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Abstract: Evolution Strategies (ESs) are population-based methods well suited for
parallelization. In this report, we study the convergence of the (µ/µw, λ)-ES, an ES
with weighted recombination, and derive its optimal convergence rate and optimal µ
especially for large population sizes. First, we theoretically prove the log-linear con-
vergence of the algorithm using a scale-invariant adaptation rule for the step-size and
minimizing spherical objective functions and identify its convergence rate as the ex-
pectation of an underlying random variable. Then, using Monte-Carlo computations
of the convergence rate in the case of equal weights, we derive optimal values for µ
that we compare with previously proposed rules. Our numerical computations show
also a dependency of the optimal convergence rate in ln(λ) in agreement with previous
theoretical results.
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Convergence log-linéaire du scale-invariant

(µ/µw, λ)-ES et µ optimaux pour la recombinaison à

poids égaux pour de grande tailles de population

Résumé : Les Stratégies d’Évolution (SE) sont des méthodes à base de populations
adaptées à la parallélisation. Dans ce rapport, on étudie le SE avec recombinaison,
(µ/µw, λ)-ES, particulièrement dans le cas de grandes tailles de population. Nous
prouvous théroriquement le comportement log-linéaire de l’algorithme lors de la min-
imization d’une fonction sphérique et identifions la vitesse de convergence relative à
cet algorithme comme étant l’espérance d’une certaine variable aléatoire. En utilisant
des échantillonnages de Monte-Carlo pour calculer les vitesses de convergence dans
le cas de poids égaux, nous déterminons les valeurs optimales de µ et proposons une
nouvelle formule pour choisir µ pour de très grandes valeurs de λ. Cette règle est
comparée avec des règles proposées précédemment dans d’autres études. Les calculs
numériques montrent aussi une dépendence de la vitesse de convergence en ln(λ) ce
qui rejoint des résultats théroriques précédentes.

Mots-clés : Stratégies d’Évolution, Optimisation Numérique, Convergence log-linéaire,
Recombinaison, Poids de recombinaison, Sélection
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1 Introduction

Evolution Strategies (ESs) are robust stochastic search methods [2, 4] for solving con-
tinuous optimization problems where the goal is to minimize1 a real valued objective
function f defined on an open subset of R

d. At each iteration of an ES, new solu-
tions are in general generated by adding Gaussian perturbations (mutations) to some
(optionally recombined) current ones. These Gaussian mutations are parameterized by
the step-size giving the general scale of the search, and the covariance matrix giving
the principal directions of the Gaussian distribution. In state-of-the art ESs, these pa-
rameters are adapted at each iteration [1, 2, 4, 5]. We focus on isotropic ESs where
the step-size is adapted and the covariance matrix is kept equal to the identity matrix
Id and therefore the search distribution is spherical. Adaptation in ESs allows them to
have a log-linear behavior (convergence or divergence) when minimizing spherical ob-
jective functions [11, 13, 6, 8]. Log-linear convergence (resp. divergence) means that
there exists a constant value c < 0 called convergence rate (resp. c > 0) such that the
distance to the optimum, dn, at an iteration n satisfies limn

1
n ln(dn) = c . Spherical

objective functions are defined as

f(x) = g(‖x‖), (1)

where g : [0,∞[7→ R is a strictly increasing function, x ∈ R
d and ‖.‖ denotes the

Euclidean norm on R
d. Log-linear behavior holds also when minimizng spherical

functions perturbed by noise [12].
In this report, we investigate ESs with weighted recombination, denoted (µ/µw, λ)-

ES, and used in the state-of-the-art ES, the Covariance Matrix Adaptation-ES (CMA-
ES) [5]. The (µ/µw, λ)-ES is an ES which evolves a single solution. Let Xn be
the solution (the parent) at iteration n, λ new solutions Y

i
n (offspring) are then gen-

erated using independent Gaussian samplings of mean Xn. Then, the offspring are
evaluated, the µ best offspring (Yi:λ

n )1≤i≤µ are selected and the new solution Xn+1 is
obtained by recombining these selected offspring using recombination weights denoted
(

wi
)

1≤i≤µ
, i.e., Xn+1 =

∑µ
i=1 wi

Y
i:λ
n

2. We will specifically study the (µ/µw, λ)-
ES with large (offspring) population size λ compared to the search space dimension
d, i.e., λ ≫ d. This is motivated by the increasing possibilities of parallelization
with the raise of the number of parallel machines, supercomputers and grids. ESs are
population-based methods and then are well suited for parallelization which consists in
distributing the number of evaluations λ on the processes available. The performance
of the (µ/µw, λ)-ES as a function of λ has been theoretically investigated [14, 16].
Under the approximation d → +∞, the study in [14] investigated the (µ/µw, λ)-
ES minimizing any spherical function and using an artificial step-size adaptation rule
termed scale-invariant which sets the step-size at each iteration proportionally to the
distance of the current solution to the optimum. The progress rate ϕ which measures
the one-step expected progress to the optimum verifies ϕ = O

Ä

µ ln
Ä

λ
µ

ää

[14]. This
suggests that, if µ is chosen proportional to λ, the progress rate of the (µ/µw, λ)-ES
can be linear in µ and in λ. The study in [16] is based on a theoretical computations of
lower bounds for the convergence ratio which measures the convergence rate in proba-
bility of wide classes of ESs. It shows that the convergence ratio of the (µ/µw, λ)-ES
varies at best linearly with ln(λ) for sufficiently large λ when minimizing any spher-

1Without loss of generality, the minimization of a real value function f is equivalent to the maximization
of −f .

2If µ = 1, only the best offspring is taken and then the (µ/µw, λ)-ES is simply the (1, λ)-ES.
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ical function [16]. This suggests that the bound found in [14] is not tight for finite
dimensions.

A natural question arising when using recombination is how to choose the number
of offspring µ to be recombined. Studies based on computations of the progress rate
when the search space dimension goes to infinity suggest to use µ = ⌊λ

4 ⌋ [14] or
µ = ⌊λ

2 ⌋ [7]3 for two different choices of the (positive) weights
(

wi
)

1≤i≤µ
. CMA-ES

which has been designed to work well on small population sizes uses µ = ⌊λ
2 ⌋ as a

default parameter. However, when using a large population size λ, the convergence rate
of some real-world algorithms tested in [15, 9] using the rules µ = ⌊λ

4 ⌋ or µ = ⌊λ
2 ⌋

as recommended in [14, 7] is worse than the theoretical prediction of [16]. This is
due to the fact that the rules used in these tests for choosing µ, are recommended by
the studies performed under the approximation (d → +∞) [14, 7] and thus under the
assumption λ ≪ d. For some values of λ and d such that λ ≫ d, Beyer [18] computed,
using some approximations permitted by the assumption (d → +∞), optimal choices
for µ when minimizing spherical functions. However, no explicit rule for the choice
of µ has been proposed when λ ≫ d. Performing experiments with λ ≫ d on a
(µ/µw, λ)-ES using equal weights, the so-called self-adaptation rule for the step-size
and two variants for the covariance matrix adaptation, Teytaud [10] proposed to choose
µ equal to min{d, ⌊λ

4 ⌋}.
Since it is in general difficult to appraise whether the effect observed when chang-

ing the setting of one parameter on a real algorithm is coming from the fact that the
setting of an other parameter may subsequently becomes sub-optimal, we want here to
identify independently of any real step-size or covariance matrix update rule the opti-
mal setting for µ especially for lagre λ. This optimal setting can be used to identify
a rule for choosing best optimal values µ in real-world algorithms like CMA-ES. We
want also to verify whether an optimal choice for µ allows to have a dependency of
the convergence rate in ln(λ) and thus reach the lower bounds predicted by [16]. In
order to do so, we perform in this report a theoretical and numerical investigation of the
convergence and the optimal choice for µ relative to the isotropic (µ/µw, λ)-ES. We
focus on large population sizes. The objective functions investigated are the spherical
functions allowing ESs which do not use recombination to reach optimal convergence
rates [6, 8]. In Section 2, we present the mathematical formulation of the algorithm.
In Section 3, we identify the optimal step-size adaptation rule of the algorithm when
minimizing spherical functions. In Section 4, we theoretically prove the log-linear
convergence of the algorithm using the scale-invariant adaptation rule and identify its
convergence rate. In Section 5, using Monte-Carlo computations of the convergence
rate, optimal µ values and optimal convergence rates are derived for some dimensions
and in the specific case of equal weights (wi)1≤i≤µ. A new rule for choosing µ is pro-
posed based on our results. Proofs of theoretical results are presented in the appendix.

Preliminary Notations In this report Z
+ denotes the set of non-negative integers

{0, 1, 2, . . .}, N denotes the set of positive integers {1, 2, . . .} and µ and λ are two
positive integers such that 1 ≤ µ ≤ λ. The recombination weights wi, 1 ≤ i ≤ µ are
strictly positive constants which verify

∑µ
i=1 wi = 1. The unit vector (1, 0, . . . , 0) ∈

R
d is denoted as e1. (Ω,A, P ) is a probability space: Ω is a set, A a σ-algebra defined

on this set and P a probability measure defined on (Ω,A).

3The rule proposed in [7] where negative weights are allowed is rather µ = λ, but the study implies that
if the weights can be only positive the rule becomes µ = ⌊λ

2
⌋.
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2 Mathematical Formulation of the Isotropic (µ/µw, λ)
Evolution Strategy Minimizing Spherical Functions

In this section we will introduce the mathematical formulation of the isotropic (µ/µw, λ)-
ES for minimizing a spherical function (1). Let X0 ∈ R

d be the first solution randomly
chosen using a law absolutely continuous with respect to the Lebesgue measure. Let
σ0 be a strictly positive variable (possibly) randomly chosen. Let (Ni

n)i∈[1,λ],n∈Z+ , be
a sequence of random vectors defined on the probability space (Ω,A, P ), independent
and identically distributed (i.i.d.) with common law the isotropic multivariate normal
distribution on R

d with mean (0, . . . , 0) ∈ R
d and covariance matrix identity Id, which

we will simply denote N (0, Id). We assume that the sequence (Ni
n)i∈[1,λ],n∈Z+ is in-

dependent of X0. Let σn be the step-size mutation at iteration n such that for all
(i, n) ∈ [1, λ]×Z

+, σn and N
i
n are independent. An offspring Y

i
n where i = 1, . . . , λ

writes as Y
i
n := Xn + σnN

i
n, and its objective function value is g(‖Yi

n‖) in our case
of minimization of spherical functions. Let N

i:λ
n (Xn, σn) (1 ≤ i ≤ µ) denotes the

mutation vector relative to the ith best offspring according to its fitness value. As the
function g is increasing, the vectors N

i:λ
n (Xn, σn) (where, for all i in {1, . . . , µ}, the

indices i :λ are in {1, . . . , λ}) verify:

∥

∥

∥Xn + σnN
1:λ
n (Xn, σn)

∥

∥

∥ ≤ . . . ≤
∥

∥

∥Xn + σnN
µ:λ
n (Xn, σn)

∥

∥

∥ and
∥

∥

∥Xn + σnN
µ:λ
n (Xn, σn)

∥

∥

∥ ≤
∥

∥Xn + σnN j
n

∥

∥∀j ∈ {1, . . . , λ}\{1 :λ, . . . , µ :λ} .

(2)

Using the fact that
∑µ

i=1 wi = 1, the new parent Xn+1 =
∑µ

i=1 wi
Y

i:λ
n can be

rewritten as:

Xn+1 = Xn + σn

µ
∑

i=1

wi
N

i:λ
n (Xn, σn) . (3)

In the specific case where the scale-invariant rule is used for the adaptation of (σn)n∈Z+ ,
i.e., σn = σ‖Xn‖ (with σ > 0), the previous equation becomes:

Xn+1 = Xn + σ‖Xn‖
µ
∑

i=1

wi
N

i:λ
n (Xn, σ‖Xn‖) . (4)

Finally, σn is updated, i.e., σn+1 is computed independently of N
i
n+1 for all i ∈ [1, λ].

Throughout the remainder of this report, we will denote in a general context where
u ∈ R

d, s ∈ R and (Ni
n)i∈[1,λ],n∈Z+ is a sequence of random vectors (i.i.d.) with

common law N (0, Id) and such that for all (i, n) ∈ [1, λ] × Z
+, N

i
n is independent

of u and s, N
i:λ
n (u, s) the random vector which verifies (2) where Xn and σn are

respectively replaced by u and s. For n = 0 and i ∈ {1, . . . , µ}, the notation N
i:λ
0 (u, s)

will be replaced by the notation N
i:λ(u, s).

3 Optimal Step-size Adaptation Rule When Minimiz-

ing Spherical Functions

The (log-linear) convergence rate of the isotropic scale-invariant (µ/µw, λ)-ES mini-
mizing any spherical function and satisfying the recurrence relation (4) is, as will be
shown in Section 4, the function V that we will introduce in the following definition.

RR n° 7275
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Definition 1 Let e1 denotes the unit vector (1, 0, . . . , 0) ∈ R
d. For σ ≥ 0, let Z(σ) be

the random variable defined as Z(σ) :=
∥

∥e1 + σ
∑µ

i=1 wi
N

i:λ(e1, σ)
∥

∥ where the ran-

dom variables N
i:λ(e1, σ) are obtained similarly to (2) but with n = 0 and (Xn, σn)

replaced by (e1, σ). We introduce the function V as the function mapping [0,+∞[ into

R as follows:

V(σ) := E [ln Z(σ)] = E

[

ln

∥

∥

∥

∥

∥

e1 + σ

µ
∑

i=1

wi
N

i:λ(e1, σ)

∥

∥

∥

∥

∥

]

. (5)

Fig. 1 (top, left) represents numerical computations of the function V in some specific
settings. In the following proposition, we show that V is well defined and we study its
properties. Note that in the following, the notation V will be sometimes replaced by
Vµ when we need to stress the dependence of V on µ.

Proposition 1 The function V introduced in (5) has the following properties:

(i) V is well defined for d ≥ 1, and continuous for d ≥ 2, on [0,+∞[.

(ii) For d ≥ 2, limσ→+∞ V(σ) = +∞.

(iii) If µ ≤ λ
2 , for d ≥ 2, ∃ σ̄ > 0 such that V(σ̄) < 0.

(iv) If µ ≤ λ
2 , for d ≥ 2, ∃ σopt > 0 such that inf{σ≥0} V(σ) = V(σopt) < 0.

(v) For d ≥ 2 and λ ≥ 2, if µ ≤ λ/2, ∃ (σopt, µopt) such that Vµopt
(σopt) =

inf{σ≥0,µ≤λ/2} Vµ(σ) < 0.

Proof: see page 28

Summary of the proof A basic step in the proof of (i) and (ii) is to write V as the
sum of V+(σ) := E

[

ln+ Z(σ)
]

and V−(σ) := E
[

ln− Z(σ)
]

. Then, for (i), integrands
in these quantities are upper bounded by quantities which do not depend on σ and the
result follows by the Lebesgue dominated convergence theorem for continuity. For
(ii), we show that V(σ) is lower bounded by an expectation of a given random variable
which depends on σ. We show using the Monotone convergence theorem that this lower
bound converges to infinity when σ goes to infinity and then the result follows. For
proving (iii), we prove before, using the concept of uniform integrability of a family of
random variables that d V

Ä

σ∗

d

ä

(σ∗ > 0 fixed) converges to a certain limit depending
on σ∗ when d goes to +∞. Using the fact that this limit can be negative for a given
σ∗ we prove our claim. (iv) is proven using (i), (ii) and (iii) and the intermediate value
theorem. (v) follows easily from (iv).

An important point that we can see from this proposition is that, given λ ≥ 2
and d ≥ 2, and under the condition µ ≤ λ/2, µ and σ can be chosen such that the
relative convergence rate V is optimal (v). We conducted numerical computations of
V in the case where d = 10, λ = 10 and equal weights (wi)1≤i≤µ . The cases with
µ = 1, 2 and 5 are represented in Fig. 1 (top, left). It can be seen that the curves
are in conformity with (i), (iii), (iv) and (v) of Proposition 1. In particular, for each
µ, there exists a σopt realizing the minimum of V and we can see that the optimal µ
(among the represented µ values 1,2 and 5) is 2. In the following theorem, we will see
that the optimal value of V is also the optimal convergence rate in expectation that can

RR n° 7275
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Figure 1: Top, left: Plots of the normalized convergence rate d × Vµ(σ∗

d ) where Vµ

(= V) is defined in (5) as a function of σ∗ > 0 with d = 10, λ = 10, wi = 1
µ , ∀ i =

1, . . . , µ and µ ∈ {1, 2, 5}. The plots were obtained doing Monte-Carlo estimations

of V using 106 samples. Other curves: Optimal convergence rate (d × Vµ(
σ∗
opt

d ))
associated to different choices of µ and µopt realizing the minimum of (σ∗, µ) 7→
Vµ(σ∗

d ), as a function of λ for dimensions 2, 5, 10, 30, 100.

be reached by the (µ/µw, λ)-ES minimizing a spherical function and using any step-
size adaptation rule (σn)n≥0, or more precisely, the smallest value of 1

nE
î

ln ‖Xn‖
‖X0‖

ó

that can be reached by the sequence (Xn)n≥0 satisfying the recurrence relation (3).

This optimal value corresponds also to the smallest value of 1
nE
î

ln ‖Xn‖
‖X0‖

ó

that can be
reached by the isotropic scale-invariant (µ/µw, λ)-ES minimizing a spherical function,
i.e., where (Xn)n≥0 satisfies the recurrence relation (4) with σ = σopt.

Theorem 1 Let (Xn)n≥0 be the sequence of random vectors satisfying the recurrence

relation (3) and relative to the (µ/µw, λ)-ES minimizing any spherical function (1).

RR n° 7275
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Then, for λ ≥ 2 and d ≥ 2, we have

1

n
E

ï

ln
‖Xn‖
‖X0‖

ò

≥ V(σopt) , (6)

where σopt is given in Proposition 1 as σopt = argmin{σ>0}V(σ) and V(σopt) corre-

sponds to 1
nE
î

ln
Ä‖Xn‖
‖X0‖

äó

for a (µ/µw, λ)-ES using the specific scale-invariant adap-

tation rule with σn = σopt‖Xn‖ and minimizing any spherical function (1).

Proof: see page 35

Summary of the proof The first step for proving the theorem is to remark that:

E

ï

ln
‖Xk+1‖
‖Xk‖

ò

= E

[

E

[

ln

∥

∥

∥

∥

∥

Xk

‖Xk‖
+

σk

‖Xk‖

µ
∑

i=1

wi
N

i:λ
k

Å

Xk

‖Xk‖
,

σk

‖Xk‖

ã

∥

∥

∥

∥

∥

| (Xk, σk)

]]

.

By the isotropy of the norm function and of the multivariate normal distribution, the
term Xk

‖Xk‖ in the previous equation can be replaced by e1. Then E
î

ln ‖Xk+1‖
‖Xk‖

ó

=

E
î

V
Ä

σk

‖Xk‖

äó

where E
î

V
Ä

σk

‖Xk‖

äó

is, by Proposition 1, lower bounded by V(σopt).
The result follows from summing such inequalities from k = 0 to k = n − 1.

This theorem states that the artificial scale-invariant adaptation rule with the spe-
cific setting σn = σopt‖Xn‖ is the rule which allows to obtain the best convergence
rate of the (µ/µw, λ)-ES when minimizing spherical functions. The relative conver-
gence rate is then a tight lower bound that can be reached in this context. Then, for our
study on minimization of spherical functions, we will use the (µ/µw, λ)-ES with the
artificial scale-invariant adaptation rule, i.e., with σn = σ‖Xn‖ where σ is a strictly
positive constant. In the specific case where σ equals σopt, the convergence rate is
optimal.

4 Log-Linear Behavior of the Scale-invariant (µ/µw, λ)-
ES Minimizing Spherical Functions

Log-linear convergence of ESs can be in general shown using the application of differ-
ent Law of Large Numbers (LLN) such as LLN for independent or orthogonal random
variables or LLN for Markov chains. Log-linear behavior has been shown for ESs
which do not use recombination [11, 6, 13, 8]. The key idea of the proof is stated in
the following proposition.

Proposition 2 Let σ ≥ 0 and let (Xn)n be the sequence of random vectors satisfying

the recurrence relation (4). We introduce the sequence of random variables (Zn)n∈Z+

by Zn :=
∥

∥

∥

Xn

‖Xn‖ + σ
∑µ

i=1 wi
N

i:λ
n

Ä

Xn

‖Xn‖ , σ
ä

∥

∥

∥
where N

i:λ
n

Ä

Xn

‖Xn‖ , σ
ä

are obtained

similarly to (2) but with replacing (Xn, σn) by
Ä

Xn

‖Xn‖ , σ
ä

. Then for n ≥ 0, we have

1

n
ln

‖Xn‖
‖X0‖

=
1

n

n−1
∑

k=0

ln Zk a.s. (7)
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Proof: see page 36

Using the isotropy of the norm function and of the multivariate normal distribution, the
terms ln Zk appearing in the right hand side of the previous equation are independent
identically distributed with a common expectation V(σ) which we have proved to be
finite in Proposition 1. The following theorem is then obtained by the application of the
LLN for independent identically distributed random variables with a finite expectation
to the right hand side of the previous equation.

Theorem 2 (Log-linear Behavior of the Scale-invariant (µ/µw, λ)-ES) The scale-invariant

(µ/µw, λ)-ES defined in (4) and minimizing any spherical function (1) converges (or

diverges) log-linearly in the sense that for σ > 0 the sequence (Xn)n of random vec-

tors given by the recurrence relation (4) verifies

lim
n→+∞

1

n
ln ‖Xn‖ = V(σ) (8)

almost surely, where V refers to the quantity defined in (5).

Proof: see page 36

Theorem 2 establishes that, provided that V is non zero, the convergence of the scale-
invariant (µ/µ, λ)-ES minimizing any spherical objective function given in (1) is log-
linear. This theorem also provides the convergence (or divergence) rate V(σ) of the
sequence (ln (‖Xn‖))n: If V(σ) < 0, the distance to the optimum, (‖Xn‖)n≥0, con-
verges log-linearly to zero and if V(σ) > 0, the algorithm diverges log-linearly. From
Proposition 1, we know that, for all d ≥ 2, for all λ ≥ 2 and all µ ≥ 1 with the
condition µ ≤ λ/2, there exists σ > 0 such that V(σ) < 0 and therefore the algorithm
converges. Moreover, by the same proposition, we know that for any d, λ ≥ 2 there is
an optimal choice of (σ, µ) such that the optimal convergence rate is reached.

A practical interest of this result is that if someone chooses the optimal value of
µ and is able to tune the adaptation rule of his algorithm such that the quantity σn

‖Xn‖
is (after an adaptation time) stable around the optimal value for σ, a convergence rate
close to the optimal convergence rate can be obtained at least for spherical functions.
This can be useful especially for choosing µ when the population size λ is large.

The goal is then to compute those optimal values (i.e., µopt and σopt) depending on
λ and d. Fortunately, another important point of Theorem 2 is that the convergence rate
is expressed in terms of the expectation of a given random variable (see Definition 1).
Therefore, the convergence rate V can be numerically computed using Monte-Carlo
simulations. Numerical computations allowing to derive optimal convergence rate val-
ues and relative optimal values of µ will be investigated in the following section.

5 Numerical Experiments

In this section, we numerically compute, for a fixed dimension and λ, values of µ
leading to optimal convergence rates. We compare the convergence rate associated
to those optimal µ with the ones obtained with previous choices of µ (proportional
to ⌊λ/2⌋, . . .). We also investigate how the optimal convergence rate depends on the
population size λ in particular for λ ≫ d. The context of our numerical study is
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the specific (µ/µw, λ)-ES with intermediate recombination, i.e., with equal weights
wi = 1

µ , (i = 1, . . . , µ) which is simply denoted (µ/µ, λ)-ES.
Since V is expressed in terms of expectation of a random variable, we can perform a

Monte-Carlo simulation of the normalized convergence rate d×Vµ

Ä

σ∗

d

ä

where σ∗ > 0
is called normalized step-size. The values computed are then relative to the scale-
invariant (µ/µ, λ)-ES with σn = σ∗

d ‖Xn‖ and minimizing a spherical function. Our

experimental procedure relies on finding the minimal value of (σ∗, µ) 7→ d×Vµ

Ä

σ∗

d

ä

for µ in a range µrange and for values of σ∗ taken in a range σrange. The minimal

value, denoted d×Vµopt

(

σ∗
opt

d

)

, is the normalized optimal convergence rate. However,

we will also call ‘normalized optimal convergence rate’ the minimal value of σ∗ 7→
d × Vµ

Ä

σ∗

d

ä

for µ fixed which we denote d × Vµ

(

σ∗
opt

d

)

. The difference should be

clear within the context.
As a first experiment, we took µrange = {2k; k ∈ Z

+and 2k ≤ λ
2 } and σrange =

ln(µ + 1) ∗ ln(λ) ∗ [0 : 0.1 : 3]. We experimented discrete values of λ from λ = 5 to
λ = 105 with a number of Monte-Carlo samplings decreasing as a function of λ from
104 to 500. These first computations show that for the values of λ and d tested, the
approximation

min
{σ∗∈σrange}

d × Vµ

Å

σ∗

d

ã

≃ a(λ, d) ln2(µ) + b(λ, d) ln(µ) + c(λ, d) (9)

is reliable (for µ > 1) and we determined numerically the coefficients a(λ, d), b(λ, d)
and c(λ, d). Using these quadratic approximations, we performed a second serie of
tests where the values of µ were taken around the optimal value of the polynomial
approximation, σrange = m ∗ ln(µ + 1) ∗ ln(λ) ∗ [0 : 0.1 : 3] (with m ≤ 2

3 ) and using
more Monte-Carlo samplings.

In Fig. 2 (left), we plotted the normalized optimal convergence rate values and
the optimal normalized convergence rates relative to the rule µ = min{⌊λ

4 ⌋, d} from
[10] as a function of λ and for different dimensions. It can be seen that the optimal
convergence rate is, for λ sufficiently large, linear as a function of ln(λ). This result
is in agreement with the results in [16]. This figure shows also that the rule µ =
min{⌊λ

4 ⌋, d} provides convergence rates very close to optimal ones. The curves in
Fig. 2 (left) are smooth. However, to obtain the exact optimal values of µ (denoted
µopt), we would need a very large number of Monte-Carlo samplings and (in parallel)
a very small discretisation in σ∗ that is not affordable. Therefore, we plotted in Fig. 2
(right), the ranges of µ values giving the optimal convergence rate up to a precision of
0.2, as a function of λ and for dimensions d = 2, 10, 30 and 100. Those ranges are
called 0.2-confidence intervals in µ in the sequel. In the same graph, we plotted values
of µ computed as the argmin of the polynomial approximation (9) that we denote µth.
It can be seen that µth values are in the 0.2-confidence interval in µ. However, the
values µ = min{⌊λ

4 ⌋, d} for λ = 104 and d ∈ {10, 30, 100}, are not in the 0.2-
confidence interval in µ. In Figure 1, we compare, for dimensions 2, 5, 10, 30 and 100,
optimal convergence rates for different choices of µ, namely µ = 1, ⌊λ

4 ⌋ ([14]), ⌊λ
2 ⌋

([7]), min{⌊λ
4 ⌋, d} ([10]) and the optimal rule (i.e., µopt values). We observe, for all

the dimensions tested, that for µ equal ⌊λ
4 ⌋ and ⌊λ

2 ⌋, the convergences rate do not scale
linearly in ln(λ) and are then sub-optimal. For µ = 1 and min{⌊λ

4 ⌋, d}, the scaling is
linear in ln(λ) and close to the optimal convergence rate for µ = min{⌊λ

4 ⌋, d} for all
the dimensions tested.

RR n° 7275



Log-linear Convergence and Optimal µ for the Scale-invariant (µ/µw, λ)-ES 11

10
2

10
3

10
4

10
5

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
Dimensions 2, 10, 30 and 100

λ

N
or

m
al

iz
ed

 c
on

ve
rg

en
ce

 ra
te

 

 

µ
opt

µ=min{d,λ/4}

−2000 0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

120

Dimensions 2, 10, 30 and 100 −− precision0.2

λ

µ

 

 

d=2
d=10
d=30
d=100

Figure 2: Left: Plots of the normalized optimal convergence rate d × Vµopt

(

σ∗
opt

d

)

where Vµ(= V) is defined in (5) and optimal convergence rate d × Vµ

(

σ∗
opt

d

)

relative

to the rule µ = min{⌊λ
4 ⌋, d}, as a function of λ (log-scale for λ) for dimensions 2,

10, 30 and 100 (from top to bottom). Right: Plots of the values µth (solid lines with
markers) giving the optimal µ relative to the quadratic approximation (9) together with
extremity of range of µ values (shown with markers) giving convergence rates up to a
precision of 0.2 from the optimal numerical value. The dimensions represented are 2,
10, 30 and 100 (from bottom to top).
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Figure 3: Plots of the logarithm of the argmin µ values (denoted µth) of the quadratic
approximation in (9) as a function of ln(ln(λ)) (left) (ln2(ln(λ)) (right)) for dimen-
sions 2, 5, 10, 30 and 100.

Fig. 2 (right) suggests also that the values of µth vary as a function of ln(λ). Some
preliminary plots, lead us to make the hypothesis that µth values varies as a function
of ln(α(d))(λ) where α(d) depends on the dimension. To check this hypothesis, we
plotted ln(µth) as a function of ln(ln(λ)) as represented in Fig. 3 (left). This figure
suggests that ln(µth) could vary as a function of ln2(ln(λ)) which has been confirmed
by Fig. 3 (right). This suggests that a good setting of µ for λ large is such that ln(µth) =
α(d) ln2(ln(λ))+β(d) where α(d), β(d) > 0 are some constants that have to be tuned
for each dimension.
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6 Conclusion

In this report, we have developed a complementary theoretical/numerical approach in
order to investigate the isotropic (µ/µw, λ)-ES minimizing spherical functions. First,
we have shown the log-linear convergence of this algorithm (provided good choice of
parameters) with a scale-invariant adaptation rule for the step-size and we have ex-
pressed the convergence rate as the expectation of a given random variable. Second,
thanks to the expression of the convergence rate, we have numerically computed, using
Monte-Carlo simulations, optimal values for the choice of µ and σn

dn
and their relative

optimal convergence rates. We have investigated in particular large values of λ. Our
results suggest that the optimal µ is monotonously increasing in λ as opposed to the
rule µ = min{⌊λ

4 ⌋, d} proposed in [10] but that however this latter rule gives a con-
vergence rate close to the optimal one. We have confirmed as well that for the rules
µ = ⌊λ

4 ⌋ and ⌊λ
2 ⌋, the convergence rate does not scale linearly in ln(λ) and is thus

sub-optimal.
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Appendix

We provide in the appendix the proofs of the theorems stated in the core of the report.
The proofs often require intermediate results. These intermediate results are organized
in lemmas and propositions that are stated and proven in the following section, before
to tackle the proofs of the main results.

Useful Definitions and Preliminary Results

Further definitions and notations We recall here that Z
+ denotes the set of non-

negative integers {0, 1, 2, . . .} and N denotes the set of positive integers {1, 2, . . .}. We
recall that e1 is the unit vector (1, 0, . . . , 0) ∈ R

d. For µ, λ ∈ N such that 1 ≤ µ ≤ λ,
Pµ

λ = λ!
(λ−µ)! is the number of permutations of µ elements among a set of λ elements

For a set A, x 7→ 1A(x) denotes the indicator function that is equal to one if x ∈ A and
zero otherwise. (Ω,A, P ) is a probability space: Ω is a set, A a σ-algebra defined on
this set and P a probability measure defined on (Ω,A). For p ∈ N, R

p is equipped with
the Borel σ-algebra denoted B(Rp). For a subset S ⊂ R

p, B(S) will denote the Borel
σ-algebra on S. If X is a random variable defined on (Ω,A, P ), i.e., a measurable
function from Ω to R, then, for B ⊂ R, B ∈ B(R), the indicator function 1{X∈B}
maps Ω to {0, 1} and equals one if and only if X(ω) ∈ B for ω ∈ Ω: ω ∈ Ω 7→
1{ω:X(ω)∈B}(ω). N (a, b2) denotes a normal distribution with mean a and variance b2.
N (0, C) denotes the multivariate normal distribution with mean (0, . . . , 0) ∈ R

d and
covariance matrix C. We recall that the identity matrix is denoted Id.

Definition 2

For a given u ∈ R
d and s ≥ 0 fixed, we introduce the map h{u,s} : R

d → R such that,

for a ∈ R
d, we have

h{u,s}(a) = ‖u + sa‖ . (10)

Let (Ni
n)i∈[1,λ],n∈Z+ be a sequence of random vectors defined on (Ω,A, P ), i.i.d. with

common law N (0, Id) and independent of u. For all n ≥ 0, We define the vector
(

N
1:λ
n (u, s), . . . ,Nµ:λ

n (u, s)
)

as the random vector containing µ different elements

from the set {Ni
n, i ∈ [1, λ]} and verifying

h{u,s}
(

N
1:λ
n (u, s)

)

≤ . . . ≤ h{u,s}
(

N
µ:λ
n (u, s)

)

and

h{u,s}
(

N
µ:λ
n (u, s)

)

≤ h{u,s}
(

N
j
n(u, s)

)

∀j ∈ {1, . . . , λ}\{1:λ, . . . , µ :λ} . (11)

For n ≥ 0, we define the random vector Mn(u, s) as the recombination of the µ vectors

N
i:λ
n (u, s), 1 ≤ i ≤ µ using the weights wi, i = 1, . . . , µ, i.e.,

Mn(u, s) :=

µ
∑

i=1

wi
N

i:λ
n (u, s) . (12)

Remark 1 The relation (2) is then a specific case of (11) where (u, s) is replaced by

(Xn, σn). Moreover, using the previous definition, the relations (3) and (4) will be

respectively replaced in the sequel by

Xn+1 = Xn + σnMn(Xn, σn) (13)

and

Xn+1 = Xn + σ‖Xn‖Mn(Xn, σ‖Xn‖) . (14)
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For n = 0, we respectively replace in the sequel, the notations N
i
0, Ni:λ

0 , (i = 1, . . . , λ)

and M0 by the notations N
i, Ni:λ (i = 1, . . . , λ) and M.

The probability density function of the random vector

(

N
1:λ(u, s), . . . ,Ni:λ(u, s), . . . ,Nµ:λ(u, s)

)

introduced in (11) (where the notation
(

N
1:λ(u, s), . . . ,Ni:λ(u, s), . . . ,Nµ:λ(u, s)

)

replace the notation
Ä

N
1:λ
0 , . . . ,Ni:λ

0 (u, s), . . . ,Nµ:λ
0 (u, s)

ä

in (11)) is given in the
following lemma.

Lemma 1 For fixed u ∈ R
d and s a positive constant, let h{u,s} be the map introduced

in (10). The probability density function of the random vector
(

N
1:λ(u, s), . . . ,Nµ:λ(u, s)

)

selected according to h{u,s} as introduced in (11) is the function p{u,s} mapping R
µd

into R
+:

p{u,s}(x
1, . . . , xµ) =

1

(2π)
µd

2

e−
∑

µ

i=1
‖xi‖2

2 Pµ
λ×

1{h{u,s}(x1)≤...≤h{u,s}(xµ)}
(

x1, . . . , xµ
)

P λ−µ
[

h{u,s} (xµ) ≤ h{u,s} (N)
]

,

where N is an independent random vector following N (0, Id).

Proof. Let (Ni)i∈[1,λ] be λ independent samplings of N (0, Id). For fixed u ∈ R
d and

s > 0, we recall that h{u,s} : R
d → R is the map introduced in (10) by h{u,s}(a) =

‖u + sa‖ for all a in R
d. We are going to compute the probability density function of

the random vector (N1:λ(u, s), . . . ,Ni:λ(u, s), . . . ,Nµ:λ(u, s)). The random vector
(

N
1:λ(u, s), . . . ,Ni:λ(u, s), . . . ,Nµ:λ(u, s)

)

verify:

h{u,s}(N
1:λ(u, s)) ≤ . . . ≤ h{u,s}(N

i:λ(u, s)) . . . ≤ h{u,s}(N
µ:λ(u, s)) . (15)

The number of possibilities for the choice of the indexes 1 : λ, . . . , µ : λ (i.e., for
the choice of the elements having the µ least values according to the function h) is
Pµ

λ = λ!
(λ−µ)! . Let (A1, . . . , Aµ) ∈ B(Rµd). As the variables (Ni)i∈[1,λ] play the

same role, we have:

P
{

N
1:λ ∈ A1; . . . ;Ni:λ ∈ Ai; . . . ,Nµ:λ ∈ Aµ

}

= Pµ
λ P (E1 ∩ E2 ∩ E3) (16)

with
E1 =

{

∩µ
i=1

(

N
i ∈ Ai

)}

,

E2 =
{

h{u,s}(N
1) ≤ h{u,s}(N

2) ≤ . . . ≤ h{u,s}(N
µ)
}

,

and
E3 =

¶

h{u,s}(N
(u)) ≥ h{u,s}(N

µ), ∀ µ + 1 ≤ u ≤ λ
©

.

The probability P (E1 ∩ E2 ∩ E3) can be rewritten as:

P (E1 ∩ E2 ∩ E3)

= E{N1,...,Nλ}
[

1{E1∩E2∩E3}
]

= E{N1,...,Nµ}
[

E{Nµ+1,...,Nλ}
[

1{E1∩E2∩E3}|N1, . . . ,Nµ
]]

= E{N1,...,Nµ}
[

1{E1} × E{Nµ+1,...,Nλ}
[

1{E2∩E3}|N1, . . . ,Nµ
]]

(17)
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For a given (N1, . . . ,Nµ, u, s), we define the quantity H(N1, . . . ,Nµ, u, s) as

H(N1, . . . ,Nµ, u, s) := Pµ
λ E{Nµ+1,...,Nλ}

[

1{E2∩E3}|N1, . . . ,Nµ
]

.

By (16) and (17), one can write:

P
{

N
1:λ ∈ A1, . . . ,Nµ:λ ∈ Aµ

}

= E{N1,...,Nµ}
[

1{E1} × H(N1, . . . ,Nµ, u, s)
]

Moreover, we have:

H(N1, . . . ,Nµ, u, s) = Pµ
λ1{h{u,s}(N1)≤h{u,s}(Ni)...≤h{u,s}(Nµ)}

Pλ−µ
{

h{u,s}(N
µ) ≤ h{u,s}(N)|Nµ, yµ

}

,

where N is an independent random vector following N (0, Id). Finally, we get:

P
{

(N1, . . . ,Nµ) ∈ (A1 × . . . × Aµ)
}

=
∫

A1

. . .

∫

Aµ

(

1

(2π)
µd

2

e−
∑

µ

i=1
‖xi‖2

2 H(x1, . . . , xµ, u, s)

)

dx1 . . . dxµ .

⊓⊔
Thanks to the isotropy of the standard d-dimensional normal distribution N (0, Id),

we can state the following important lemma that will be also used in several results.

Lemma 2 Let u be a fixed vector in R
d such that ‖u‖ = 1 and let s be a positive

constant. Let M(u, s) be the random vector introduced in (12). Then for all t ∈ R, we

have

E
Ä

eit(‖u+sM(u,s)‖)
ä

= E
Ä

eit(‖e1+sM(e1,s)‖)
ä

, (18)

and consequently, for σ > 0, the random variables Z(σ) = ‖e1 + σM(e1, σ)‖ intro-

duced in Definition 14 and ‖u + σM(u, σ)‖ follow the same distribution.

Proof. Let u ∈ R
d be fixed verifying ‖u‖ = 1 and let s be a positive constant.

Let M(u, s) =
∑µ

i=1 wi
N

i:λ(u, s) be the random vector introduced in (12) obtained
by the recombination of the vectors N

i:λ(u, s) which has been selected according
to the criterion h{u,s} as expressed in (11). Let also M(e1, s) be the random vec-
tor obtained relatively to h{e1,s}. Let N be an independent random vector following
N (0, Id). According to Lemma 1, the probability density function of the random vec-
tor
(

N
1:λ(u, s), . . . ,Nµ:λ(u, s)

)

introduced in (11) is:

p{u,s}(x
1, . . . , xµ) =

1

(2π)
µd

2

e−
∑

µ

i=1
‖xi‖2

2 Pµ
λ

1{h{u,s}(x1)≤...≤h{u,s}(xµ)}
(

x1, . . . , xµ
)

P λ−µ
[

h{u,s} (xµ) ≤ h{u,s} (N)
]

.

for (x1, . . . , xµ) ∈ R
dµ. In the expression of p{u,s}, let us give interest to the quantity

P λ−µ
[

h{u,s} (xµ) ≤ h{u,s} (N)
]

4Note that the expression of Z is reformulated here using the random vector M introduced in the ap-
pendix (12).
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where xµ is fixed. Let R be an orthogonal matrix such that R (u) = e1. Since R is an
orthogonal matrix, ‖R(y)‖ = ‖y‖ for all y ∈ R

d. Then ‖u + sN‖ = ‖R (u + sN)‖
almost surely. Besides ‖R (u + sN)‖ = ‖e1 + sR (N)‖ but since N follows the dis-
tribution N (0, Id) which is spherical, R (N) has the same law, i.e., N (0, Id) and thus
‖u + sN‖ (with u fixed) and ‖e1 + sN‖ have the same distribution which gives

P λ−µ
[

h{u,s} (xµ) ≤ h{u,s} (N)
]

= P λ−µ
[

h{u,s} (xµ) ≤ h{e1,s} (N)
]

,

Consequently, we have

p{u,s}(x
1, . . . , xµ) =

1

(2π)
µd

2

e−
∑

µ

i=1
‖xi‖2

2 Pµ
λ×

1{h{u,s}(x1)≤...≤h{u,s}(xµ)}
(

x1, . . . , xµ
)

P λ−µ
[

h{u,s} (xµ) ≤ h{e1,s} (N)
]

.

The random vectors ‖u + sM(u, s)‖ and ‖e1 + sM(e1, s)‖ have the same distribution
if their characteristic functions are identical:

E
¶

eit(‖u+sM(u,s)‖)
©

=

∫

Rµd

eit(‖u+s
∑

µ

i=1
wixi‖)p{u,s}(x

1, . . . , xµ)dx1 . . . dxµ .

Again, we use the fact that R (‖u + st‖) = ‖e1 + sR(t)‖. We get

E
¶

eit(‖u+sM(u,s)‖)
©

=

∫

Rµd

eit(‖e1+s
∑

µ

i=1
wiR(xi)‖)p{u,s}(x

1, . . . , xµ)dx1 . . . dxµ ,

with p{u,s}(x
1, . . . , xµ) rewritten as

p{u,s}(x
1, . . . , xµ) = 1{h{e1,s}(R(x1))≤...≤h{e1,s}(R(xµ))}

(

x1, . . . , xµ
)

Pµ
λ

1

(2π)
µd

2

e−
∑

µ

i=1
‖xi‖2

2 × P λ−µ
[

h{e1,s} (R(xµ)) ≤ h{e1,s} (N)
]

.

Then, we apply the change of variables si = R(xi) for all 1 ≤ i ≤ µ. The quantity

e−
∑

µ

i=1
‖xi‖2

2 dx1 . . . dxµ is then replaced by e−
∑

µ

i=1
‖si‖2

2 ds1 . . . dsµ as the rotation
(using R) of a µ independent random vectors following the spherical distribution of
N (0, Id) results in µ independent random vectors having the same N (0, Id) distribu-
tion. Moreover, for each i ∈ {1, . . . , µ}, h{e1,s}

(

R(xi)
)

= h{e1,s}
(

si
)

such that we
get

p{u,s}
(

x1, . . . , xµ
)

= p{e1,s}(s
1, . . . , sµ) .

Consequently, for all u ∈ R
d fixed with ‖u‖ = 1 and for any positive constant s,

E
¶

eit(‖u+sM(u,s)‖)
©

= E
¶

eit(‖e1+sM(e1,s)‖)
©

.

⊓⊔

Proposition 3 Let (Xn)n≥0 be the sequence defined by (3). Then for any x
∗ ∈ R

d,

for all n ≥ 0, ‖Xn − x
∗‖ > 0 almost surely.
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Proof. Without loss of generality, we suppose that x
∗ = (0, . . . , 0) ∈ R

d. Note also
that we will use the equivalent from of the recurrence relation (3), i.e., the recurrence
relation (13) which uses the vector M introduced in (12). We will show inductively
that, for all n ≥ 0, ‖Xn‖ > 0 almost surely :
1) The vector X0 is randomly sampled using a law absolutely continuous w.r.t the
Lebesgue measure. Therefore P (‖X0‖ > 0) = 1.
2) Suppose that P (‖Xn‖ > 0) = 1 for n ≥ 0. We have:

P (‖Xn+1‖ > 0) = P (‖Xn+1‖ > 0 ∩ ‖Xn‖ = 0) + P (‖Xn+1‖ > 0 ∩ ‖Xn‖ > 0) .

As P (‖Xn+1‖ > 0 ∩ ‖Xn‖ = 0) ≤ P (‖Xn‖ = 0) and P (‖Xn‖ = 0) = 0 (inductive
hypothesis), we get

P (‖Xn+1‖ > 0)

= P (‖Xn+1‖ > 0 ∩ ‖Xn‖ > 0)

= P (‖Xn+1‖ > 0|‖Xn‖ > 0)P (‖Xn‖ > 0)

= P (‖Xn+1‖ > 0|‖Xn‖ > 0)

= P (‖Xn + σnMn (Xn, σn) ‖ > 0|‖Xn‖ > 0)

= P

Å
∥

∥

∥

∥

Xn

‖Xn‖
+

σn

‖Xn‖
Mn

Å

Xn

‖Xn‖
,

σn

‖Xn‖

ã
∥

∥

∥

∥

> 0|σn, ‖Xn‖ > 0

ã

.

(19)

By Lemma 2, we know that the distribution of
∥

∥

∥

Xn

‖Xn‖ + σn

‖Xn‖Mn

Ä

Xn

‖Xn‖ , σn

‖Xn‖

ä

∥

∥

∥

conditionally to Xn and σn fixed is equal to that of
∥

∥

∥
e1 + σn

‖Xn‖M
Ä

e1,
σn

‖Xn‖

ä

∥

∥

∥
. Then,

we have:

P

Å
∥

∥

∥

∥

Xn

‖Xn‖
+

σn

‖Xn‖
Mn

Å

Xn

‖Xn‖
,

σn

‖Xn‖

ã
∥

∥

∥

∥

> 0|‖Xn‖ > 0

ã

= P

Å
∥

∥

∥

∥

e1 +
σn

‖Xn‖
M

Å

e1,
σn

‖Xn‖

ã
∥

∥

∥

∥

> 0|σn, ‖Xn‖ > 0

ã

= 1 − P

Å
∥

∥

∥

∥

e1 +
σn

‖Xn‖
M

Å

e1,
σn

‖Xn‖

ã
∥

∥

∥

∥

= 0|σn, ‖Xn‖ > 0

ã

.

We know that, ∀s > 0, P (‖e1+sM(e1, s)‖ = 0) = 0 as the variable ‖e1+sM(e1, s)‖
is absolutely continuous w.r.t. the Lebesgue measure. This gives that, condition-
nally to un := σn

‖Xn‖ fixed, P (‖e1 + unM (e1, un) ‖ = 0|un) = 0. Consequently
P (‖Xn+1‖ > 0) = 1 and then for all n ≥ 0, ‖Xn‖ > 0 almost surely. ⊓⊔

Computation of the Limit of the Normalized Convergence Rate

An important step in the proof Proposition 1(iii), is the computation of the limit limd→+∞ d×
V
Ä

σ∗

d

ä

where V is introduced in (5)and σ∗ ≥ 0. First, we will need the following Def-
inition.

Definition 3 Let:

• σ∗ be a strictly positive constant,

• hd : R
d 7→ R be a sequence of maps (d ≥ 1) defined by hd(x) = ‖e1 + σ∗

d x‖,

∀x ∈ R
d with σ∗ > 0 fixed,
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• N
1, . . . ,Nµ,N be µ+1 random vectors independent and identically distributed

with N (0, Id) as a common law, and,

We define the sequences of random variables
{

Ad(N
1, . . . ,Nµ, σ∗)

}

d≥1

and
{

Hd(N
1, . . . ,Nµ, σ∗)

}

d≥1
as the following:

Ad(N
1, . . . ,Nµ, σ∗) :=

[

1 +
σ∗

d

µ
∑

i=1

wi(Ni)1

]2

+

Å

σ∗

d

ã2





µ
∑

i=1

(wi)2

(

d
∑

j=2

(Ni)2j

)

+ 2
∑

1≤i<k≤µ

wiwk
d
∑

j=2

(Ni)j(N
k)j



 ,

and

Hd(N
1, . . . ,Nµ, σ∗) := Pµ

λ1{hd(N1)≤...≤hd(Nµ)}E
λ−µ

[

1{hd(Nµ)≤hd(N)}|Nµ
]

.

The sequence of functions (hd)d≥1 introduced in Definition 3 verify the following
result:

Lemma 3 Let σ∗ be a strictly positive constant. Let N be a random vector following

the distribution N (0, Id). Then, the sequence (hd)d≥1 introduced in Definition 3 verify

the following equation

lim
d→+∞

d (hd(N) − 1) = σ∗
N1

5 +
(σ∗)2

2
. (20)

Proof. Let σ∗ > 0 be fixed. Let Ld denotes the sequence of random variables defined,
for d ≥ 1, by:

Ld := 2
σ∗

d
N1 +

(σ∗)2

d

∑d
j=1(N)2j

d
.

As, for a given x ∈ R
d,
∥

∥

∥e1 + σ∗

d x
∥

∥

∥ =
√

1 + 2σ∗

d x1 +
(

σ∗

d

)2∑d
j=1 x2

j , we have:

d (hd (N) − 1) = d
Ä

(1 + Ld)
1
2 − 1

ä

.

By the LLN of independent identically distributed random variables, we have

lim
d→+∞

∑d
j=1(N)2j

d
= E((N1)

2) = 1 .

Therefore, we have limd→+∞ Ld = 0 almost surely. This gives, using the previous
equation and the fact that (1 + y)

1
2 ∼ 1 + 1

2y that

lim
d→+∞

d (hd(N) − 1) = lim
d→+∞

d
Ä

(1 + Ld)
1
2 − 1

ä

= lim
d→+∞

d

2
Ld

= lim
d→+∞

σ∗
N1 +

(σ∗)2

2

∑d
j=1 N

2
j

d
= σ∗

N1 +
(σ∗)2

2
.

5The notation Nl where l ∈ {1, . . . , d} denotes here (and in the proof of the Lemma) the lth variable
of the random vector N.
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⊓⊔
In order to compute the limit, when d goes to infinity, of the quantity V

Ä

σ∗

d

ä

we will
write this quantity as the expectation of the family of random variables Ad and Hd

which has been introduced in Definition 3 and then prove their uniform integrability.
After this step, we can compute the limit of V

Ä

σ∗

d

ä

, when d goes to infinity.

Proposition 4 Let:

• σ∗ be a strictly positive constant,

• N
1, . . . ,Nµ,N be µ+1 random vectors independent and identically distributed

with N (0, Id) as a common law, and,

• hd : R
d 7→ R be the sequence of maps (d ≥ 1) introduced in Definition 3,

•
{

Ad(N
1, . . . ,Nµ, σ∗)

}

d≥1
and

{

Hd(N
1, . . . ,Nµ, σ∗)

}

d≥1
be the sequences

of random variables introduced in Definition 3.

Therefore, the function V defined in (5) verify:

d × V

Å

σ∗

d

ã

= E

ï

d

2
ln
(

Ad(N
1, . . . ,Nµ, σ∗)

)

Hd

(

N
1, . . . ,Nµ, σ∗)

ò

. (21)

Moreover, the family
{

d
2 ln

(

Ad(N
1, . . . ,Nµ, σ∗)

)

Hd

(

N
1, . . . ,Nµ, σ∗)}

d≥1
is uni-

formly integrable.

Before to prove the proposition, we recall the following result which is a part of the
Lr-convergence theorem stated in [3, p. 165].

Theorem 3 (Lr-convergence theorem) Let (Un)n≥0 a sequence of random variables

such that
∫

R
|Un|r < +∞. Then the following affirmations are equivalent:

i) limn→∞
∫

R
|Un − U|r = 0 (Un converges to U in the sense of the norm Lr)

ii) Un converges in probability to U and limn→∞
∫

R
|Un|r =

∫

R
|U|r < +∞.

This theorem will be used in the following proof of the proposition.
Proof. Let us rewrite V(σ(d)) in (5) using σ(d) = σ∗

d :

d × V

Å

σ∗

d

ã

=
Pµ

λ

(2π)µd/2

∫

Rµd

d

2
ln(‖e1 +

σ∗

d

µ
∑

i=1

wixi‖2)e−
∑

µ

i=1
‖xi‖2

2 P λ−µ [hd (xµ) ≤ hd (N)]

1{hd(x1)≤...≤hd(xµ)}
(

x1, . . . , xµ
)

dx1 . . . dxµ .

In the remainder of this proof, the positive quantities σ∗, λ and µ are fixed. Let
{Hd}d≥1 be the sequence of measurable functions, which verify, for d ≥ 1, Hd :

(Rd)µ × R
+ 7→ R such that:

Hd(x
1, . . . , xµ, σ∗) = Pµ

λ 1{hd(x1)≤...≤hd(xµ)}
(

x1, . . . , xµ
)

P λ−µ [hd (xµ) ≤ hd (N)] .
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The probability of any event is upper bounded by 1. Therefore, the functions Hd are
upper bounded by Pµ

λ and d × V(σ∗

d ) can be rewritten as

d × V

Å

σ∗

d

ã

=
1

(2π)µd/2
×

∫

Rµd

d

2
ln

(∥

∥

∥

∥

∥

e1 +
σ∗

d

µ
∑

i=1

wixi

∥

∥

∥

∥

∥

2)

e−
∑

µ

i=1
‖xi‖2

2 Hd(x
1, . . . , xµ, σ∗)dx1 . . . dxµ .

Let us now remark that, for (x1, . . . , xµ) ∈ R
µd, we have

∥

∥

∥

∥

∥

e1 +
σ∗

d

µ
∑

i=1

wixi

∥

∥

∥

∥

∥

2

=

[

1 +
σ∗

d

µ
∑

i=1

wi(xi)1

]2

+

Å

σ∗

d

ã2





µ
∑

i=1

(wi)2

(

d
∑

j=2

(xi)2j

)

+ 2
∑

1≤i<k≤µ

wiwk
d
∑

j=2

(xi)j(xk)j



 ,

where, for a ∈ {1, . . . , µ} and b ∈ {1, . . . , d}, the variable (xa)b denotes the bth vari-
able of the vector xa. For (N1, . . . ,Nµ) ∈ R

dµ and σ∗ > 0, let us define the sequences
of random variables

{

Ad(N
1, . . . ,Nµ, σ∗)

}

d≥1
and

{

Hd(N
1, . . . ,Nµ, σ∗)

}

d≥1
, by

Ad(N
1, . . . ,Nµ, σ∗) :=

[

1 +
σ∗

d

µ
∑

i=1

wi(Ni)1

]2

+

Å

σ∗

d

ã2





µ
∑

i=1

(wi)2

(

d
∑

j=2

(Ni)2j

)

+ 2
∑

1≤i<k≤µ

wiwk
d
∑

j=2

(Ni)j(N
k)j



 ,

and

Hd(N
1, . . . ,Nµ, σ∗) := Pµ

λ1{hd(N1)≤...≤hd(Nµ)}E
λ−µ

[

1{hd(Nµ)≤hd(N)}|Nµ
]

.

Therefore, we have

d × V

Å

σ∗

d

ã

= E

ï

d

2
ln
(

Ad(N
1, . . . ,Nµ, σ∗)

)

Hd

(

N
1, . . . ,Nµ, σ∗)

ò

.

Let (Kd)d≥1 be the sequence of random variables defined as

Kd

(

N
1, . . . ,Nµ, σ∗) :=

d

2
ln
(

Ad(N
1, . . . ,Nµ, σ∗)

)

Hd

(

N
1, . . . ,Nµ, σ∗)

such that we have d×V
Ä

σ∗

d

ä

= E (Kd). Let K+
d and K−

d be respectively the positive

and negative part of the function Kd such that Kd = K+
d − K−

d . We have to show
that the families of positive random variables (K+

d )d≥1 and (K−
d )d≥1 are uniformly

integrable. First, we give interest to the family (K+
d )d≥1. Using the fact that:

• the sequence of random variables (Hd)d≥1 is upper bounded by Pµ
λ ,

• ln+(1 +
∑µ

i=1 xi) ≤ ln+(1 + |∑µ
i=1 xi|) ≤ |∑µ

i=1 xi| ≤ ∑µ
i=1 |xi| (for any

x1, . . . , xµ ∈ R such that
∑µ

i=1 xi > −1),
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• 0 ≤ wi ≤ 1 ∀i ∈ {1, . . . , µ},

we get

(K)+d

≤ Pµ
λ

2



2σ∗
µ
∑

i=1

|Ni|1 +
(σ∗)2

d

Ñ

µ
∑

i=1

(

d
∑

j=1

(Ni)2j

)

+ 2
∑

1≤i<k≤µ

d
∑

j=1

|Ni|j |Nk|j

é



≤ Pµ
λ

2



2σ∗
µ
∑

i=1

|Ni|1 +
(σ∗)2

d

Ñ

µ
∑

i=1

(

d
∑

j=1

(Ni)2j

)

+
∑

1≤i<k≤µ

d
∑

j=1

(

(Ni)2j + (Nk)2j
)

é



≤ Pµ
λ

2

[

2σ∗
µ
∑

i=1

|Ni|1 +
(σ∗)2

d

(

µ
∑

i=1

(

d
∑

j=1

(Ni)2j

)

+ 2

µ
∑

i=1

d
∑

j=1

(Ni)2j

)]

≤ Pµ
λ

[

σ∗
µ
∑

i=1

|Ni|1 +
3(σ∗)2

2d

µ
∑

i=1

(

d
∑

j=1

(Ni)2j

)]

(22)
According to the last inequality, we have to show that, for each i = 1, . . . , µ, the fami-

lies |(Ni)1| and
Å∑

d

j=1
(Ni)2j

d

ã

d≥1

are uniformly integrable. For fixed i ∈ {1, . . . , µ},

1. the family |Ni| contains a unique integrable random variable therefore it is uni-
formly integrable.

2. The random variable
Å∑

d

j=1
(Ni)2j

d

ã

d

converges almost surely (by the Law of

Large Numbers) and therefore in probability to 1. Moreover, the sequence of

positive real values E

ï∑

d

j=1
(Ni)2j

d

ò

d

= 1 converges to E [|1|] which gives, by

Theorem 3, that
Å∑

d

j=1
(Ni)2j

d

ã

d

converges to 1 in the sense of the norm L1.

Finally, the family
Å∑

d

j=1
(Ni)2j

d

ã

d≥1

converges in L1 therefore it is uniformly

integrable.

Consequently, the upper bound in the last inequality is uniformly integrable which
implies that the family ((K)+d )d≥1 is uniformly integrable. Let us now give interest to
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the family ((K)−d )d≥2. We have

(K)−d ≤ Pµ
λ

2
d ln− (Ad(N

1, . . . ,Nµ, σ∗)
)

≤ Pµ
λ

2
d ln−

(

1 −
(
∑µ

i=1 wi(Ni)1
)2

‖∑µ
i=1 wiNi‖2

)

1{∑µ

i=1
wi(Ni)1<0}

=
Pµ

λ

2
ln−





(

1 −
(
∑µ

i=1 wi(Ni)1
)2

‖∑µ
i=1 wiNi‖2

)d


1{∑µ

i=1
wi(Ni)1<0}

=
Pµ

λ

2
ln









Ü

1

1 − (
∑

µ

i=1
wi(Ni)1)

2

‖∑µ

i=1
wiNi‖2

êd







1{∑µ

i=1
wi(Ni)1<0}

≤ 4Pµ
λ

Ü

1

1 − (
∑

µ

i=1
wi(Ni)1)

2

‖∑µ

i=1
wiNi‖2

ê
d
8

1{∑µ

i=1
wi(Ni)1<0}

(23)

Let us show that the family (Gd)d≥2 :=

Ü

Ö

1

1− (
∑

µ

i=1
wi(Ni)1)

2

‖∑µ

i=1
wiNi‖2

è
d
8

1{∑µ

i=1
wi(Ni)1<0}

ê

d≥2

is uniformly integrable. This amounts to show, that the family

E
(

G2
d

)

=

á

E











Ü

1

1 − (
∑

µ

i=1
wi(Ni)1)

2

‖∑µ

i=1
wiNi‖2

ê
d
4

1{∑µ

i=1
wi(Ni)1<0}











ë

d≥1

is uniformly bounded. In the beginning, let us remark that the random variable
∑µ

i=1 wi
N

i

follows the distribution wN (0, Id) with w :=
√

∑µ
i=1(w

i)2. We recall here that N is
a random vector following N (0, Id). For d ≥ 2, E

(

G2
d

)

can be rewritten as:

E
(

G2
d

)

= E







Ñ

1

1 − w2(N1)2

w2‖N‖2

é
d
4

1{N1<0}







= E







Ñ

1

1 − (N1)2

‖N‖2

é
d
4

1{N1<0}






=

1

2
E







Ñ

1

1 − (N1)2

‖N‖2

é
d
4






.

Changing to spherical coordinates (for d ≥ 2), we get:

E
(

G2
d

)

=
1

2Wd−2

∫ π
2

0

Å

1

sin(θ)

ã
d
2

sind−2(θ) dθ =
1

2Wd−2

∫ π
2

0

sin
d
2−2(θ) dθ =

W d
2−2

2Wd−2
.
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Suppose now that d
2 is an integer. Then ∃p ≥ 1 such that d = 2p. As limn→∞

√
nWn =

√

π/2 then

lim
d→∞

W d
2−2

Wd−2
= lim

p→∞
Wp−2

W2p−2
= lim

p→∞

√
2p − 2√
p − 2

limp→∞
√

p − 2Wp−2

limp→∞
√

2p − 2W2p−2
=

√
2 .

If d
2 is odd, then d−1

2 is an integer and W d
2−2 ≤ W d−1

2 −2 and we have also

lim
d→∞

W d−1
2 −2

Wd−2
=

√
2 .

Then for d ≥ d0, E(G2
d) ≤

√
2+1
2 . Consequently, the family {E(G2

d)}d≥d0 is uni-
formly bounded which means that the family (K−)d≥d0 is uniformly integrable and
therefore the family

ß

d

2
ln
(

Ad(N
1, . . . ,Nµ, σ∗)

)

Hd

(

N
1, . . . ,Nµ, σ∗)

™

d≥1

is uniformly integrable. ⊓⊔
The following proposition holds as a consequence of Proposition 4.

Proposition 5 Let V be the function introduced in (5). Let σ∗ be a strictly positive

constant. We have:

lim
d→+∞

dV

Å

σ∗

d

ã

= σ∗
µ
∑

i=1

wiE
[

NiH(N1, . . . ,Nµ)
]

+
(σ∗)2

2

µ
∑

i=1

(wi)2 (24)

where, for N1, . . . ,Nµ,N, µ+1 independent random variables following the standard

normal distribution N(0, 1)6 we have:

H(N1, . . . ,Nµ) := Pµ
λ 1{N1≤...≤Nµ}E

λ−µ
[

1{Nµ≤N}|Nµ
]

.

Proof of Proposition 5

We recall here that the multivariate normal distribution on R
d with mean (0, . . . , 0)

and covariance matrix the identity Id is simply denoted N (0, Id). By Proposition 4,
we have

d × V

Å

σ∗

d

ã

= E

ï

d

2
ln
(

Ad(N
1, . . . ,Nµ, σ∗)

)

Hd

(

N
1, . . . ,Nµ, σ∗)

ò

,

where the families
(

Ad(N
1, . . . ,Nµ, σ∗)

)

d≥1
and

(

Hd

(

N
1, . . . ,Nµ, σ∗))

d≥1
are in-

troduced in Defintion 3 and the family
ß

d

2
ln
(

Ad(N
1, . . . ,Nµ, σ∗)

)

Hd

(

N
1, . . . ,Nµ, σ∗)

™

d≥1

is uniformly integrable. Therefore, we have

lim
d→∞

d × V

Å

σ∗

d

ã

= E

ï

lim
d→∞

d

2
ln
(

Ad(N
1, . . . ,Nµ, σ∗)

)

Hd

(

N
1, . . . ,Nµ, σ∗)

ò

.

6The standard normal distribution is the normal distribution with mean zero and variance of one.
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Then we have to compute limd→∞
d
2 ln

(

Ad(N
1, . . . ,Nµ, σ∗)

)

Hd

(

N
1, . . . ,Nµ, σ∗).

Step 1: Computation of limd→∞
d
2 ln

(

Ad(N
1, . . . ,Nµ, σ∗)

)

:

We define the sequences
{

Ud(N
1, . . . ,Nµ, σ∗)

}

d≥1
,
{

Vd(N
1, . . . ,Nµ, σ∗)

}

d≥1
and

{

Wd(N
1, . . . ,Nµ, σ∗)

}

d≥1
as follows:

Ud(N
1, . . . ,Nµ, σ∗) := 2

σ∗

d

µ
∑

i=1

wi(Ni)1 ,

Vd(N
1, . . . ,Nµ, σ∗) :=

(σ∗)2

d

µ
∑

i=1

(wi)2
Ç
∑d

j=1(N
i)2j

d

å

,

and

Wd(N
1, . . . ,Nµ, σ∗) := 2

Å

σ∗

d

ã2
∑

1≤i<k≤µ

wiwk
d
∑

j=1

(Ni)j(N
k)j

The sequence
{

Ad(N
1, . . . ,Nµ, σ∗)

}

d≥1
introduced in Definition 3 is such that

Ad(N
1, . . . ,Nµ, σ∗) − 1 =

Ud(N
1, . . . ,Nµ, σ∗) + Vd(N

1, . . . ,Nµ, σ∗) + Wd(N
1, . . . ,Nµ, σ∗) ,

Note that Ad(N
1, . . . ,Nµ, σ∗) − 1 converges almost surely to zero when d converges

to infinity as:

• limd→∞ Ud(N
1, . . . ,Nµ, σ∗) = 2σ∗ limd→∞

∑

µ

i=1
wi(Ni)1

d = 0.

• ∀i ∈ {1, . . . , µ}, limd→∞

∑

d

j=1
(Ni)2j

d = 1 (by the LLN for independent random
variables). Then limd→∞ Vd(N

1, . . . ,Nµ, σ∗) = 0.

• |2∑1≤i<k≤µ wiwk∑d
j=1(N

i)j(N
k)j | ≤ 2

∑d
j=1(N

i)2j which gives that
limd→∞ Wd(N

1, . . . ,Nµ, σ∗) = 0

We have ln(1 + x) ∼ x when x → 0. Therefore,

lim
d→∞

d

2
ln
(

Ad(N
1, . . . ,Nµ, σ∗)

)

= lim
d→∞

d

2

(

Ad(N
1, . . . ,Nµ, σ∗) − 1

)

.

Moreover, we have

lim
d→∞

d

2
Ud(N

1, . . . ,Nµ, σ∗) = σ∗
µ
∑

i=1

wi(Ni)1 ,

lim
d→∞

d

2
Vd(N

1, . . . ,Nµ, σ∗) =
(σ∗)2

2

µ
∑

i=1

(wi)2 lim
d→∞

Ç
∑d

j=1(N
i)2j

d

å

=
(σ∗)2

2

µ
∑

i=1

(wi)2 ,

Therefore, we have

lim
d→∞

d

2
ln
(

Ad(N
1, . . . ,Nµ, σ∗)

)

= σ∗
µ
∑

i=1

wi(Ni)1

+
(σ∗)2

2

µ
∑

i=1

(wi)2 + (σ∗)2
®

lim
d→∞

∑

1≤i<k≤µ wiwk∑d
j=1(N

i)j(N
k)j

d

´

.

RR n° 7275



Log-linear Convergence and Optimal µ for the Scale-invariant (µ/µw, λ)-ES 26

Step 2: Computation of limd→∞ Hd

(

N
1, . . . ,Nµ, σ∗) : First, we notice that the

random variable Hd(N
1, . . . ,Nµ, σ∗) introduced in Defintion 3 can be rewritten as

Hd(N
1, . . . ,Nµ, σ∗)

= Pµ
λ1{d[hd(N1)−1]≤...≤d[hd(Nµ)−1]}E

λ−µ
[

1{d[hd(Nµ)−1]≤d[hd(N)−1]}|Nµ
]

.

Using the result of Lemma 3 giving the limit of the quantities d {hd − 1}, together with
the (almost sure) continuity of the indicator function and the dominated convergence
theorem, we have:

lim
d→∞

Hd(N
1, . . . ,Nµ, σ∗) = H(N1, . . . ,Nµ)

almost surely where the random variable H is defined as:

H(N1, . . . ,Nµ) := Pµ
λ1{(N1)1≤...≤(Nµ)1}E

λ−µ
[

1{(Nµ)1≤N}|(Nµ)1
]

,

where N is defined as a random variable following the distribution N(0, 1).
As the limit random variable H(N1, . . . ,Nµ) depends only on ((N1)1, . . . , (N

µ)1),
one can write:

lim
d→∞

Hd

(

N
1, . . . ,Nµ, σ∗) = H((N1)1, . . . , (N

µ)1) . (25)

Note that 1

(2π)
µ
2

e−
1
2

∑

µ

i=1
[(xi)1]

2

H
(

(x1)1, . . . , (x
µ)1
)

is the probability density func-

tion relative to the µ random variables (N1:λ)1, . . . , (N
µ:λ)1 representing the µ first

order statistics among λ random variables (Ni)1. In fact, this quantity can be seen as an
analogue to the probability density function p (given in Lemma 1) and relative to the
vector (N1:λ, . . . ,Ni:λ, . . . ,Nµ:λ). This implies that E

[

H
(

(N1)1, . . . , (N
µ)1
)]

=
1.
Collecting the results obtained in Step 1 and Step 2, one gets

lim
d→∞

d × V

Å

σ∗

d

ã

= E

[{

σ∗
µ
∑

i=1

wi(Ni)1 +
(σ∗)2

2

µ
∑

i=1

(wi)2

}

H
(

(N1)1, . . . , (N
µ)1
)

]

+ (σ∗)2E

ñ®

lim
d→∞

∑

1≤i<k≤µ wiwk∑d
j=1(N

i)j(N
k)j

d

´

H
(

(N1)1, . . . , (N
µ)1
)

ô

.

(26)
In the last equation, let us prove that

E(λ, µ)

:= E

ñ®

lim
d→∞

∑

1≤i<k≤µ wiwk∑d
j=1(N

i)j(N
k)j

d

´

H
(

(N1)1, . . . , (N
µ)1
)

ô

= 0 .
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We have

E(λ, µ)

= lim
d→∞

E

ñ®
∑

1≤i<k≤µ wiwk∑d
j=1(N

i)j(N
k)j

d

´

H
(

(N1)1, . . . , (N
µ)1
)

ô

= lim
d→∞

E

ñ®
∑

1≤i<k≤µ wiwk(Ni)1(N
k)1

d

´

H
(

(N1)1, . . . , (N
µ)1
)

ô

+ lim
d→∞

E

ñ®
∑

1≤i<k≤µ wiwk∑d
j=2(N

i)j(N
k)j

d

´

H
(

(N1)1, . . . , (N
µ)1
)

ô

.

But we have

E

ñ
∑

1≤i<k≤µ wiwk∑d
j=2(N

i)j(N
k)j

d
H
(

(N1)1, . . . , (N
µ)1
)

ô

=
1

d

∑

1≤i<k≤µ

wiwk
d
∑

j=2

E
[

(Ni)j(N
k)jH

(

(N1)1, . . . , (N
µ)1
)]

=
1

d
E
[

H
(

(N1)1, . . . , (N
µ)1
)]

∑

1≤i<k≤µ

wiwk
d
∑

j=2

E
[

(Ni)j

]

E
[

(Nk)j

]

= 0 ,

as E
[

(Ni)j

]

= 0, ∀i ∈ {1, . . . , µ}, j ∈ {1, . . . , d}. Consequently, we get

E(λ, µ) = lim
d→∞

E

ñ®
∑

1≤i<k≤µ wiwk(Ni)1(N
k)1

d

´

H
(

(N1)1, . . . , (N
µ)1
)

ô

.

The random variable
∑

1≤i<k≤µ
wiwk(Ni)1(N

k)1

d H
(

(N1)1, . . . , (N
µ)1
)

converges al-
most surely to 0 when d goes to infinity. Moreover, as H

(

(N1)1, . . . , (N
µ)1
)

≤ Pµ
λ ,

it is upper bounded by the random variable Pµ
λ

∑

1≤i<k≤µ wiwk(Ni)1(N
k)1. Then,

by the dominated convergence Theorem, we have:

E(λ, µ) = E

ñ

lim
d→∞

®
∑

1≤i<k≤µ wiwk(Ni)1(N
k)1

d

´

H
(

(N1)1, . . . , (N
µ)1
)

ô

= 0 .

Finally, (26) simplifies to

lim
d→∞

d×V

Å

σ∗

d

ã

= E

[{

σ∗
µ
∑

i=1

wi(Ni)1 +
(σ∗)2

2

µ
∑

i=1

(wi)2

}

H
(

(N1)1, . . . , (N
µ)1
)

]

,

and consequently

lim
d→∞

d × V

Å

σ∗

d

ã

= σ∗
µ
∑

i=1

wiEi(λ, µ) +
(σ∗)2

2

µ
∑

i=1

(wi)2 , (27)

where Ei(λ, µ) := E
[

NiH(N1, . . . ,Nµ)
]

with

H(N1, . . . ,Nµ) := Pµ
λ1{N1≤...≤Nµ}E

λ−µ
[

1{Nµ≤N}|Nµ
]

.

where N1, . . . ,Nµ,N are µ + 1 independent random variables following the standard
normal distribution in dimension 1. ⊓⊔
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Proof of Proposition 1 (stated page 6)

Let σ be a positive constant. Let wi, i = 1, . . . , µ be µ positive constants sum-
ming to one. We recall that the random vector M(e1, σ) =

∑µ
i=1 wi

N
i:λ is ob-

tained by recombining the random vectors N
i:λ(e1, σ) selected according to h{e1,σ}

(defined in (10)) as expressed in (11). In the following, the function h{e1,σ} will
be simply denoted hσ . By Lemma 1, the probability density function of the vector
(N1:λ(e1, σ), . . . ,Nµ:λ(e1, σ)) is given by the function p{e1,σ}, that we will simply
denote in the following p and which we rewrite as a non-negative function defined in
R

µd × R
+ in the following way:

p(x1, . . . , xµ, σ) =
1

(2π)
µd

2

e−
∑

µ

i=1
‖xi‖2

2 H(x1, . . . , xµ, σ) ,

where the function H is given by

H(x1, . . . , xµ, σ)

= Pµ
λ × 1{hσ(x1)≤hσ(xi)...≤hσ(xµ)}

(

x1, . . . , xµ
)

Pλ−µ {hσ(xµ) ≤ hσ(N)|xµ} ,

(28)

where N is an independent random vector following N (0, Id). We define the quantities

V−(σ) := E
[

ln−(‖e1 + σM(e1, σ)‖)
]

(29)

and
V+(σ) := E

[

ln+(‖e1 + σM(e1, σ)‖)
]

. (30)

The quantities V− and V+ exist but could be infinite. We suppose that λ and µ are
fixed and are such that λ ∈ N and µ ∈ N with µ ≤ λ.

Proof of (i)

Let D be the subset of R
µd containing the elements (x1, . . . , xµ) ∈ R

µd such that,
for σ > 0,

∥

∥e1 + σ
∑µ

i=1 wixi
∥

∥ 6= 0. Let k+, k− : D × [0,+∞[ be defined for
(x1, . . . , xµ, σ) in D × [0,+∞[ by

k+(x1, . . . , xµ, σ) =

1

(2π)µd/2
ln+

(∥

∥

∥

∥

∥

e1 + σ

µ
∑

i=1

wixi

∥

∥

∥

∥

∥

)

e−
∑

µ

i=1
‖xi‖2

2 H(x1, . . . , xµ, σ) ,

and

k−(x1, . . . , xµ, σ) =

1

(2π)µd/2
ln−

(∥

∥

∥

∥

∥

e1 + σ

µ
∑

i=1

wixi

∥

∥

∥

∥

∥

)

e−
∑

µ

i=1
‖xi‖2

2 H(x1, . . . , xµ, σ) ,

where the function H is defined in (28). The functions k+ and k− are well defined on
D×[0,+∞[ and the quantities V− and V+ introduced in (29) and (30) can be rewritten
as

V−(σ) =

∫

Rµd

k−(x1, . . . , xµ, σ) dx1 . . . dxµ ,
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and

V+(σ) =

∫

Rµd

k+(x1, . . . , xµ, σ) dx1 . . . dxµ .

We are going to show that the quantities V−(σ) and V+(σ) are well defined for all
σ positive and are continuous with respect to this variable. The proof rely on the
Lebesgue Dominated Convergence Theorem for Continuity. In the beginning, let us
remark that, for almost all (x1, . . . , xµ) ∈ D, the map σ 7→ H(x1, . . . , xµ, σ) is con-
tinuous on [0,+∞[ thanks to the Lebesgue Dominated Convergence Theorem for Con-
tinuity. Therefore, for almost all (x1, . . . , xµ) ∈ D, the maps σ 7→ k−(x1, . . . , xµ, σ)
and σ 7→ k+(x1, . . . , xµ, σ) are continuous on [0,+∞[. Moreover, we have for all
(x1, . . . , xµ, σ) in D × [0,+∞[, H(x1, . . . , xµ, σ) ≤ Pµ

λ .
Case of V+:
Let S > 0, we then have for almost all (x1, . . . , xµ) in D and all (σ) ∈ [0, S],

k+(x1, . . . , xµ, σ) ≤ Pµ
λ

(2π)µd/2
ln+

(∥

∥

∥

∥

∥

e1 + σ

µ
∑

i=1

wixi

∥

∥

∥

∥

∥

)

e−
∑

µ

i=1
‖xi‖2

2

≤ Pµ
λ

(2π)µd/2
ln+

(

1 + σ

µ
∑

i=1

wi‖xi‖
)

e−
∑

µ

i=1
‖xi‖2

2

≤ Pµ
λ

(2π)µd/2
σ

µ
∑

i=1

wi‖xi‖e−
∑

µ

i=1
‖xi‖2

2

≤ Pµ
λ

(2π)µd/2
σ

µ
∑

i=1

‖xi‖e−
∑

µ

i=1
‖xi‖2

2

≤ Pµ
λ

(2π)µd/2
σ

µ
∑

i=1

‖xi‖e− ‖xi‖2

2

≤ Pµ
λ

(2π)µd/2
S

µ
∑

i=1

‖xi‖e− ‖xi‖2

2

(31)

As for almost all (x1, . . . , xµ) ∈ D, the map σ 7→ k+(x1, . . . , xµ, σ) is continuous on
[0, S] and that the norm of a random vector following the distribution N (0, Id) has a fi-

nite expectation (i.e.,
∫

Rd ‖x‖e−
‖x‖2

2 < +∞) then (x1, . . . , xµ) 7→∑µ
i=1 ‖xi‖xe−

‖xi‖2

2

has a finite expectation on D, and consequently, thanks to the Lebesgue Dominated
Convergence Theorem for Continuity, we can state that V+(σ) is well defined, finite
and continuous on every set [0, S] and consequently well defined, finite and continuous
on [0,+∞[.

Case of V−:

Let us now give interest to the quantity V−(σ). We have

k−(x1, . . . , xµ, σ) ≤ Pµ
λ

2(2π)µd/2
ln−

(∥

∥

∥

∥

∥

e1 + σ

µ
∑

i=1

wixi

∥

∥

∥

∥

∥

2)

e−
∑

µ

i=1
‖xi‖2

2 (32)

The right hand-side of the last inequality is equal to 0 if (
∑µ

i=1 wixi)1 ≥ 0. The study
of the function σ 7→ ‖e1+σ

∑µ
i=1 wixi‖2 shows that, for (x1, . . . , xµ) ∈ R

µd such that
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(
∑µ

i=1 wixi)1 < 0, this function is lower bounded, for d ≥ 2, by 1 − (
∑

µ

i=1
wixi)

2

1

‖
∑

µ

i=1
wixi‖2 .

This gives, for d ≥ 2

k−(x1, . . . , xµ, σ)

≤ Pµ
λ

2(2π)µd/2
ln−

(

1 −
(
∑µ

i=1 wixi
)2

1

‖∑µ
i=1 wixi‖2

)

e−
∑

µ

i=1
‖xi‖2

2 1{(
∑

µ

i=1
wixi)1<0}

(

x1, . . . , xµ
)

≤ Pµ
λ

2(2π)µd/2
ln−

(

1 −
(
∑µ

i=1 wixi
)2

1

‖∑µ
i=1 wixi‖2

)

e−
∑

µ

i=1
‖xi‖2

2

(33)
We have already seen that, for almost all (x1, . . . , xµ) ∈ D, the map σ 7→ k−(x1, . . . , xµ, σ)
is continuous on [0,+∞[. In order to apply the Lebesgue Dominated Convergence
Theorem for Continuity, we have to check that the upper bound (which is independent
of σ) given in (33) has a finite expectation. Let N(0, C) be a random vector following
the distribution N (0, C) and let N1(0, C) its first coordinate. We recall that if C = Id,
the random vector N(0, C) is simply denoted N. We have:

∫

D

Pµ
λ

2(2π)µd/2
ln−

(

1 −
(
∑µ

i=1 wixi
)2

1

‖∑µ
i=1 wixi‖2

)

e−
∑

µ

i=1
‖xi‖2

2 dx1 . . . dxµ

≤
∫

Rµd

Pµ
λ

2(2π)µd/2
ln−

(

1 −
(
∑µ

i=1 wixi
)2

1

‖∑µ
i=1 wixi‖2

)

e−
∑

µ

i=1
‖xi‖2

2 dx1 . . . dxµ

=
Pµ

λ

2
E

[

ln−
(

1 −
(

N1(0,
∑µ

i=1(w
i)2Id)

)2

‖N(0,
∑µ

i=1(w
i)2Id)‖2

)]

=
Pµ

λ

2
E

ñ

ln−
Ç

1 − (
∑µ

i=1(w
i)2) (N1)

2

(
∑µ

i=1(w
i)2)‖N‖2

åô

= Pµ
λ E

ñ

1

2
ln−
Ç

1 − (N1)
2

‖N‖2

åô

. (34)

The last expectation can be rewritten as:

E

ñ

1

2
ln−
Ç

1 − (N1(0, Id))
2

‖N(0, Id)‖2

åô

=
1

2(2π)d/2

∫

Rd

ln−
Å

1 − (x1)2

‖x‖2

ã

e−
‖x‖2

2 dx

Changing to spherical coordinates (with d ≥ 2) we obtain after partial integration

E

ñ

1

2
ln−
Ç

1 − (N1)
2

‖N‖2

åô

=
1

8Wd−22
( d

2−1)Γ
(

d
2

)

∫ +∞

0

∫ π

0

ln− (1 − cos2(θ)
)

rd−1e−
r2

2 sind−2(θ) dr dθ ,

where for n ∈ Z
+, Wn =

∫ π/2

0
sinn θ dθ is the classical Wallis integral and for z ∈

C such that Re(z) > 0,Γ(z) =
∫ +∞
0

e−uuz−1du is the Gamma function. The last
equation can be rewritten as:

E

ñ

1

2
ln−
Ç

1 − (N1)
2

‖N‖2

åô

=
1

8Wd−2

∫ π

0

ln− (1 − cos2(θ)
)

sind−2(θ) dθ ,
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which,in turn writes as:

E

ñ

1

2
ln−
Ç

1 − (N1)
2

‖N‖2

åô

=
1

2Wd−2

∫ π
2

0

ln− (sin(θ)) sind−2(θ) dθ , (35)

and finally, we get

E

ñ

1

2
ln−
Ç

1 − (N1)
2

‖N‖2

åô

=
1

Wd−2

∫ π
2

0

ln

Ç

Å

1

sin(θ)

ã
1
2

å

sind−2(θ) dθ

≤ 1

Wd−2

∫ π
2

0

sind− 5
2 (θ) dθ =

Wd− 5
2

Wd−2
.

(36)

The quantity
W

d− 5
2

Wd−2
is finite (with d ≥ 2). Then the right hand-side of (33) is finite

and using the Lebesque dominated convergence theorem for continuity, one can state
that the quantity V−(σ) is well defined, finite and continuous with respect to σ when
d ≥ 2.

V−(σ) < +∞ for d = 1

Let d = 1 and let N1, . . . ,Nµ,N be µ + 1 random variables i.i.d. with common law
N (0, 1). We have:

V−(σ) =

∫

Rµ

k−(x1, . . . , xµ, σ)dx1 . . . dxµ

≤ Pµ
λ

1

(2π)µ/2
ln−

(

∣

∣

∣

∣

1 + σ

µ
∑

i=1

wixi

∣

∣

∣

∣

)

e−
∑

µ

i=1
|xi|2

2 dx1 . . . dxµ

= Pµ
λ E

[

ln−
(

∣

∣

∣

∣

1 + σ

µ
∑

i=1

wiNi

∣

∣

∣

∣

)]

= Pµ
λ E

ï

ln−
Å
∣

∣

∣

∣

1 + σwN

∣

∣

∣

∣

ãò

with w :=

(

µ
∑

i=1

(wi)2

)
1
2

≥ 0 .

(37)

After a change of variables y = σwx, the integrand in V−(σ) will be dominated by
e− 1

2√
2π

ln(|1+y|)
y for (y, σ) ∈]−2, 0]×[0,+∞[ which has a finite expectation and therefore

V−(σ) < +∞ for all σ positive. ⊓⊔

Proposition needed for proving (ii) and (iii)

In order to prove (ii) and (iii) of Proposition 1, we will need the following proposition.

Proposition 6 For d ≥ 2, the function V introduced in (5) is lower bounded by the

strictly negative bound c(d) given by

c(d) :=



















− Pµ
λ

∫ π
2

0
sin− 1

2 (θ) dθ

π
if d = 2

− Pµ
λ

1

2(d − 2)

Ç

W 1
2 (d−2)

Wd−2
− 1

å

if d ≥ 3.
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Proof. For σ > 0, let V+(σ) and V−(σ) be the positive quantities defined respectively
in (30) and (29). We have V(σ) = V+(σ) − V−(σ) where V+ and V− are finite for
all σ ≥ 0 and all d ≥ 1 by (i) of Proposition 1. Taking from the proof of (i) of
Proposition 1 the first inequality of (33), and integrating over R

µd, one can write:

V−(σ) ≤ Pµ
λ E

ñ

1

2
ln−
Ç

1 − (N1)
2

‖N‖2
1{N1<0}

åô

=
Pµ

λ

2
E

ñ

1

2
ln−
Ç

1 − (N1)
2

‖N‖2

åô

,

where N is an independent random vector following N (0, Id) and N1 is its first coor-
dinate. The relation (35) taken from the proof of (i) of Proposition 1 gives, due to the
fact that ln(t) ≤ t − 1 for t ≥ 1, and assuming that d ≥ 3:

V−(σ) ≤ Pµ
λ

4

1

Wd−2

∫ π
2

0

ln

Å

1

sin(θ)

ã

sind−2(θ) dθ

=
Pµ

λ

2(d − 2)

1

Wd−2

∫ π
2

0

ln

(

Å

1

sin(θ)

ã

d−2
2

)

sind−2(θ) dθ

≤ Pµ
λ

2(d − 2)

1

Wd−2

∫ π
2

0

(

Å

1

sin(θ)

ã

d−2
2

− 1

)

sind−2(θ) dθ

=
Pµ

λ

2(d − 2)

1

Wd−2

∫ π
2

0

Ä

sin
1
2 (d−2)(θ) − sind−2(θ)

ä

dθ

=
Pµ

λ

2(d − 2)

Ç

W 1
2 (d−2)

Wd−2
− 1

å

.

Note that the upper bound of the last inequality is positive as the sequence (Wd)d≥0 is a

decreasing sequence. Moreover, as limd→+∞ Wd

√
d =

√

π
2 , we have limd→+∞

W 1
2
(d−2)

Wd−2
=

√
2 and then

W 1
2
(d−2)

Wd−2
is upper bounded. For d = 2, we get, replacing in (36) d by 2

and W0 by π
2 :

V−(σ) ≤ Pµ
λ

π

∫ π
2

0

sin− 1
2 (θ) dθ < +∞ .

For d ≥ 2, let c(d) be the strictly negative quantity given by

c(d) :=



















− Pµ
λ

∫ π
2

0
sin− 1

2 (θ) dθ

π
if d = 2

− Pµ
λ

1

2(d − 2)

Ç

W 1
2 (d−2)

Wd−2
− 1

å

if d ≥ 3.

Then we have:
V−(σ) ≤ −c(d) < +∞, ∀d ≥ 2 (38)

Then, using the fact that V(σ) = V+(σ) − V−(σ), we get V(σ) ≥ c(d) for all d ≥ 2.
⊓⊔
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Proof of (ii)

Let us recall the expression of V+(σ) introduced in (30). We have:

V+(σ) =

∫

Rµd

1

(2π)µd/2
ln+

(∥

∥

∥

∥

∥

e1 + σ

µ
∑

i=1

wixi

∥

∥

∥

∥

∥

)

H(x1, . . . , xµ, σ) dx1 . . . dxµ

where the function H is given by:

H(x1, . . . , xµ, σ) =

Pµ
λ × 1{hσ(x1)≤hσ(xi)...≤hσ(xµ)}

(

x1, . . . , xµ
)

Pλ−µ {hσ(xµ) ≤ hσ(N)|xµ, yµ} .

with N is an independent random vector following N (0, Id) and hσ(a) = ‖e1 + σa‖ , ∀ a ∈
R

d. We remark that, for all a1, a2 ∈ R
d and for σ ≥ 0, if (a1)1 ≤ (a2)1, ‖a1‖ ≤ ‖a2‖

then hσ(a1) ≤ hσ(a2). Therefore, H is lower bounded as the following:

H(x1, . . . , xµ, σ) ≥ Pµ
λ e−

∑

µ

i=1
‖xi‖2

2 1{∩µ−1
i=1

(‖xi‖≤‖xi+1‖)}
(

x1, . . . , xµ
)

Pλ−µ {‖xµ‖ ≤ ‖N‖ ∩ (xµ)1 ≤ N1|xµ}1{∩µ−1
i=1

((xi)1≤(xi+1)1)}
(

x1, . . . , xµ
)

.

Let J be the function, independent of σ, and mapping R
µd into R

+ defined as

J(x1, . . . , xµ) := Pµ
λ e−

∑

µ

i=1
‖xi‖2

2 ×
1{‖∑µ

i=1
wixi‖≥1}

(

x1, . . . , xµ
)

1{∩µ−1
i=1

(‖xi‖≤‖xi+1‖)}
(

x1, . . . , xµ
)

Pλ−µ {‖xµ‖ ≤ ‖N‖ ∩ (xµ)1 ≤ N1|xµ}1{∩µ−1
i=1

((xi)1≤(xi+1)1)}
(

x1, . . . , xµ
)

.

Then we have

V+(σ) ≥
∫

Rµd

1

2(2π)µd/2
ln+

(∥

∥

∥

∥

∥

e1 + σ

µ
∑

i=1

wixi

∥

∥

∥

∥

∥

2)

J(x1, . . . , xµ) dx1 . . . dxµ .

A sufficient condition for the convergence of V+(σ) to infinity is that the right hand
side of the last equation converges to infinity when σ goes to infinity. We are going
to prove this fact using the monotone convergence Theorem. A simple study of the
function g(σ) = ‖e1 + σy‖2 (for a given y ∈ R

d fixed) shows that, for σ > σ0 =
− y1

‖y‖2 , the function g is increasing as a function of σ. Note that if ‖y‖ ≥ 1, then

σ0 ≤ 1 and consequently ∀y ∈ R
d such that ‖y‖ ≥ 1 g is increasing on [1,+∞[. Using

these ideas, we conclude that the integrand of the right hand side of the last equation is
increasing as a function of σ when σ ≥ 1. Moreover, the limit of this integrand when σ
goes to infinity is +∞.Then, according to the monotone convergence theorem, the right
hand side of the last equation converges to infinity if σ goes to infinity. Consequently,
the left hand side of the same equation, i.e., V+(σ), goes to +∞ when σ goes to
infinity. Now, by (38), we have that for d ≥ 2, −V−(σ) ≥ −c(d), where V− is
defined in (29) and c(d) depends only on d and do not depend on σ. Then, using the
fact that V(σ) = V+(σ) − V−(σ) we have:

V(σ) ≥ −c(d)+

∫

Rµd

1

2(2π)µd/2
ln+

(∥

∥

∥

∥

∥

e1 + σ

µ
∑

i=1

wixi

∥

∥

∥

∥

∥

2)

J(x1, . . . , xµ) dx1 . . . dxµ .

The limit of the left hand side of the previous equation is +∞ when σ goes to infinity.
Therefore V(σ) goes to +∞ when σ goes to infinity. ⊓⊔
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A Result needed for proving (iii)

A result needed to prove (iii) of Proposition 1 is stated in the following lemma.

Lemma 4 For i ∈ {1, . . . , λ}, let Ni:λ(0, 1) be the ith order statistics among λ inde-

pendent random variables following the distribution N (0, 1). Then E
(

Ni:λ(0, 1)
)

≤ 0

for i ≤ λ
2 .

Proof. The probability distribution function of Ni:λ(0, 1) is given by:

pNi:λ(0,1)(x) =
λ!

(i − 1)!(λ − i)!
φ(x)i−1(1 − φ(x))λ−i 1√

2π
e−

1
2 x2

,

where φ is the cumulative distribution function of N(0, 1). Then E
(

Ni:λ(0, 1)
)

writes
as:

E
(

Ni:λ(0, 1)
)

=

∫ 0

−∞
xpNi:λ(0,1)(x)dx +

∫ +∞

0

xpNi:λ(0,1)(x)dx .

Using the change of variables in the integral over R
− u = −x and using the fact that

φ(−u) = 1 − φ(u), we get

E
(

Ni:λ(0, 1)
)

= −
∫ +∞

0

upNi:λ(0,1)(−u)du +

∫ +∞

0

xpNi:λ(0,1)(x)dx

=

∫ +∞

0

x
λ!

(i − 1)!(λ − i)!

1√
2π

e−
1
2 x2

g(φ(x))dx

where g(a) = ai−1(1 − a)λ−i − (1 − a)i−1(a)λ−i for a ∈ [ 12 , 1]. Let us show that

g(a) ≤ 0 ∀a ∈ [ 12 , 1]. We have g(a) = ai−1(1−a)λ−i
Ä

1 − ( a
1−a )λ−2i+1

ä

. As a ≥ 1
2

then a
1−a ≥ 1 which implies that ( a

1−a )λ−2i+1 ≥ 1 (as i ≤ µ ≤ λ
2 ). Consequently

g(a) ≤ 0 for a ≥ 1
2 . Therefore, in the last equation of the computation of E

(

Ni:λ
)

,
g(φ(x)) ≤ 0 as φ(x) ≥ 1

2 when x is positive. Therefore, E
(

Ni:λ(0, 1)
)

≤ 0 for
i ≤ λ

2 . ⊓⊔

Proof of (iii)

In this proof, we suppose that µ ≤ λ
2 . In order to show that ∃ σ > 0 such that

V(σ) < 0, we suppose that ∀σ > 0, V(σ) ≥ 0. This particularly implies that ∀σ∗ > 0

and ∀d ≥ 1, dV
Ä

σ∗

d

ä

≥ 0. Therefore limd→+∞ dV
Ä

σ∗

d

ä

≥ 0. On the other hand we
have by (24):

lim
d→+∞

dV

Å

σ∗

d

ã

= σ∗
µ
∑

i=1

wiE
(

Ni:λ(0, 1)
)

+
(σ∗)2

2

µ
∑

i=1

(wi)2

where, for i ∈ {1, . . . , λ}, Ni:λ is the ith order statistics among λ independent random
variables following the distribution of N(0, 1). By Lemma 4, we have E

(

Ni:λ(0, 1)
)

≤
0 as i ≤ µ ≤ λ

2 . Therefore, there exists values of σ∗ such that the right hand-
side of previous equation is strictly negative. This means that there exists σ∗ >

0 such that limd→+∞ dV
Ä

σ∗

d

ä

< 0 which is in contradiction with our hypothesis.
Consequently, ∃ σ̄ > 0 such that V(σ̄) < 0. ⊓⊔
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Proof of (iv)

Let µ ≤ λ
2 . By Proposition 6, (ii) and (iii) of the Proposition, we know that limσ→+∞ V(σ) =

+∞, that V is lower bounded by c(d) < 0 and that ∃ σ̄ > 0 such that V(σ̄) < 0.
Therefore, as σ 7→ V(σ) is continuous ((i) of the Proposition), we have:

V([0,+∞[) = [min
σ≥0

V(σ), lim
σ→+∞

V(σ)[= [min
σ≥0

V(σ),+∞[⊂ [c(d),+∞[

As V(0) = 0 and minσ≥0 V(σ) ≤ V(σ̄) < 0 then

min
σ≥0

V(σ) = min
σ>0

V(σ) = V(σopt) < 0

with σopt := arg minσ>0 V(σ). ⊓⊔

Proof of (v)

By (iv) of the proposition, for d, λ ≥ 2, there exists for every µ such that µ ≤ λ/2,
an optimal value of σ, σopt(µ), such that V(σopt(µ)) = minσ>0 V(σ(µ)). Let us now
look for the minimal value that can be reached by V on the set {σ > 0;µ ≤ λ/2. Then,
it can be defined as: min{σ>0;µ≤λ/2} V(σ, µ) = min {V(σ(1), . . . ,V(σ(λ/2)} =. As
the set {V(σ(1), . . . ,V(σ(λ/2))} is finite then we can state that there exists ((σopt, µopt)
such that

V(σopt, µopt) = arg min
{σ>0,µ≤λ/2}

V(σ, µ) .

⊓⊔

Proof of Theorem 1 (stated page 7)

Proof. The increase (or decrease) of the distance to the optimum at an iteration n can
be measured by the quantity ‖Xn+1‖

‖Xn‖
7 which writes, according to (3) and (12), as

‖Xn+1‖
‖Xn‖

=

∥

∥

∥

∥

Xn

‖Xn‖
+

σn

‖Xn‖
Mn

Å

Xn

‖Xn‖
,

σn

‖Xn‖

ã
∥

∥

∥

∥

.

This implies that

ln (‖Xn+1‖) − ln (‖Xn‖) = ln

Å
∥

∥

∥

∥

Xn

‖Xn‖
+

σn

‖Xn‖
Mn

Å

Xn

‖Xn‖
,

σn

‖Xn‖

ã
∥

∥

∥

∥

ã

.

Thanks to Lemma 2 and Proposition 1, we have

E

Å

ln

Å‖Xn+1‖
‖Xn‖

ã

|σ(Xn, σn)

ã

= E

Å

ln

Å
∥

∥

∥

∥

e1 +
σn

‖Xn‖
Mn

Å

e1,
σn

‖Xn‖

ã
∥

∥

∥

∥

ã

|σ(Xn, σn)

ã

≥ inf
σ≥0

E (ln (‖e1 + σM (e1, σ)‖))

= V(σopt)

(39)

7It is possible to divide by ‖Xn‖ thanks to Proposition 3 with x
∗ = (0, . . . , 0) ∈ R

d.
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Now, let us remark that in the specific scale-invariant adaptation rule with σn =
σopt‖Xn‖, we have:

E

Å

ln

Å‖Xn+1‖
‖Xn‖

ã

|σ(Xn, σn)

ã

= E (‖e1 + σoptM (e1, σopt)‖ |σ(Xn))

= E (‖e1 + σoptM (e1, σopt)‖) = V(σopt) .

This means that the best distance decrease in expectation is given when using σn =
σopt‖Xn‖. Taking the expectation in (39), we get

E

Å

ln

Å‖Xn+1‖
‖Xn‖

ãã

≥ V(σopt, 0) .

Summing such inequalities from 0 to n and dividing by n, we get

1

n
E

Å

ln

Å‖Xn‖
‖X0‖

ãã

≥ V(σopt, 0) .

⊓⊔

Proof of Proposition 2 (stated page 8)

At each iteration n, the recurrence relation (3) and the relation (12) gives

‖Xn+1‖ = ‖Xn + σ‖Xn‖Mn (Xn, σ‖Xn‖) ‖ .

The result obtained in Proposition 3 was shown for a more general algorithm than the
one investigated here. Therefore, by this proposition, we can state that for all n ≥ 0,
‖Xn‖ > 0 almost surely and we can write

‖Xn+1‖ = ‖Xn‖
∥

∥

∥

Xn

‖Xn‖
+ σMn

Å

Xn

‖Xn‖
, σ

ã

∥

∥

∥ a.s.

Taking the logarithm of the previous equation, we get

ln (‖Xn+1‖) = ln (‖Xn‖) + ln

Å

∥

∥

∥

Xn

‖Xn‖
+ σMn

Å

Xn

‖Xn‖
, σ

ã

∥

∥

∥

ã

a.s.

and after summing such equalities we obtain

ln (‖Xn‖) − ln (‖X0‖) =
n−1
∑

k=0

ln

Å

∥

∥

∥

Xk

‖Xk‖
+ σMk

Å

Xk

‖Xk‖
, σ

ã

∥

∥

∥

ã

a.s.

⊓⊔

Proof of Theorem 2 (stated page 9)

in order to prove the Theorem, we will make use of the following Proposition:

Proposition 7 Let (Xn)n be the sequence of random vectors defined in (4), let σ be

a positive constant and let M be the random vector introduced in (12) (with n = 0,

i.e., M = M
(0)). Then the random variables Zn introduced in Proposition 2 are

independent and follow the same distribution as the variable Z(σ) = ‖e1+σM(e1, σ)‖
(introduced in Lemma 2 and Definition 1) or any ‖u + σM(u, σ)‖ such that ‖u‖ = 1.
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Proof. Let σ be a positive constant. Let (Xn)n∈Z+ be the sequence of random
vectors defined in (4) and (σn))n∈Z+ the associated sequence of positive random vari-
ables such that σn = σ‖Xn‖ for all n ≥ 0. By Proposition 3, ‖Xn‖ > 0 almost
surely such that the random variable Xn

‖Xn‖ is well defined. Note that the norm of the

random variable Xn

‖Xn‖ is one. Therefore, at an iteration n, we can apply Lemma 2 for
∥

∥

∥

Xn

‖Xn‖ + σMn

Ä

Xn

‖Xn‖ , σn

‖Xn‖

ä

∥

∥

∥
where Xn is fixed:

E
(

eitZn |σ (Xn)
)

= E

(

e
it

∥

∥

∥

Xn
‖Xn‖

+σMn

(

Xn
‖Xn‖

,σ
)

∥

∥

∥|σ (Xn)

)

= E

(

e
it

∥

∥

∥e1+σM(e1,σ)

∥

∥

∥|σ (Xn)

)

.

(40)

Therefore E
(

eitZn
)

= E
(

E
(

eitZn |σ(Xn)
))

= E

Ñ

e
it

(∥

∥

∥
e1+σM(e1,σ)

∥

∥

∥

)

é

. There-

fore, for all n ≥ 0, the variables Zn and
∥

∥

∥e1 + σM (e1, σ)
∥

∥

∥ follow the same distribu-

tion. This is also valid when replacing e1 by any vector unit vector u.
For showing the independence of (Zn)n∈Z+ , we will prove that for all n, for all t0 ∈
R, . . . , tn ∈ R, E

(

eit0Z0 . . . eitnZn
)

= E
(

eit0Z0
)

. . . E
(

eitnZn
)

. We will proceed by
induction and suppose that for all t0 ∈ R, . . . , tn−1 ∈ R, we have E

(

eit0Z0 . . . eitn−1Zn−1
)

=
E
(

eit0Z0
)

. . . E
(

eitn−1Zn−1
)

and prove that for all t0 ∈ R, . . . , tn ∈ R

E
(

eit0Z0 . . . eitnZn
)

= E
(

eit0Z0
)

. . . E
(

eitnZn
)

.

Let ζn be the σ-algebra σ(X0,M0,X
(1),M1, . . . ,X

(n−1),Mn−1,Xn) and let t0, . . . , tn ∈
R

n+1. Then, E(eit0Z0 . . . eitnZn) = E(E(eit0Z0 . . . eitnZn |ζn)). Since eit0Z0 . . . eitn−1Zn−1

is bounded and ζn-measurable [17, p88, j]

E(eit0Z0 . . . eitnZn |ζn) = eit0Z0 . . . eitn−1Zn−1E(eitnZn |ζn) . (41)

Besides, E(eitnZn |ζn) = E

Å

e
itn

∥

∥

Xn
‖Xn‖

+σMn

(

Xn
‖Xn‖

,σ
)∥

∥|ζn

ã

. The variable Zn de-

pends only on Xn and Mn with Mn depending only on Xn and the variables N
i
n

which do not depend on
(

X0,M0,X
(1),M1, . . . ,X

(n−1),Mn−1

)

. Therefore, we
have

E

Å

e
itn

∥

∥

Xn
‖Xn‖

+σMn

(

Xn
‖Xn‖

,σ
)∥

∥|ζn

ã

= E

Å

e
itn

∥

∥

Xn
‖Xn‖

+σMn

(

Xn
‖Xn‖

,σ
)∥

∥|σ(Xn)

ã

.

Moreover, we know from (40) that

E

Å

e
itn

∥

∥

Xn
‖Xn‖

+σMn

(

Xn
‖Xn‖

,σ
)∥

∥|σ(Xn)

ã

= E
Ä

eitn‖e1+σM(e1,σ)‖
ä

.

Injecting this in (41), we obtain

E
(

eit0Z0 . . . eitnZn |ζn

)

= eit0Z0 . . . eitn−1Zn−1E
Ä

eitn‖e1+σM(e1,σ)‖
ä

. (42)
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We take now the expectation of both sides of the previous equation and obtain

E
(

eit0Z0 . . . eitnZn
)

= E
Ä

eit0Z0 . . . eitn−1Zn−1E
Ä

eitn‖e1+σM(e1,σ)‖
ää

. (43)

As E
(

eitn‖e1+σM‖) is a constant value, previous equation becomes

E
(

eit0Z0 . . . eitnZn
)

= E
(

eit0Z0 . . . eitn−1Zn−1
)

E
Ä

eitn‖e1+σM(e1,σ)‖
ä

. (44)

Moreover by induction hypothesis we know that
E
(

eit0Z0 . . . eitn−1Zn−1
)

= E
(

eit0Z0
)

. . . E
(

eitn−1Zn−1
)

which thus imply that

E
(

eit0Z0 . . . eitnZn
)

= E
(

eit0Z0
)

. . . E
(

eitn−1Zn−1
)

E
Ä

eitn‖e1+σM(e1,σ)‖
ä

.

To finish the proof, we have to prove that E
(

eitn‖e1+σM(e1,σ)‖) = E
(

eitnZn
)

. Using
again the first part of this proof, we know that ‖e1 + σM(e1, σ)‖ and Zn follow the
same distribution such that E

(

eitnZn
)

= E
(

eitn‖e1+σM(e1,σ)‖). Injecting this result
in the previous equation, we obtain the following equation

E
(

eit0Z0 . . . eitnZn
)

= E
(

eit0Z0
)

. . . E
(

eitn−1Zn−1
)

E
(

eitnZn
)

(45)

which achieves to prove the independence of (Zn)n∈Z+ . ⊓⊔

Proof of the Theorem :
The variables ln(Zn) where (Zn)n is introduced in Proposition 2, are identically dis-
tributed, independent (Proposition 7), and have a finite expectation (Proposition 1).
Therefore, the LLN for independent identically distributed random variables with a
finite expectation applies for the sequence (ln(Zn))n in the sense that the quantity
1
n

∑n
k=1 ln

(∥

∥

∥

Xk

‖Xk‖ + σMk

Ä

Xk

‖Xk‖ , σ
ä

∥

∥

∥

)

converges almost surely to V(σ) when n

goes to infinity. Then, by Proposition 2, we have 1
n ln
Ä‖Xn‖
‖X0‖

ä

converges almost surely
to V(σ) when n goes to infinity. ⊓⊔
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