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Abstract—Distributed and peer-to-peer storage systems are
foreseen as an alternative to the traditional data centers and
in-house backup solutions. In the past few years many peer-
to-peer storage systems have been proposed. Most of them
rely on the use of erasure codes to introduce redundancy to
the data. This kind of system depends on many parameters
that need to be well tuned, such as the factor of redundancy,
the frequency of data repair and the size of a data block. In
this paper we give closed-form mathematical expressions that
estimate the system average behavior. These expressions are
derived from a Markov chain. Our contribution is a guideline
to system designers and administrators to choose the best set
of parameters. That is, how to tune the system parameters to
obtain a desired level of reliability under a given constraint of
bandwidth consumption. We confirm that a lazy repair strategy
can be employed to amortize the repairing cost. Moreover, we
propose a formula to calculate the optimal threshold value that
minimizes the bandwidth consumption. Finally, we additionally
discuss the impact of different system characteristics on the
performance metrics, such as the number of peers, the amount
of stored data, and the disk failure rate. To the best of our
knowledge this is the first work to give close-form formulas to
estimate the bandwidth consumption for a lazy repair, and the
loss rate taking into account the repair time.

I. I NTRODUCTION

Peer-to-peer systems are an interesting alternative to obtain
a storage solution with high reliability at low cost. Some
backup solutions, e.g., data centers and high-end NAS appli-
ances are highly reliable, but also tend to be very expensive.
The advantages of using a peer-to-peer network for data
archival is that, by nature, it can distribute the information
into different locations and has a high potential to be scalable.

Many systems have been proposed, e.g., CFS, Farsite,
OceanStore, PAST, Glacier, TotalRecall, or Carbonite (see
[5] and references within). Also, there is an effort by the
open source community to create a global storage cloud,
the Tahoe-LAFS [16] project. Commercial companies, like
Wuala [17] and Ubistorage [14] , exploit that technology to
deliver a reliable backup solution.

The key concept of peer-to-peer storage systems is to
introduce redundancy to data and distribute it among peers in
the network. The addition of redundant data could be done
by trivial Replication[13], [3], in which copies of data are
sent to different nodes in the system; or be based onErasure
Codes[10], [15], such as Reed Solomon and Tornado, as
used by some RAID schemes.

When using Erasure Codes, the original user data (e.g.
files, raw data, etc.) is cut intodata-blocksthat are in turn
divided intos initial fragments(or pieces) of equal size. The
encoding scheme producess+ r fragments that can tolerate

r failures (see Figure 1). In other words, the original data-
block can be recovered from anys of the s + r encoded
fragments. In a peer-to-peer storage system, these fragments
are then placed ons+ r different peers of the network.
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Fig. 1. Files or raw data are cut into data-blocks. Each data-block is divided
into s initial fragments, to which r fragments of redundancy are added. Any
s fragments among s+r are sufficient to recover the original data-block.

To keep a durable long-term storage, the system must be
capable to maintain, despite disk failures, a minimum number
of fragments of each block present in the network. We study
the case ofreactive maintenanceand lazy repair, that is,
when the number of redundant fragments drops below a
certain level, namelyr0, the block is reconstructed.

A fundamental question for such systems is how to choose
the basic set of parameters, such ass, r, and r0, to obtain
an efficient utilisation of bandwidth for a desired level of
reliability?

In this paper, we analyse the steady-state of a storage
system based on erasure codes. Our contribution is a practical
guide to choose the best set of system parameters to obtain
a desired level of reliability under a given constraint of
bandwidth consumption, or vice-versa. To the best of our
knowledge this is the first work to give close-form formulas
to estimate the bandwidth consumption, and the loss rate
taking into account the repair time. These formulas are
derived from a simplified Markov chain model. They give a
good intuition of the system dynamics and of the impact of
its parameters. We considered two scenarios: in the first one
we study the trade-off between the bandwidth consumption
and the loss rate for afixed storage space; in the second
scenario, for a given reliability, we show how toprovision
the space overheadto obtain an optimal bandwidth usage.

The remainder of this paper is organized as follows:
after presenting the related work, we describe the system
characteristics in the next section. In Section III we present
a simplified Markov Chain Model along with a compilation
of closed formulas to estimate the system metrics in Sec-
tion IV. In Section V, we explain how to choose the system
parameters.
Related work. Many works study the use of erasure codes
schemes to add reliability to data. In [15], Weatherspoon



and Kubiatowicz show that, in most of the cases, erasure
codes use an order of magnitude less bandwidth and storage
space than replication to provide similar system durability.
Lin et al. in [9] and Rodrigues and Liskov in [12] also
study the trade-offs of using erasure codes for different peer
availabilities. In Total Recall [2] the authors propose the
lazy repair mechanism and study the system behavior for
different peer availabilities. Datta and Aberer in [7] study
analytical models for different lazy maintenance strategies.
Dimakis et al. in [8] compare different erasure codes against
a lower bound, but without the lazy repair approach. In [6],
it is shown that the disk failures induce important variations
around the mean bandwidth consumption. However, there is
no discussion on the choice of the system parameters. Our
work differentiate from those as we analyse thebandwidth
efficiencyof erasure codes usinglazy repair, and we explore
the parameter’s space to give a simple procedure to estimate
their values.

II. SYSTEM DESCRIPTION

The detailed characteristics of the studied P2P storage
system are presented in this section.
Data Redundancy.Erasure Code schemes [10] are used to
introduce data redundancy in the system. The user data is
cut into data-blocks (or block, for short). Each data-blockis
divided into s initial pieces. Thenr pieces of redundancy
are added, in such a way that the initial block can be
reconstructed from any subset ofs pieces among thes+ r.
The pieces are then sent tos+ r different peers at random.
The stretch factor (or space-overhead) is defined as(s+r)/s.
Peer Availability. It is assumed that the peers stay connected
almost all the time into the system. To avoid the problem of
transient failures and deal with short-time churn, a peer is
considered lost only if it has left the system for a period
longer than a given timeout [12].
Peer Failures. In our model a peer failure represents a disk
crash or a peer that definitively leaves the system. In both
cases, it is assumed that all the data on the peer’s disk are
lost. Following most works on P2P storage systems [1], [11],
peers fail independently according to a memory-less process.
For a given peer, the probability to fail at any given time step
is α = 1/MTTF. The probability for a peer to be alive after
T time steps is(1− α)T .
Data Repair. The system needs to continuously monitor the
block’s redundancy level to decide if a repairing process
(namelyreconstruction) needs to be done. The reconstruction
is done in three consecutive phases: first,retrieval, the peer
in charge of the reconstruction has to downloads fragments
among the remaining block’s fragments; secondly,recoding,
that recreate the data-block; and the third,sending, in which
the reconstructed missing fragments are sent to different
peers.
Reconstruction Strategy.Different reconstruction strategies
can be considered. Delaying the reconstruction, i.e., waiting
for a block to lose more than one fragment before rebuilding
it, amortizes the costs of bandwidth usage over several
failures. Hence, we study athreshold based reconstruction

TABLE I
SUMMARY OF MAIN NOTATIONS .

N # of peers
D amount of data to store, in bytes
s # of initial fragments of a block
r # of redundancy fragments
r0 reconstruction threshold value
lf size of a fragment, in bytes
lb initial size of a block, in bytes (lb = s·lf )
B total # of blocks in the system (B = D/lb)
F total # of available fragments at steady state

MTTF peer mean time to failure
α prob. for a disk to failure during a time step (α = 1/MTTF )

δ(i) probability for a block at leveli to lose one fragment
Θ time steps to reconstruct all blocks after a disk failure
θ average time steps to reconstruct one block
γ prob. for a block to be reconstructed at a time step (γ = 1/θ)
τ time step of the model

policy in this paper. When the number of fragments of a block
drops to a threshold valuer0, the reconstruction starts. Note
that, whenr0 is set tor−1, the reconstruction starts as soon
as a first piece is lost. This special case is calledeager policy
and the induced cost to reconstruct is very high, because it
is necessary to transfers + 1 fragments to reconstruct only
1 fragment. Setting a low value forr0 decreases the number
of reconstructions (as the reconstruction starts only after that
r − r0 pieces are lost), but increases the probability to lose
a block.
Size of the Studied SystemWe study the system’s charac-
teristics in the steady-state. Moreover, the number of peers
N , and the amount of data stored in the systemD, is kept
constant over the time. Crashed disks reappear empty.

III. M ARKOV CHAIN MODEL (MCM)

As shown in [6], the system averages can be precisely
modeled by a finite discrete time Markov Chain. The states
(shown in Figure 2) represent the level of redundancy of one
block in the system.

r00 r

δ(r0) δ(r0 + 1)

1

δ(0)

γ · (1 − δ(0))

γ · (1 − δ(r0))

δ(r)δ(r − 1)

r − 1r0 + 1Dead

Fig. 2. Markov chain modeling the behavior of one block. Solidand
dashed lines represent failure and reconstruction events,respectively. Loops
are omitted. Dead blocks are re-injected in the system with probability 1.

The chain hasr + 2 states, that are ther levels of
redundancy of a blockb, plus a level0 (no more redundancy),
and a dead state. Three different kinds of states can be
distinguished:

• Non-Critical: whenr0 < r(b) ≤ r;
• Critical: when0 ≤ r(b) ≤ r0;
• Dead: when the block has less thans fragments,

wherer(b) is the number of remaining redundancy fragments
of a blockb. A block can be affected by two kinds of events:
peer failures and reconstructions. The probability for a block
at level i to lose one fragment during a time step is denoted



by δ(i) and is approximated byδ(i) = (s+i)α, (recall thatα
is the probability for a peer to experience a failure during the
time step). When a block becomes critical, i.e., the remaining
redundancyr(b) ≤ r0, the reconstruction starts. The average
duration of a reconstruction is notedθ. At each time step, a
critical block has a probabilityγ := 1/θ to be rebuilt. In that
case it goes to the top, stater.

In our model, due to the stability assumption (the amount
of data is constant), a dead block is replaced immediately.
This purely formal assumption does not affect the system
behavior because dead blocks are rare events, but it makes
the analysis more tractable.

IV. ESTIMATING SYSTEM METRICS

Modeling this system with a Markov Chain Model is
very useful to describe the system average behavior. In this
section we present some explicit expressions to estimate the
system main metrics and the peek of bandwidth when there
is a peer failure. These expressions give an intuition of the
system behavior in function of its parameters. We provide
approximations for ratiosα/γ ≪ 1, which is the case for
practical systems where the block reconstruction process is
much faster than the peer failure rate.

Stationary distribution. The finite Markov chain presented
above is irreducible and aperiodic. Hence, the probabilityto
be in a state converges towards a unique stationary distribu-
tion denoted byP , whereP (i) is the stationary probability
to be in statei. In a system where the blocks are distributed
uniformly at random and the peers fails independently, we
can say that each state in the chain represent the fraction of
blocks at that state. In that case, it is very easy to derive
simple closed-formulas that estimate the distribution of the
blocks’ redundancy level. The stationary distribution of that
chain can be computed by the stability equations as follows:

P (i) =



















δ(i+1)·P (i+1)
δ(i) , if r0 < i ≤ r

δ(i+1)·P (i+1)
δ(i)+γ·(1−δ(i)) , if 0 ≤ i ≤ r0

δ(0)P (0), if i = dead

All probabilities can be expressed in function ofP (r),
which in turn is computed by the normalization

∑r
i=0 P (i)+

P (dead) = 1. Then the fraction of fragments at levelP (r)
can be simplified asP (r) ≈ 1

(s+r)·(Hs+r−Hs+r0
) , where

Hn =
∑n

k=1
1
k

is the harmonic number ofn. Note that, here-
after we use the approximationln(n) ≈ Hn. The fraction of
blocks at each Non-Critical statei is thenP (i) ≈ (s+r)·P (r)

(s+i) ,
which evaluates as

P (i) ≈
1

(s+ i)· ln( s+r
s+r0

)
, if r0 < i ≤ r. (1)

Distribution of blocks’ redundancy level. If every block
is at maximum redundancy, the total number of fragments
stored in the system isF = B·(s+r). However, at the steady-
state this is not true. In that case, the average redundancy
level, E[P ], is in betweenr and r0. Figure 3 illustrates the
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Fig. 3. Distribution of blocks’ redundancy level at the steady state.

average number of blocks in each redundancy level. Note
that the number of blocks in the Non-Critical states (levels
8 to 11) are not evenly distributed. We can then estimate
the number of available fragments at the steady-state,F =
B · E[P ], which is approximated byF ≈ B·(s+ r+r0

2 ).

A. Estimating the Bandwidth Consumption

To estimate the bandwidth usage by reconstructions, we
first need to define the repair bandwidth inefficiencyǫ(i), as
the amount of data that need to be transferred to reconstruct
i missing fragments:ǫ(i) = (s + i − 1)·lf , where lf is
the size of a fragment. That is, the peer in charge of the
reconstruction must downloads fragments from other peers
and then sendi − 1 reconstructed fragments (assuming that
the peer in charge keeps a fragment). When a block needs
to be reconstructed, the number of missing fragments is in
most of the casesr − r0. Sometimes it could be a little bit
larger if two fragments were lost during the reconstruction,
which is rare when the ratioα/γ ≪ 1.

Average bandwidth consumption.At the steady-state the
number of blocks that finish the reconstruction at each time
step is equal to the number of reconstructions that start (by
a cut argument in the chain). Then the average bandwidth
consumption comes straightforward from the transition of the
stater0 + 1 to the stater0. That is, the fraction of blocks
that goes from the lastNon-Critical state towardsr0, given
by δ(r0 + 1)·P (r0 + 1).

For a system withB blocks, the average number of
blocks finishing the reconstruction isRavg = B·(s + r0 +
1)·α·P (r0 + 1). For each block, the amount of information
to be transferred is, in most of the cases,ǫ(r − r0). If
the reconstructions are uniformly distributed, the average
bandwidth consumption per peer isBWavg ≈

Ravg·ǫ(r−r0)
N ·τ

,
which evaluates as

BWavg ≈
B·α

N · ln( s+r
s+r0

)τ
·(s+ r − r0 − 1)·lf . (2)

Note thatBWavg does not depends on the reconstruction
rateγ. This expression is valid for systems with ratioα/γ ≪
1 (see Figure 4 and corresponding discussion).

Peek of bandwidth consumption.It is know that the dynam-
ics of a system with many blocks is not smooth at all. There



are peeks of resource consumption when a peer fails, because
many fragments are lost at the same time and trigger many
reconstructions (see [6]). The number of blocks that start
reconstruction when a peer fails isRstart = F

N
·P (r0 + 1),

whereF/N is the average number of fragments per disk,
andP (r0+1) is the fraction of these fragments that belongs
to blocks that are at the last Non-Critical state (i.e., needto
start the reconstruction). The amount of data transfer induced
by these reconstructions isQpeek = Rstart·ǫ(r−r0) and can
be approximated as

Qpeek ≈
B·(s+ r)

N ·(s+ r0 + 1)· ln( s+r
s+r0

)
·(s+ r − r0 − 1)·lf .

Qpeek can be used to calculate the average time to recon-
struct the data of a failed peer, which in turn can be used to
re-estimate the reconstruction rateγ for a given bandwidth
capacity.

B. Estimating the Data Loss Rate

The evaluation ofP (dead) = δ(0)·P (0) gives the fraction
of blocks that are lost per time stepτ . Hence in a system with
B blocks the data loss rate can be calculated asLossRate =
B · P (dead)/τ . Whenα/γ ≪ 1 it is closely approximated
as

LossRate ≈
B

(s+ r0 + 1)· ln ( s+r
s+r0

)τ
·
(s+ r0)!

(s− 1)!
·

(

α

γ

)r0+2

.

(3)

C. Discussion on the system behavior

In this section we discuss the performance metrics for
different system characteristics. We first give an example of
a medium size network composed byN = 500 peers and
D = 20 TB of data to be stored. The MTTF of peers is
set to 1 year. This value is less than a typical time-span
of warranties applied by major hardware vendors, which
is 3 years. Indeed, this value is a conservative choice and
comprises the probability of other hardware failures and of
software maintenance.

Lets chooses = 16, r = 16 and r0 = 8 (we discuss
about this choice in the next section) and a fragment size
lf = 320 KB. We obtain a block sizelb = s·lf = 5 MB
and the total number of blocksB = D/lb = 222. The initial
amount of data per disk is82 GB (at the steady state it is
72 GB). For such parameters, the average bandwidth usage
per peerBWavg ≈ 57.8 kbps. When a peer fails, the total
amount of data to be transferredQpeek ≈ 246 GB (504 MB
per peer). For a provisioned reconstruction timeθ = 12 hours
theLossRate ≈ 5.7·10−8 per year.

System size:Systems with different sizes can be analyzed in
two scenarios: the first is whenN is larger and the amount
of stored data in the systemD remains constant, in that case
BWavg and Qpeek decreases inversely withN . However,
LossRate does not change. In other words, for the same
amount of data, a larger system behaves more smoothly. The
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Fig. 4. Accuracy of estimations for different ratiosα/γ.

other scenario is whenN is larger andD increases at the
same rate, i.e., the amount of stored data per peerd = D

N

remains constant. Then, we remark thatBWavg andQpeek

also remain constant. But, in this caseLossRate increases
when the system is larger (it depends on the absolute number
of blocks in the system,B = D/lb, we discuss the choice of
this parameter in the next section).

Disk failure rate (α): The BWavg is impacted linearly by
α, that is, more failures means more bandwidth usage. The
probability to lose data increases exponentially withα. As
expected,Qpeek is not impacted byα. Nonetheless, whenα
is higher, the peeks of bandwidth occur more often.

Validations. Figure 4 shows the accuracy of Equations (2)
and (3) compared to the MCM for different ratios ofα/γ.
Note that for values ofα/γ < 10−3 the results obtained by
the equations are very close to the MCM. For such values of
α/γ our experimentation with different parameters confirmed
the accuracy of the equations. Moreover, in [6], it is shown
that the values obtained by the MCM closely match the
results obtained by simulations. Hence, for space reasons
these results are not presented here.

V. HOW TO SET THE SYSTEM PARAMETERS

The choice of the system parameters depends on multiple
constraints, for instance, the storage space-overhead, the
bandwidth consumption, the desired level of reliability, etc. In
this section, we propose a methodology to choose the main
system parametersB, lf , s, r, r0, for a desired reliability
(probability to lose data) or a given limit on the bandwidth
consumption.

In brief, we start defining a suitable value fors and lf ,
which depends on the system architecture and usage. Then,
if the space-overhead (s+r

s
) is fixed, we choose the bestr0

for the given constraints. Otherwise, we first chooser0 and
then calculate the best value ofr to minimize the bandwidth
consumption.

A. Determining the block size (lb)

The total number of blocks in the system is defined by
B = D/lb. For a given amount of dataD, how do we choose
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lb? Similarly, knowing thatlb = s·lf , how do we chooses
and lf?

In this discussion we assume thatr andr0 are defined as a
factor ofs, that is,r = k·s andr0 = k0·s. Hence, increasing
s means increasingr and r0 proportionally. By rewritingr
and r0 in the Equation (2) we note thatBWavg does not
almost depend on the ratios betweenB, s andlf , but mainly
on the constantD. Hence, the choice of the block size is
based only on theLossRate equation.

Architectural issues: from a theoretical point of view, to
obtain lower values ofLossRate, B should be as small as
possible, and thereforelb as big as possible.

However, in practice we can deduce a lower bound for
B based onRstart, the number of blocks that start the
reconstruction when a peer fails. To balance the load among
peers, every peer should process the reconstruction of at
least one block. Hence,Rstart ≥ N , which evaluates to the
constraintB ≥ N2.

The choice oflb also depends on the main usage of the
storage system. Two main groups of usage can be distin-
guished. For anarchival usage, in which the access to the
stored data is very rare, the block sizelb could be very large.
Conversely, in afilesystem usage, e.g, Pastis [4], that supports
continuous read and write operations, it is interesting to have
a very small block size. So, the overhead of accessing and
modifying a block is low.

The choice of s: For a fixed lb = s·lf , s should be as
large as possible andlf as small as possible. Figure 5 shows
the bandwidth consumption and probability to lose data (in
log scale) when using the MCM, for a system with fixed
B, increasings from 4 to 64, and proportionally decreasing
lf . In this experiment,k = 1 and ko = 1/2. As expected,
the results show that larger values ofs do not impact the
bandwidth consumption, whereas the probability to lose data
decreases exponentially, as stated in Equation (3).

But note that the size oflf should not be too small. Some
practical limits impose a value of at least4 KB, which is
the common value of file system’s block size. Moreover,
the amount of metadata,mf , that should be kept is linearly
dependent on the number of fragments of a block. In a

practical systemmf ≪ lf , if not, the metadata takes up
an important space that could be used to achieve more
redundancy.

Another factor on the choice ofs is the encoding and
decoding rate of the erasure codes. Some implementations
of the classic Reed-Solomon use words of lengthone byte
to improve the efficiency (they work on the Galois Field
GF (28)), which leads to the practical limitations+r ≤ 256.
The overhead of the encoding is of orderO(s·r). Very high
values ofs could impact negatively the encoding throughput.
For instance, whens andr are large (e.g.,s = r = 128) the
encode throughput could be as low as20 Mbps (on a Core
2 Duo 2.16Ghz).

B. Determining the reconstruction threshold (r0)

For a givens, the choice of the threshold valuer0 depends
on two factors: the desired reliability and the bandwidth
capacity. The reliability can be calculated using Equation(3).
It is sufficient to find the smallestr0 that matches the desired
LossRate. If r is not chosen yet, then it can be replaced with
r = r0 + 1, and the choice ofr0 is conservative.

Figure 6 shows the trade-off between the bandwidth con-
sumption and the data loss rate (in log scale). In this experi-
ment the space-overhead(s+r)

s
is fixed 2, this meansr = s.

Increasingr0 means more reliability (LossRate decreases
exponentially) at the cost of more bandwidth consumption.
Note that the bandwidth consumption increases very fast
whenr0 is close tor.

For example, to provision a system to haveLossRate <
10−20 (20 nines of reliability, which is more than many RAID
and NAS systems), and peer’sMTTF of 1 year, we find the
value r0 = 10 using the Equation (3). Then, the bandwidth
consumption comes directly from Equation (2).

C. Determining the redundancy (r)

When s and r are defined, provisioning the system is
easy and rely on the choice of the bestr0 that matches the
resource constraints. However this is not always the case. If
the space-overhead is not a problem, the parameterr can
be chosen in such way that the bandwidth consumption is
optimal. Figure 7 shows an experiment with fixeds = 16
andr0 = 6, and increasing values ofr. The results show that
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(there is no space-overhead limit).
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Fig. 8. System with fixeds and increasing values ofr0. The valuer is
defined by the optimal bandwidth utilisation.

higher values ofr decrease slightly theLossRate, however,
the BWavg follows a parabolic shape, for low values ofr
(extreme caser = r0 + 1, the eager policy) the bandwidth
consumption is very high, then it decays very fast. At a
certain point the bandwidth consumption starts to grow with
r.

Intuitively, we increase the value ofr to delay the repair
process because the overhead of the blocks’ reconstruction.
Mainly, we aim at reducing the fraction of blocks at the last
Non-Critical state (s + r0 + 1). This strategy has a strong
effect whenr is close tor0 (see Equation (1)) but it decreases
slowly whenr− r0 is large. However, at a certain point, the
cost of having more fragments outweigh the gains of reducing
the fraction of blocks at the states+ r0 + 1.

To obtain the best bandwidth consumption for a givens
and r0, it is sufficient to find the derivative of Equation (2)
with respect tor. The bestr is given by ∂BWavg

∂r
= 0, which

evaluates to the following equation:

r0 − s− r + (s+ r) · ln

(

s+ r

s+ r0

)

= 0 (4)

The termr can then be isolated numerically, but it does not
have a nice readable form. In the given example, fors = 16
andr0 = 8, the optimal value ofr equals40 (space-overhead
of 3.5). In this case, the average bandwidth consumption is
39.1 Kbps per peer, instead of57.8 Kbps when the space-
overhead is2. Figure 8 shows a system with increasing
values of r0, and r chosen accordingly to Equation (4).
The bandwidth consumption is optimal for those values ofs
andr0. Note that the bandwidth consumption increases very
slowly, while theLossRate decreases exponentially.

VI. CONCLUSION

In this paper, we analyzed the steady-state of a peer-to-peer
storage system based on erasure codes and lazy repair. From
a simplified Markov Chain Model we deduced close-form
mathematical expressions to estimate the system behavior.
The results were focused on the metrics: probability to lose
data and bandwidth consumption. We described a methodol-
ogy to determine the main system parameters, such as the
number of initial fragmentss, the reconstruction threshold
r0 and the space-overhead defined by(s + r)/s. We show
that the lazy repair mechanism can be employed to achieve

a better utilization of bandwidth for a given reliability, at the
cost of additional space usage.
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