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Abstract

In this paper, we discuss the extension to the functional setting of the common
principal component model that has been widely studied when dealing with mul-
tivariate observations. We provide estimators of the common eigenfunctions and
study their asymptotic behavior.

Résumé

Dans cet exposé, nous discutons l’extension au cas fonctionnel du modèle de
composantes principales communes, qui a été largement étudié lorsqu’on s’intéresse
à des observations multivariées. Nous proposons des estimateurs pour les com-
posantes principales communes et nous étudions leur distribution asymptotique.
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1. Introduction

Functional data analysis is an emerging field in statistics that has received consid-
erable attention during the last decade due to its applications to many other different
areas. It provides modern data analytical tools for data that are recoded as a continuous
phenomenon over a period of time. Because of the intrinsic nature of these data, they
can be viewed as realizations of random functions X1(t), . . . , Xn(t) often assumed to be
in L2([0, 1]). In this context, principal components analysis offers an effective way for
dimension reduction and it has been extended from the traditional multivariate setting
to accommodate functional data. In the functional data analysis literature, it is usually
referred to as functional principal component analysis (fpca).

In many situations, we have independent observations Xi,1(t), · · · , Xi,ni
(t) from k in-

dependent samples of random functions in L2[0, 1] with mean µi and covariance operators
Γi. As it is the case in the finite–dimensional setting, the covariance operators may exhibit
some common structure. The common principal components model, introduced by Flury
[?] for p−th dimensional data, allow the covariance matrices to have different eigenvalues
but identical eigenvectors. A natural extension to the functional setting of the common
principal components model is to assume that the covariance operators Γi have common
eigenfunctions φj(t) but different eigenvalues λij. We will denote this model the functional
common principal component (fcpc) model.

The aim of this talk is to provide estimators of the common eigenfunctions and the
eigenvalues under a fcpc model and to study their asymptotic behavior. Proofs are given
by Boente, Rodriguez and Sued [?].

2. Notation and Preliminaries

Let Xi,1(t), · · · , Xi,ni
(t), 1 ≤ i ≤ k, be independent observations from k independent

samples of smooth random functions in L2[I], where I = [0, 1], with mean µi. De-
note by γi and Γi the covariance function and operator, respectively, related to each
population. To be more precise, we are assuming that {Xi,1(t) : t ∈ I} are k stochas-
tic processes defined in (Ω,A, P ) with continuous trajectories, mean µi and finite sec-

ond moment, i.e., E (Xi,1(t)) = µi(t) and E
(
X2

i,1(t)
)

< ∞ for t ∈ I. Each covari-

ance function γi(t, s) = cov(Xi,1(s), Xi,1(t)), s, t ∈ I has an associated linear operator
Γi : L2[0, 1] → L2[0, 1] defined as (Γi u) (t) =

∫ 1
0 γi(t, s)u(s)ds, for all u ∈ L2[0, 1]. As

in the case of one population, throughout this paper, we will assume that the covariance
functions satisfy ‖γi‖2 =

∫ 1
0

∫ 1
0 γ2

i (t, s)dtds < ∞. Therefore, Γi is a self–adjoint con-
tinuous linear operator. Moreover, Γi is a Hilbert-Schmidt operator. The fcpc model
assume that the covariance operators Γi have common eigenfunctions {φj(t) : j ≥ 1},
to be estimated, as well as the eigenvalues associated to each covariance operator Γi,
1 ≤ i ≤ k.
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When dealing with one population, estimators of the eigenfunctions and eigenvalues of
Γ were defined, in a natural way, through the empirical covariance operator by Dauxois,
Pousse and Romain [?]. In the present setting, we will give two proposals to estimate the
common eigenfunctions under a fcpc model. Both of them are based on estimators Γ̂i of
the covariance operators Γi, like Γ̂i,r, the operator associated to the empirical covariance

functions γ̂i,r(s, t) = 1
ni

∑ni
j=1

(
Xi,j(s)−X i(s)

) (
Xi,j(t)−X i(t)

)
.

Assume ni = τiN with 0 < τi < 1 fixed numbers such that
∑k

i=1 τi = 1 and where
N =

∑k
i=1 ni denotes the total number of observations in the sample. Define the weighted

covariance function as γ =
∑k

i=1 τiγi and its related operator as Γ =
∑k

i=1 τiΓi. Therefore,
γ̂r =

∑k
i=1 τiγ̂i,r and Γ̂r =

∑k
i=1 τiΓ̂i,r provide estimators of γ and Γ, respectively. It is

worth noticing that our results do not make use of the explicit expression of the covariance
operator estimators, but they only require their consistency and asymptotic normality.

3. The proposals

Let us assume that the fcpc model hold, i.e., Γi have common eigenfunctions φj(t)
but possible different eigenvalues λij, where λij = 〈φj,Γiφj〉. Moreover, throughout this
paper we will assume that

A1. λi1 ≥ λi2 ≥ · · · ≥ λip ≥ λip+1 · · ·, for 1 ≤ i ≤ k

A2. There exists ` such that for any 1 ≤ j ≤ `, there exists 1 ≤ i ≤ k such that
λij > λi j+1.

The first proposal is based on the fact that under the fcpc model, the common
eigenfunctions {φj : j ≥ 1} are also a basis of eigenfunctions for the operator Γ =∑k

i=1 τiΓi, with eigenvalues given by ν1 =
∑k

i=1 τiλi1 ≥ · · · ≥ νp =
∑k

i=1 τiλip ≥ νp+1 =∑k
i=1 τiλi p+1 · · ·. Note that A1 and A2 entail that the first ` eigenfunctions will be related

to the ` largest eigenvalues of the operator Γ, having multiplicity one and being strictly
positive. A first attempt to estimate the common eigenfunctions consists in considering
the eigenfunctions φ̃j related to the largest eigenvalues ν̂j of a consistent estimator Γ̂ of

Γ, obtained as Γ̂ =
∑k

i=1 τiΓ̂i where Γ̂i denotes any estimator of the i−th covariance
operator. An example of such estimators are those associated to the empirical covariance
functions γ̂i,r. The eigenvalue estimators can then be defined as λ̂ij = 〈φ̃j, Γ̂iφ̃j〉.

The second proposal tries to improve the efficiency of the previous one for gaussian
processes. To that purpose, we will have in mind that, in the finite–dimensional case, the
maximum likelihood estimators of the common directions for normal data solve a system of
equations involving both the eigenvalue and eigenvector estimators (see Flury, [?]). Using
consistent estimators of the eigenvalues, we generalize the system obtained by Flury to
the infinite–dimensional case. Effectively, let λ̂ij be initial estimators of the eigenvalues
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and Γ̂i any consistent estimator of the covariance operator of the i−th population. Define

for j ≤ ` and m ≤ `, Γ̂mj =
∑k

i=1 τi
λ̂ij−λ̂im

λ̂imλ̂ij
Γ̂i , which will be asymptotically well defined

under A2 if in addition λi` > 0 for 1 ≤ i ≤ k. The second proposal considers the solution
φ̂j of the system of equations{

δmj = 〈φ̂m, φ̂j〉
0 = 〈φ̂m, Γ̂mjφ̂j〉 1 ≤ j < m .

(1)

4. Asymptotic distribution

It is clear that consistency of each population covariance operator estimator ensures
consistency of the pooled one. The results in Section 2.1 of Dauxois, Pousse and Ro-
main [?], allow to obtain the asymptotic distribution of the estimators of the common
eigenfunctions when considering the first proposal using the sample covariance operators.
In particular, we obtain the following result (see, Boente, Rodriguez and Sued, [?], for
details).

Proposition 4.1. Let us assume that Γ̂i is the empirical operator Γ̂i,r, that E(‖Xi,1‖4) <
∞, for 1 ≤ i ≤ k, and that A1 and A2 hold. For each eigenfunction φj of Γ related to
the eigenvalue νj =

∑k
i=1 τiλij with multiplicity one, we have that

a)
√

N(φ̃j − φj, φj)
p−→ 0

b) For any j 6= m
√

N〈φ̃j − φj, φm〉 → N (0, σ2
mj) with

σ2
jm =

{
k∑

i=1

τi(λij − λim)

}−2 k∑
i=1

τiλimλijE[f 2
imf 2

ij]

Moreover, if Xi,1 are gaussian processes, for all 1 ≤ i ≤ k, we get that

σ2
jm =

{
k∑

i=1

τi(λij − λim)

}−2 k∑
i=1

τiλimλij . (2)

The following Theorem provides the asymptotic behavior of the eigenvalue estima-
tors under mild conditions on the eigenfunction estimators. It can be used to derive
the asymptotic normality of the eigenvalue estimators when using, either Proposal 1 or
Proposal 2 to estimate the eigenfunctions.

Theorem 4.1. Let Γ̂i be an estimator of the covariance operator of the i−th population

such that
√

ni(Γ̂i − Γi)
D−→ Ui, where Ui is zero mean gaussian random element with

4



covariance operator Υi. Let φ̃j be consistent estimators of the common eigenfunctions

such that
√

N
(
φ̃j − φj

)
= Op(1) and define estimators of λij as λ̂ij = 〈φ̃j, Γ̂iφ̃j〉. For any

fixed m, denote Λ̂
(m)

i =
{√

ni

(
λ̂ij − λij

)}
1≤j≤m

. Then,

a) For each 1 ≤ i ≤ k,
√

ni

(
λ̂ij − λij

)
has the same asymptotic distribution as

√
ni

(
〈φj, Γ̂iφj〉 − λij

)
.

b) For any m fixed, Λ̂
(m)

1 , . . . , Λ̂
(m)

k are asymptotically independent.

c) If, in addition, the covariance operator Υi of Ui is given by

Υi =
∑

m,r,o,p

simsirsiosipE[fimfirfiofip] φm⊗φr⊗̃φo⊗φp −
∑
m,r

λimλir φm⊗φm⊗̃φr⊗φr

then, Λ̂
(m)

i is jointly asymptotically normally distributed with zero mean and covari-

ance matrix C(i,m) such that C
(i,m)
jj = λ2

ij

[
E

(
f 4

ij

)
− 1

]
and C

(i,m)
js = λijλis

[
E

(
f 2

ijf
2
is

)
− 1

]
,

that is, the asymptotic variance of
√

ni

(
λ̂ij − λij

)
is given by λ2

ij

[
E

(
f 4

ij

)
− 1

]
and

the asymptotic correlations are given by

E
(
f 2

ijf
2
is

)
− 1[

E
(
f 4

ij

)
− 1

] 1
2 [E (f 4

is)− 1]
1
2

.

Moreover, in the normal case, we get that the components of Λ̂
(m)

i are asymptotically
independent with asymptotic variances 2λ2

ij.

Finally, in order to study the asymptotic behavior of the second proposal, let Γmj =∑k
i=1 τi [(λij − λim) / (λimλij)]Γi and denote φ?

j any solution of{
δmj = 〈φ?

m, φ?
j〉

0 = 〈φ?
m,Γmjφ

?
j〉 1 ≤ j < m .

(3)

It is easy to see that if the covariance operators satisfy a fcpc model, then φj satisfies
(??). Moreover, in Boente, Rodriguez and Sued [?] the consistency of the estimators
defined through (??) is derived under mild conditions. The following result states the
asymptotic behavior of the coordinates {〈φ̂j, φs〉 : s ≥ 1} of the common eigenfunctions

estimators φ̂j defined through Proposal 2 that will allow to establish an improvement in
efficiency for gaussian processes.

Theorem 4.1. Let Γ̂i be an estimator of the covariance operator of the i−th satisfying
the same assmptions as in Theorem 4.1. Let λ̂ij be consistent estimators of the eigenvalues
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of the i−th population λij and φ̂j consistent estimators of the common eigenfunctions φj,

solution of (??) and denote ĝj =
√

N
(
φ̂j − φj

)
. Assume A1, A2 and that λi` > 0, for

all 1 ≤ i ≤ k. If, in addition, for any j ≤ `, m ≤ `, the following two conditions hold

i) 〈ĝj, φ̂m − φm〉 = op(1)

ii) the operators Γi have finite rank `, for all 1 ≤ i ≤ k, or 〈ĝj,Γi

(
φ̂m − φm

)
〉 = op(1).

then, for any j ≤ `, m ≤ `, m 6= j we have that

a) 〈ĝm, φj〉 has the same asymptotic distribution as −〈ĝj, φm〉.

b) For j < m, 〈ĝj, φm〉
D−→ N (0, θ2

jm), where

θ2
jm =

k∑
i=1

τi
(λim − λij)

2

λimλij

E
(
f 2

imf 2
ij

)
{

k∑
i=1

τi
(λim − λij)

2

λimλij

}2 . (4)

Remark 4.1. Note that in the gaussian case, we get E
(
f 2

imf 2
ij

)
= 1 and so the asymptotic

variance of coordinates of the common eigenfunction estimates, defined through Proposal
2, reduces to

θ2
jm =

{
k∑

i=1

τi
(λim − λij)

2

λimλij

}−1

On the other hand, the common eigenfunction estimates, defined through Proposal 1,
have asymptotic variances σ2

jm given by (??). Since θ2
jm ≤ σ2

jm, we obtain that the
estimates of Proposal 2 are more efficient that those of Proposal 1 for gaussian processes.
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