3.2

T6.1S6

T3.3

S4 C4.1

CPU

T4.1 T4.2

ECU2
CC2

62Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

S5

S4 C4.1

C5.1

T4.1

T5.1 T5.2

T4.2

Output of Stream 3Output of Stream 3
CPU CPUECU1 ECU3BUS

S1 T1.1

PS

T1.2C1.1

PS
CC1

TDMA

S2
T1.3

T2.1
C1.2

C2.1 T2.2

S3 T3.1
PS

T3 2C3 2

C3.1
CC3

T3 3

EDF

T3.2C3.2

T6.1S6

T3.3

S4 C4.1

CPU

T4.1 T4.2

ECU2
CC2

63Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

S5

4 4

C5.1

4

T5.1 T5.2

4

RTC Toolbox (www mpa ethz ch/rtctoolbox)RTC Toolbox (www.mpa.ethz.ch/rtctoolbox)

M tl b C d Li Si li kMatlab Command Line Simulink

RTC Toolbox
MPA Library RTI Library

RTC Toolbox

Min-Plus/Max-Plus Algebra Library

Matlab / Java Interface

Java API

Min Plus/Max Plus Algebra Utilities

Efficient Curve Representation

Min-Plus/Max-Plus Algebra, Utilities

64Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

ContentsContents
Drivers
Compositional Analysis
 Overview
 Real-Time Calculus
 Artificial Example

A hi l I iArchitectural Interactions
 Shared Resources in Multicore Systems
 Compilation for Multiprocessors

Challenges

65Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Architectural Interactions

- Shared Resources in Multicore Systems -- Shared Resources in Multicore Systems -

66Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Interferences:
CPU1/Core2 blocked by CPU1/Core1 on L2 Cache
CPU2/Core1 blocked by CPU1/Core1 on Main Memoryy y
CPU1/Core2 blocked by CPU2/Core1 on Main Memory

Motivation

 COTS Systems use shared resources (Memory, Bus)
 Multiple entities competing for shared resourcesp p g
 waiting for other entities to release the resource
 accessing the resources

CCC CCC CM i M t dCC CC

67

Task executing on Core 1L1 Cache accessedL2 Cache accessedMain Memory accessed
Task executing on Core 2L1 Cache accessedL2 Cache is blocked by Core 1 - stall

Task is executing on Core 1L1 Cache accessedL2 Cache accessedMain Memory is blocked by CPU 1 - stallMain Memory request served Main Memory is accessedL2 Cache request served
L2 Cache accessedMain Memory blocked by CPU 2 - stall

Main Memory request served
Main Memory accessed
L1 Cache request served L2 Cache request servedL1 Cache request served
Main Memory access servedL2 Cache request servedL1 Cache request served

Motivation (2)

Multi-Core Architecture with shared resource
 shared memory, communication peripherals, I/O peripherals

Stalling due to InterferenceStalling due to Interference
 Depends on structure of tasks on the cores
 Depends on blocking vs. non-blocking execution semantics
 Depends on arbitration policy on the shared resource

 static access, for example TDMA
 dynamic access, for example round robin, FCFS, priority driveny p p y

68

Related Work

 Schliecker et al. [CODES 2006, CODES 2008, DATE 2010][]
 Event models specify tasks interference in time windows
 tasks active time increases by number of interferences
 Iterative approach to compute WCET Iterative approach to compute WCET

 Rosen et al. [RTSS 2007]
 static analysis delivers feasible execution traces

 i TDMA h d l th WCET i t d a given TDMA schedule the WCET is computed
 efficient TDMA schedules are obtained using EA

69

Task / Superblock Model (1)

 Tasks are structured as sequences of superblocks
 fixed order of execution

 b d i d i i d d upper bounds on execution and communication demands
 Dedicated phases for resource access and computation
 phases have different amount of access requests phases have different amount of access requests
 structure increases predictability (in terms of WCRT)
 model motivated by industrial applications in the automotive industry

70

Task / Superblock Model (2)

 3 Models to specify resource accesses:

di d d l Dedicated Model

 General Model

 Hybrid Model

 2 Models to execute superblocks:
 Sequential

Ti t i d (bl k h)

71

 Time-triggered (superblocks, phases)

Static execution on the processing element

72

TDMA on the shared resource
I d d b t t k i l f i t fIndependence between tasks single source of interference

73

Static Arbitration (1)

 Generate worst-case
trace

 Read/Write access
whenever slot is activewhenever slot is active

 Execution is performed p
immediately

A PE2 t
74

 Assume PE2 grants
access:

Static Arbitration (2)

 Generate worst-case
trace

 Where to place the
access requests ?access requests ?

 Algorithm for WCCT g
by maximizing
stalling

 Assume PE2 grants

75

Assume PE2 grants
access:

Analysis for static arbitration - Summary

 analysis is complex
 makes use of arrival and service curves (real-time calculus)
 has been extended to dynamic resource sharing as well

 analysis handles dedicated and general phasesy g p
 sequential and time-triggered execution

 analysis of mixed models possible by compositionanalysis of mixed models possible by composition
 superblocks can be specified using different models

 Time complexity Time complexity
 Dedicated phase:
 General phase:

()O M Q
(lo)g m axO M exec

76

 General phase: (lo)gO M execQ

Resource Access Models (1)

 Influence of different access models on schedulabilityy
 Influence of the execution model on predictability

(equivalent WCRT)

 Intuition:
 Separation of resource access and computation increases

predictability
 Everything time-triggered increases predictability ?Everything time triggered increases predictability ?

77

Resource Access Models (2) - Reminder

 3 Models to specify resource accesses:

di d d l Dedicated Model

 General Model

 Hybrid Model

 2 Models to execute superblocks:
 Sequential

Ti t i d

78

 Time-triggered

Resource Access Models (3)

79

Schedulability between Models

80

81

Comparisons of Access Models

 Intuition:

? Separation of resource access and computation increases
predictability

 Everything time-triggered increases predictability  Everything time triggered increases predictability

 Excessive time-triggering may degrade performance
 No advantage in terms of predictability No advantage in terms of predictability
 Model DS is model choice for resource sharing systems
 Separate Memory Access and Computation

82

Separate Memory Access and Computation

Conclusion

 Resource Sharing in Multi-Core Systems is an important
issue in terms of
 Analyzability
 Predictability
 Efficiency Efficiency

 Static arbitration policies
Eli i ti f I t f Elimination of Interference

 Tight bounds on WCCT can be derived

 Excessive time-triggering is counter productive

Even for simple models:
83

Even for simple models:
Resource Sharing is a hard Problem

Architectural Interactions

Compilation for Multiprocessors- Compilation for Multiprocessors-

84Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Versatile MPSoC Software Design FlowVersatile MPSoC Software Design Flow

85Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

DOL Design FlowDOL Design Flow
CorrectnessCorrectness ScalabilityScalability OptimalityOptimality AccuracyAccuracy

Scheduling -Mapping Optimizercalibr.
data

Performance EstimationPerformance Estimation

data

architecture application mapping

HdS / OS

application architecture mapping

HdS / OS

Compiler

binary VP simulator

86Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Application SpecificationApplication Specification
Structure

Process Network
 Processes
 SW channels (FIFO behavior)SW channels (FIFO behavior)

Iterators
 Scalability for processes, SW

channels entire structureschannels, entire structures

Functional specification
Language: C/C++
API: DOL primitives

87Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Target Platform Abstraction (1)Target Platform Abstraction (1)
Topology modeled by a graph
 two node types: DXM interface DXM two node types:

• execution and comm. resources
• storage resources

DXM interface

NoC

DXM

DSP sub-system

Multi-layer BUS

g
Execution resources
 RISCs, DSPs, … DSP Int. Data Memory

AHB Slave
AHB Master

DMA
DNP sub-

system

Communication resources
 buses, switches, links, I/Os

core

Storage resources
 RAMs, HW FIFOs, … DXM

DMA

DMX interface

buf mem.
of switchbus

DSP switch

of switch

DNP

bus

88Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Target Platform Abstraction (2)Target Platform Abstraction (2)

ATMEL DiopsisATMEL Diopsis
Platform

Specification
in XML syntax

89Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Mapping SpecificationMapping Specification
Binding
 Processes to

execution
resources

 SW channels to
read/write paths

Schedulingg
 Processors
 Communication

Constraints

Specification
in XML syntax

Constraints
 For Hardware-

dependent
Software (HdS)Software (HdS)
generation

90Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

DOL Design FlowDOL Design Flow

Scheduling -Mapping Optimizer

Performance EstimationPerformance Estimation

architecture application mappingapplication architecture mapping

HdS / OSHdS / OS

Compiler

binary VP simulator

91Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Multiobjective OptimizationMultiobjective Optimization

Pareto optimal

y2x2

decision
space

objective
space

Pareto optimal
=

not dominated

dominated

x1 y1

92Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Design Space ExplorationDesign Space Exploration

93Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Design Space ExplorationDesign Space Exploration
Example for ATMEL Multitile Platform:
 64 processes, 16 processors, optimal mapping known
 32 processes execute efficiently on ARM, 32 efficiently on mAgic

diff t i t ti t t b t different interconnection structures between processes
 1664  1.15  1077 possible mappings (including symmetric ones)
 Evaluation of 10 000 mappingsEvaluation of 10.000 mappings

max processor load

94Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

max. processor load
max. interconnect load

PISA WebsitePISA Website

http://www tik ee ethz ch/pisahttp://www.tik.ee.ethz.ch/pisa

95Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

DOL Design FlowDOL Design Flow

Scheduling -Mapping Optimizercalibr.
data

Performance EstimationPerformance Estimation

data

architecture application mappingapplication architecture mapping

HdS / OSHdS / OS

Compiler

binary VP simulator

96Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Multitile CalibrationMultitile Calibration

97Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Functional SimulationFunctional Simulation
process network processes

C2_0 C2_i

iterator_i
p
(with iterators)

.c.c

p
behavior

generator consumer

XML

.c.c …

flattened
process network

(w/o iterators)

XML
Flattener

Simulation
GeneratorC2_0 C2_1 C2_2

square_1 square_2

visualization
generator consumer

SystemC
Si l ti

98Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Simulation

Workload ExtractionWorkload Extraction
functional simulation workload bounds

accumulated
amount after

accumulated
workload

amount after
communication
event

number of
consecutive
events

99Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

DOL Design FlowDOL Design Flow

Scheduling -Mapping Optimizer

Performance EstimationPerformance Estimation

architecture application mappingapplication architecture mapping

HdS / OSHdS / OS

Compiler

binary VP simulator

100Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

IntegrationIntegration

101Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example: Wave Field SynthesisExample: Wave Field Synthesis

+WFS Signal
Processing

+WFS Signal
Processing

+WFS Signal
Processing

WFS Signal

Processing

+WFS Signal
Processing

102Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example: Architecture TemplateExample: Architecture Template

103Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example: Application ModelingExample: Application Modeling

104Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example: Compilation TimesExample: Compilation Times

105Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example: AccuracyExample: Accuracy

observed estimatedobserved estimated

106Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

ContentsContents
Drivers
Compositional Analysis
 Overview
 Real-Time Calculus
 Artificial Example

A hi l I iArchitectural Interactions
 Shared Resources in Multicore Systems
 Compilation for Multiprocessors

Challenges

107Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Challengesg

- Abstractions -

108Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

WCET

LOAD r2 a

WCET

LOAD r2, a

LOAD r1, _b

ADD r3,r2,r1

x = a + b;

Execution Time (Clock Cycles)

PPC 755

200

250

300

350

0

50

100

150

200
Clock Cycles

© R i h d Wilh l

109Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

0

Best Case Worst Case
© Reinhard Wilhelm

(Timing) Predictability(Timing) Predictability
response timep

WCRT

WCRT
Bound

WCRT

BCRT

year

BCRT
BCRT
Bound

110Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Bound

WCETWCET

© Reinhard Wilhelm

111Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Application and ArchitectureApplication and Architecture
fixed cycle

CPU
multiple
cores

distributedsingle
processor

Application
Architecture

CPU coresprocessor

single
tasktask

staticstatic
tasks

dynamic
tasks

112Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Classification of Predictability LossClassification of Predictability Loss

d i
analysis

system design

BCRT
bound

BCRT WCRT WCRT
bound

Analysis Loss:
 Construct system that can be easily analyzed
 Use appropriate abstractions (models and methods)

System Design Loss:
 Decrease interference, long-range dependencies
 Increase robustness of components

U i t i t f

113Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

 Use appropriate interfaces

Interfaces
WCET arbitration

schedulerInterfaces
HW/SW

A task is (classically) characterized by its WCET.
 May be useful in case of simple processors, but we have

long range state dependent uni processor behaviorlong-range state-dependent uni-processor behavior
(pipelines, caches, speculation).

 In case of multi-processors, we have additional interferences p ,
on the communication system which heavily influences
WCET. We also may have intra-task parallelism.

 WCET can no longer be considered as a useful interface
between these abstraction layers.

What about the other interfaces ?What about the other interfaces ?
 Is the classical ISA (using instructions that abstract away

time) still appropriate?

114Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

time) still appropriate?

AcknowledgementAcknowledgement
Co-workers:
Ji Ji Ch I li B i K i L kJian-Jia Chen, Iuliana Bacivarov, Kai Lampka,
Wolfgang Haid, Simon Perathoner, Nikolay Stoimenov,
Kai Huang Andreas Schranzhofer Marco CaccamoKai Huang, Andreas Schranzhofer, Marco Caccamo,
Rodolfo Pellizzoni
Funding:Funding:
EU-SHAPES, EU-PREDATOR, EU-COMBEST, EU-
ARTISTDESIGN, EU-EURETILE, EU-PRO3D, IBM,
Siemens, NCCR-MICS, KTI
Further Information:
 http://www.tik.ee.ethz.ch/~thiele
 http://www.tec.ethz.ch

115Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

	Timing analysis and predictability of caches
	Caches
	Cache Analysis for Least-Recently-Used
	Beyond Least-Recently-Used

	Predictability of architectures
	Pipeline Analysis
	Timing anomalies
	Classification of architectures

	Extension to multi-core
	Why multi-core?
	Predictable multi-core
	Analysis of current multi-core

