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Abstract

Since introduced by Berenger [1], the Perfectly Matched Layers method (PML) has become a popular
approach for non reflecting Absorbing Boundary Conditions (ABC) in the numerical solution of the
Maxwell equations on unbounded domains. However, most of the formulations only concern paral-
lelepiped or simply convex domains. The goal of this paper is to present the theory for non necessarily
convex PML on systems like Maxwell’s.
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Introduction

Whenever one solves a Partial Differential Equations numerically (by a volume discretization), one
has to truncate the domain in some way. A key question is how to terminate the mesh without creating
excessive echoes from the artificial truncation surface that may spoil the quality of the solution. In
1994, Berenger changed the question : instead of finding an absorbing boundary condition, he found
an absorbing boundary layer. That is an artificial material independent of the boundary condition.
When a wave enters the absorbing layer, it is attenuated by absorption and decays exponentially. Even
if it reflects off the boundary, the returning wave after one round trip through the absorbing layer is
exponentially small. Moreover, waves do not reflect at the interface. Although PML were originally
derived from electromagnetism and Maxwell equations, the same ideas can immediately be applied to
other waves equations.

Chew and Wheedon [2] introduced the notion of complex coordinates stretching, based on analytic
continuation of Maxwell’s equations into spatial complex coordinates where the fields are exponen-
tially decaying. In this paper, the stretching is interpreted as writing the same equations in a complex
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tangent bundle of a flat manifold in C
n. For a general system, two cases appear. The first one concerns

equations with an intrinsic form given by exterior derivatives and Hodge operators. In that case, we
can directly study their integral inverses and thus obtain a general PML theory. This allows to reduce
the non necessarily convex PML domain to the closest of the real field region. This leads to a dispersive
formulation : the spatial operator is local and the time one is pseudo-differential but a localization
can be performed thanks to extra Ordinary Differential Equations. On the contrary, in a second case,
like for example aeroacoustics’ equations with convection, such a formulation is impossible to obtain.
This brings difficulties to prove the existence and uniqueness of the solution, but it is possible to prove
that an exponentially absorbing and unreflected solution exists in the entire domain.

This paper is about to generalize the PML formulation for non necessarily convex domains throught
a diffeomorphism ϕ, defined thanks to an affinity normal to the convexified boundary, and a strictly in-
cresing function f , whose properties will be discussed. Such a formulation will also included “classical”
PML, such as cartesian and convex ones.

1 Flat complex manifolds

In 2001, Lassas et al. [4] showed that all PML can be obtained through a complexification of coordi-
nates that corresponds to flat complex manifolds. Instead of stretching the coordinates, they changed
the metric defined on R

3. This method presents several advantages. First, when Maxwell’s equations
are written in terms of 1-forms, the differential operators take form of exterior derivatives. Second,
the stretching of the metric allows to treat more general scattering geometries than before. Finally,
this formulation is completely invariant as it is done without a reference to specific coordinate systems.

The manifolds used in this paper are called pseudo-riemannian in C
3, meaning real of dimension

3, with complex tangent and cotangent bundles, with a symmetric complex metric g(., .) such as its
determinant g =

√
det(g(., .)) can always be defined with the same determination. The purpose of

this section is to geometrically describe the complexification of coordinates that defines the PML.

Let (M, g) be a real manifold with a complex tangent bundle TM and a riemannian metric gjl.
The matrix G = (gij) is associated to the metric g(., .). The tangent bundle set TxM for all x in M, is
the sum U + iV , with U and V real vectors tangent to x and its complex dual is the cotangent bundle

T ∗
xM . Their bases are the partial derivatives

∂

∂x1
, . . . ,

∂

∂xn
for TxM and the exterior differentials

dx1, . . . , dxn for T ∗
xM . An element of TxM (a vector) is a complex linear combinaison on this basis

∑
j Xj(x)

∂

∂xj
. The elements of T ∗

xM are covectors on the form
∑

j Xj(x)dxj , with Xj(x) ∈ C. The

bilinear application TM × TM → TM : (u,v) → ∇uv with the properties ∇u(v+w) = ∇uv+∇uw
∇fuv = f∇uv and∇u(fv) = u(f) v+f ∇uv is a linear connection. In particular, the Levi Civita con-
nection is the only linear connection that conserves the metric g(., .) and can be expressed through the
Lie brackets [u,v] of u and v. A connection is torsion free if ∇uv−∇vu− [u,v] = 0 and ∇ig = 0. The
complex curvature is R(u,v)w = ∇u∇vw−∇v∇uw−∇[u,v]w. On a basis of TM , as

[
∂xi

, ∂xj

]
= 0,

the nullity of the curvature means the commutation of the covariant derivatives. If η and τ are two
p-forms, and if η¬τ = ηJτ

J is their scalar product (J stands for the set of the ordonate indices p),
the Hodge star operator ⋆ is given by the relationship : η ∧ ⋆τ = τ ∧ ⋆η = (η¬τ)

√
(g) dx1 ∧ · · · ∧ dxn.

Moreover, if n is the dimension of the manifold, then ⋆−1τ = (−1)p(n−p) τ . The canonic euclidian com-
plex metric gC(., .) in C

3 will be considered as the real submanifold of dimension 3 of R6 with complex

tangent and cotangent bundles, and used in cartesian coordinates ∀(u,v) ∈ C
3, gC(u,v) =

3∑

j=1

ujvj .

If x 7→ x̃(x) is a change of variables, a complex metric on R
3, denoted gx : TxMR

3 × TxMR
3 → C

3,
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can be defined by gx(u,v) = gC (dx̃(u), dx̃(v)), where dx̃ is the differential of x̃.

In the natural frame of reference, the tangent vectors always commute but the covariant derivates
only commute if the manifold is flat, which provides an intrinsic way of writing the determinant and
the symbol of the operator. A flat manifold therefore defines a parallelism structure that generalizes
the notion of convolution.

1.1 Formalism

The spatial domains involved are : a bounded smooth obstacle O, non necessarily convex that can
be empty, a connex domain Ω, non necessarily simply connex that represents the domain of interests,
δΩ0 is the boundary between Ω and O, δΩ∞ is the external boundary. Both are C1, and δΩ∞ can be
rejected to infinity if Ω is not bounded.

Consider the real manifolds with values in C
3 described by the change of variables, with p =

ε+ iω ∈ C,

x̃ = ϕ(x) +
1

p
f(ϕ(x)). (1)

Hypotheses 1. The couple (ϕ, f) belongs to C1(R3,R3). ∀x ∈ Ω, we have ϕ(x) = x and f(x) = 0.
Moreover, |ϕ(x)| = O

|x|→∞
(|x|), f is strictly increasing with a linear growth at infinity and it exists S

a convex function such as f = gradS
ϕ

.

These hypotheses will be justified later.

Remark : the regularity C1
pcw(R

3,R3) ∩ C0(R3,R3) for (ϕ, f) could be enough if the edges are
lipschitzian (no jump discontinuities) and it could be possible to write the weak exterior differentials
thanks to the unit partition theorem.

The interest of such a formulation is that the complexification of each component is made through
a single function given on all R3 and does not dependent anymore of the coordinates. Moreover, it
does not take into account the shape of the PML or their absorbing direction. As f|Ω = 0Ω and

ϕ|Ω = idΩ, the system of equations is unchanged inside the studied domain. If the functions are Ck,

then the manifold M defined by (1) is a submanifold of class Ck and dimension 3 in the R vectorial
space C

3 of dimension 6.

Remark : as announced, this formulation is very general : chosing ϕ = x and f(x) = (fi(x)) with

fi(x) =

∫ x

0
σi(τ)dτ and σi a positive function that tends to a constant at infinity, means a cartesian

formulation, while fi(x) = ∂ih(dist(x, ∂Ω)), with h an increasing convex function asymptotically
linear is a convex formulation. In both cases, f is the gradient of a convex function and respects Hyp.
(1)

2 Helmholtz problem

Let (M, g) be an pseudo-riemannian manifold. We define the Hodge star operator ⋆ corresponding
to the complex metric g, with U ∧ ⋆V = g(U, V )dvolg and dvolg = dx̃1 ∧ dx̃2 ∧ dx̃3. The functions
x̃j are the components of the embedding ∼ : M → C

3 that defines the immersion. The generalized
Laplacian ∆r

g for r-forms on the manifold M can be generalized for to the metric g(., .) through
∆r

g = (−1)r (⋆d ⋆ d− d ⋆ d⋆). If the manifold is flat, [∇i,∇j ] = 0, the components of 1-forms are given

by the metric and ∆0
g corresponds to the opposite of the Laplace-Beltrami operator ∆ : ϕ 7→ gij∇i∇jϕ.
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Definition 1. (M, g) is an absorbing pseudo-riemannian manifold if

1. the manifold (M, g) is flat and M is diffeomorphic to R
3 (with φ the diffeomorphism),

2. it exists Ω ⊂ M a relatively compact open set where the metric is real and euclidian and given
by g = φ⋆ge, with φ⋆ the pull-back of φ and ge the euclidian metric,

3. ∀v ∈ TR
x , v 6= 0, gx(v,v) 6= 0,

4. the immersion ∼ : M → C
3 guarantees that the imaginary part of x̃(x1) − x̃(x2) is signed and

of constant sign for all (x1,x2) ∈ M2.

For now on, the manifold considered (M, g) will be an absorbing pseudo-riemannian manifold. The
fourth point of Def. (1) uniquely determines the square root

{x̃− ỹ} =




3∑

j=1

(x̃j − ỹj)
2




1/2

.

If {x̃− ỹ} ≥ 0 is positive, M is called an outgoing absorbing pseudo-riemannian manifold.

Theorem 1. The fundamental solution GH for the g-Helmholtz operator for 0-forms on (M, g)

∀y ∈ M, (∆g − p2)Φ(.,y) = −δy is GH(x,y) =
exp(−i ω {x̃− ỹ})

4π {x̃− ỹ}

with GH the usual solution for the euclidian metric, δy a 0-current.
When |x−y| → ∞, GH and ∇GH have an exponential decay in exp (−O(|x− y|)) (with p = iω+0)

Remark : the Dirac delta is to be interpreted with respect to the volume form defined by the

metric g : if ψ is a C∞ 0-form on M,

∫

M

ψ(x)δy(x)dvolg(x) = ψ(y).

The proof of this theorem can be found in Lassas [4]. For the fundamental solution of the Helmholtz
equation to be defined, the fourth condition of Def. (1) must be satisfied. The change of variables is
given by Eq. (1), and by considering the limit case p = iω, we have

{x̃− ỹ}2 = [ϕ(x)− ϕ(y)]2 − 1

ω2
[f(ϕ(x))− f(ϕ(y))]2 − 2i

ω
[ϕ(x)− ϕ(y)] . [f(ϕ(x))− f(ϕ(y))] .

Let us denote [f ] = [f(ϕ(x))− f(ϕ(y))] and [ϕ] = [ϕ(x)− ϕ(y)]. The real and imaginary parts
must not be null simultaneously. The condition [f ] = 0 is straight forward deduced from the previous
equation. But

[f ] =

∫ 1

0
(1− t)

(
Df

Dϕ

) (
ϕ1 + t (ϕ2 − ϕ1)

)
dt.

If M(ϕ1, ϕ2) is the previous matrix, a condition for [f ] = 0 is (M [ϕ] , [ϕ]) = 0, meaning that [ϕ] is a
eigenvector of the matrix M+MT associated to a null eigenvalue. A sufficient condition is M positive
or null. For a continuous determination of the square root, the imaginary part must be of constant

sign. A sufficient condition is M symmetric. In that case, the matrix

(
Df

Dϕ

)
is also symmetric and

there exists a convex function S such as f = grad S
ϕ

. This justifies Hyp. (1).
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3 Resolution of the Maxwell equations

The study of these equations will first be made on the whole manifold M to guarantee the exis-
tence and uniqueness of the solution. Then, the problem on unbounded domain will be restrained to
a bounded one with adapted boundary conditions.

If the hypotheses from the Rauch’s theorem [7] are satisfied, every strong solution is a weak
solution, and strong solutions are smooth with second members of the same regularity. If the system
has a smooth strong solution, then it has a weak solution. As a consequence, in this paper, the electric
and magnetic fields e and h are exclusively smooth 1-forms. Given a metric g, there is a well-known
one-to-one correspondence between vector fields and 1-forms. Let j and m be 2-forms standing for the
second members (or Right Hand Side (RHS) of the equation) at coefficients in C∞ with a compact
support. The harmonic Maxwell’s equation in vacuum are

{
p ⋆ e− d h = −j
p ⋆ h+ d e = −m, (2)

with p = ε + ik ∈ C, k = ω/c = ω
√
ε0 µ0, and the Hodge star operator ⋆ defined by the Euclidean

metric to convert 1-forms to 2-forms. The fields are rescaled for symmetry, meaning e → √
ε0e and

h→ √
µ0h. The Maxwell operator is

M =

(
0 d
−d 0

)
= −MT ,

and ⋆(e, h) is the Hodge transformation of (e, h) defined by (⋆e, ⋆h). The Maxwell equations on
intrinsic form are

(p ⋆+M)

(
e
h

)
=

(
−j
−m

)
. (3)

Lemma 1. If ϕ is a 0-form and A a 1-form with ∇A = 0 then ∆1(ϕA) = (∆0ϕ)A.

Proof. If A is a 1-form then A is a linear combinaison of dx̃i whose Hodge transformations are

⋆dx̃1 = dx̃2 ∧ dx̃3 ⋆ dx̃2 = dx̃3 ∧ dx̃1 ⋆ dx̃3 = dx̃1 ∧ dx̃2.

Without a loss of generality, we assume that A = dx̃1 and ∇i := ∇∂x̃i
, then

∆1(ϕA) = −(⋆d ⋆ d− d ⋆ d⋆)(ϕdx̃1)

= (−∂11ϕ− ∂22ϕ− ∂33ϕ)dx̃1 + (∂12ϕ− ∂12ϕ)dx̃2 + (∂13ϕ− ∂13ϕ)dx̃3

= −(∆0ϕ)dx̃1.

Similar results are obtained with A = dx̃2 and A = dx̃3.

Theorem 2. If A and B are 2-forms such as ∇A = ∇B = 0, the application GA,B(x,y) (defined
thanks to the Green function GH(x,y) provided by Thm. 1)

GA,B(x,y) =

(
p− p−1d ⋆ d⋆ − ⋆ d

⋆d p− p−1d ⋆ d⋆

)(
GH(x,y)A
GH(x,y)B

)
.

satisfies the properties of the Green function for Maxwell’s equations on (M, g) and

∀y ∈ M,
(
p+ ⋆MT

)
GA,B(.,y) =

(
Aδy
Bδy

)
. (4)

5



Proof. As
(
p+ ⋆MT

)
=

(
p ⋆d

− ⋆ d p

)
, it comes

(
p+ ⋆MT

)
GA,B(.,y) =

(
p ⋆d

− ⋆ d p

)(
p− p−1d ⋆ d⋆ − ⋆ d

⋆d p− p−1d ⋆ d⋆

)(
GH(.,y)A
GH(.,y)B

)

=

(
p2 − d ⋆ d ⋆+ ⋆ d ⋆ d 0

0 p2 − d ⋆ d ⋆+ ⋆ d ⋆ d

)(
GH(.,y)A
GH(.,y)B

)

=

(
(p2 −∆g)GH(.,y)A
(p2 −∆g)GH(.,y)B

)
=

(
Aδy
Bδy

)
(lemma (1))

3.1 Case of the Maxwell equations with RHS 6= 0 and O = ∅
For the rest of this paper, we assume that solutions are smooth enough without loss of generality
thanks to the equivalence provided by the Rauch Theorem [7] between strong and weak solutions
and the Friedrichs systems finally obtained. The currents will be written as differential forms with
distributional coefficients since equations are intrinsic.

Theorem 3. If (M, g) is an outgoing absorbing pseudo-riemannian manifold, then the problem given
by (2) without any scattering object has a unique solution

ei =

∫

M

Gdx̃i,0 ∧
(
−j
−m

)
hi =

∫

M

G0,dx̃i
∧
(
−j
−m

)
.

Proof. With X,Y 1-forms, we denote ⋆

(
X
Y

)
=

(
⋆X
⋆Y

)
. Their exterior product, with P,Q 1-forms, is

(
X
Y

)
∧
(
P
Q

)
= X ∧ P + Y ∧Q. Moreover, P ∗ ∧Q = −P ∧Q∗. The weak formulation of Maxwell’s

equations, with A and B 1-forms, is

(p ⋆+M)

(
e
h

)
∧ ϕ(A,B) =

(
e
h

)
∧ (−p ⋆ ϕ(A,B) +Mϕ(A,B))

By applying ⋆ to Eq. (4), we have
(
p ⋆+MT

)
GA,B(.,y) =

(
⋆Aδy
⋆Bδy

)
. Then,

e ∧ ⋆A+ h ∧ ⋆B =

{∫

M

(
e
h

)
∧
(
p ⋆+MT

)
GA,B(.,y)

}
dvolg(y)

=

{∫

M

(
e
h

)
∧ (p ⋆ GA,B(.,y))

}
dvolg(y)

+

{∫

M

(
e
h

)
∧
(
MTGA,B(.,y)

)}
dvolg(y)

By commutation of ⋆,

∫

M

(
e
h

)
∧ (p ⋆ GA,B(.,y)) =

∫

M

GA,B(.,y) ∧
(
p ⋆

(
e
h

))
.

If α and β 1-forms, d (α ∧ β) = dα ∧ β − α ∧ dβ, therefore

0 =

∫

M

d (α ∧ β) =
∫

M

dα ∧ β −
∫

M

α ∧ dβ,

and then

∫

M

dα ∧ β =

∫

M

α ∧ dβ. With the properties of the Green function,
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∫

M

(
e
h

)
∧
(
MTGA,B(.,y)

)
=

∫

M

MT

(
e
h

)
∧GA,B(.,y) =

∫

M

GA,B(.,y) ∧M
(
e
h

)
.

Finally

e ∧ ⋆A+ h ∧ ⋆B =

{∫

M

GA,B(.,y) ∧ (p ⋆+M)

(
e
h

)}
dvolg(y)

=
Eq.(3)

{∫

M

GA,B(.,y) ∧
(
−j
−m

)}
dvolg(y).

This formula is established for any 1-forms A and B. As e =
∑
eidx̃i and h =

∑
hidx̃i, by choosing

respectively A = dx̃i, B = 0 and A = 0, B = dx̃i, the components ei and hi of the electric and
magnetic fields are determined.

3.2 Case of Maxwell’s equations with RHS= 0 and O 6= ∅

Theorem 4. The Green function GA,B(.,y) can be decomposed as

(
G1

G2

)
, with A and B 1-forms. If

(M, g) is an outgoing absorbing pseudo-riemannian manifold, we have a Stratton-Chu formula with
the solution (e, h) of Problem (2)

e ∧ ⋆A+ h ∧ ⋆B =

{∫

∂Ω∞

e ∧G2 − h ∧G1

}
dvolg(y).

Proof. With A and B 1-forms,

e ∧ ⋆A+ h ∧ ⋆B =

{∫

R3/0

(
e
h

)
∧
(
p ⋆+MT

)
GA,B(.,y)

}
dvolg(y)

=

{∫

R3/0

(
e
h

)
∧ (p ⋆ GA,B(.,y))

}
dvolg(y)

+

{∫

R3/0

(
e
h

)
∧
(
MTGA,B(.,y)

)
}
dvolg(y)

Eq. (3) with RHS= 0 becomes p ⋆

(
e
h

)
= −M

(
e
h

)
. But −M = MT , so

∫

R3/0

(
e
h

)
∧ (p ⋆ GA,B(.,y)) =

∫

R3/0
GA,B(.,y) ∧

(
p ⋆

(
e
h

))

=

∫

R3/0
GA,B(.,y) ∧

(
0 d
−d 0

)(
e
h

)
.

Moreover,

∫

R3/0

(
e
h

)
∧
(
MTGA,B(.,y)

)
=

∫

R3/0

(
e
h

)
∧
((

0 d
−d 0

)
GA,B(.,y)

)
.

With GA,B(.,y) =

(
G1

G2

)
, we have
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e ∧ ⋆A+ h ∧ ⋆B =

{∫

R3/0

(
e ∧ dG2 +G2 ∧ de

−h ∧ dG1 +G1 ∧ (−dh)

)}
dvolg(y)

=

{∫

R3/0

(
e ∧ dG2 − de ∧G2

−h ∧ dG1 + dh ∧G1

)}
dvolg(y)

=

{∫

R3/0

(
d(e ∧G2)
−d(h ∧G1)

)}
dvolg(y).

With Stokes formula, e ∧ ⋆A+ h ∧ ⋆B =

{∫

∂Ω∞

e ∧G2 − h ∧G1

}
dvolg(y).

Remark : this theorem gives the solution for a scattering problem for the Maxwell equations, but
also an estimation of the error committed by bounding the domain. In all the space, the restriction of
the solution coincides with the real solution. If the problem is well-posed, there is a correspondance
between the inhomogeous problem and the trace of the solution. If the solution is homogeous, this
formula gives the error. Moreover, if the errors created on the articifial boundary are small, it is useless
to set an artificial boundary far away for the studied domain D because of the exponential decay of
the Green function : the traces of the PML solution are small and exponentially decay while they
return inside D. Finally, this formula allows the superposition of solutions : for a perfect scatterer,
the solution of Maxwell’s equations depends on the trace of the fields on this object’s boundary, which
leads to the following corollary.

Corollary 5. On (M, g), Problem (2) has a unique solution

E =

{∫

∂Ω0

(
−η ∧

(
Gdx̃j ,0

)
2
+ γ ∧

(
Gdx̃j ,0

)
1

)}
dx̃j ,

H =

{∫

∂Ω0

(
−η ∧

(
G0,dx̃j

)
2
+ γ ∧

(
G0,dx̃j

)
1

)}
dx̃j .

with η and γ smooth enough currents.

4 Harmonic Problem

In this section, we prove that the PML problem for Maxwell’s and waves equations can be written
on the form

K(p,x)

(
e
h

)
+

(
0 −∇×

∇× 0

)(
e
h

)
=

(
−j
−m

)

with (j,m) smooth enough, as well as the following theorem.

Theorem 6. With the following hypotheses :

• K(p,x) L∞ in x

• K(p,x) holomorphic in p ∈ H ⊃ iR+
∗

• ∃p0 ∈ H such as Re(K(p0,x)) is coercive

• ∃p1 ∈ H such as K(p1,x) +Ac
i∂i with a compact resolvent,

for all p ∈ H/S where S is a locally finite set, eventually empty, and Ω∞ bounded, (K(p,x) +Ac
i∂i)

−1

is bounded in L2(Ω)m with maximal monotone boundary conditions.
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4.1 Intrinsic form of equations

The contravariant coordinates of a random point x are denoted by (x1,x2,x3), the basis vector of
the cotangent bundle by dxi and dx̌i stands for the elementary 2-form given by the exterior product
dxj∧dxk with j 6= i, k 6= i and j < k. With E and H 1-forms, (M, g) an absorbing pseudo-riemannian
manifold of metric g(., .), the Maxwell equations are the following equalities of 2-forms

{
p ⋆ E − dH = 0,

p ⋆ H + dE = 0.

With G matrix of the metric and g = det(G), by the Hodge star operator ⋆ on M, a 1-form
E =

∑
eidxi is changed onto a 2-form whose component in dx̌i is

√
ggijej (gij components of the

inverse of g(., ),
√
g complex square root of the determinant g). Therefore ⋆E =

√
gG−1e. The

intrinsic form of Maxwell equations is

{
p
√
gG−1E − dH = 0,

p
√
gG−1H + dE = 0.

The purpose of this paper is to restrain the solution of Maxwell’s equations to a bounded domain
Ω of R3. The first step is to write the equations in a more appropriated system of coordinates. Let
us remind that the PML media is defined by a stretching of coordinates decribed by (1). If J(p,x) is
the jacobian matrix of this transformation, then

G(p,x) = J(p,x)TJ(p,x).

The associated Hodge transformation is

⋆ =
√
gG−1(p,x) = K(p,x) = det(J(p,x))J(p,x)−1

(
J(p,x)T

)−1
. (5)

The domain of the family of operator (K(p,x) +A)p∈D0
is holomorphic and independent of the

frequency ω. As solving a PDE means to inverse its operator, it seems natural to look precisely the
kind of operator we have to deal with. The book of Kato [3] gives various tools to prove existence and
uniqueness of solution as long as the family of operator is of type A, which is the case here.

4.2 Main results on operators of type A

Definition 2. Let X,Y be two Banach spaces. A family T (u) ∈ C(X,Y) defined for u in a domain
D0 of the complex plane is said to be holomorphic of type A if D(T (u)) = D is independent of u, and
∀(u, v) ∈ D0 ×D, T (u)v is holomorphic.

Theorem 7. Let T (z) ∈ C(X) be a holomorphic family of type A on a domain D0 of C. We suppose
that the resolvent set of T (z) is not empty ∀z ∈ D0 and that there exists a point z0 in D0 such as the
resolvent of T (z0) is compact. Then, for all z in D0, the resolvant of T (z) is compact.

4.3 Harmonic Maxwell equations in the PML

In the previous section, we have established that harmonic Maxwell equations in the PML media
can be written as (K(p,x) +A(x))u(x) = f(x), with K : (p,x) ∈ D0 × Ω −→ Hom(C6) a holomor-

phic function in p = ε + iω ∈ D0 ⊂ C, in L∞(Ω) for x, and A =

(
0 −∇×

∇× 0

)
. We suppose that

D0 is a domain of C including a segment like [iωmin, iωmax], f ∈ L2(Ω) and A is Maxwell’s operator
whose domain D(A) is independent of p ∈ C.
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Solving this equation means inversing the operator (K(p, .)+A) of domain D(A) at p = iω, which
is an operator of type A. Moreover, (A,D(A)) is maximal monotone and its resolvent set is not empty.
As K(p, .) is L∞(Ω), the operator (K(p, .) +A,D(A)) has a non empty resolvent set for all p in D0.

Thm. (7), the main point of this section, will prove that studying the (K(p, .) +A is an operator
of type A with a compact resolvent set, and the study of this set’s compactness can be reduced to the
study in a single point, and therefore ensures the existence and unicity of the solution.

Theorem 8 (Petkov[6]). If Q =

(
div 0
0 div

)
, for all u in D(A) ∩ (H(div,Ω)2), then

‖ u ‖(H1(Ω))6≤ C
{
‖ u ‖(L2(Ω))6 + ‖ Au ‖(L2(Ω))6 + ‖ Qu ‖(L2(Ω))6

}
.

Definition 3. If P0 : L2(Ω)3 → H(div0,Ω) and P⊥ : L2(Ω)3 → (grad(H1
0 (Ω))

2) are the projections
associated to the Hodge decomposition, for all g ∈ L2(Ω)3, g0 = P0g, g⊥ = P⊥g. The space H(div0,Ω)

2

is stable under the action of A.

Lemma 2. The operator P⊥K(p, .)P⊥ is invertible on (grad(H1
0 (Ω)))

2 for all p in D0 except for a
finite subset (eventually empty) of D0, denoted by S. Moreover, its inverse is holomorphic on D0\S .

Proof. Let h be in H−1(Ω)2. Inversing P⊥K(p, .)P⊥ on (grad(H1
0 (Ω)))

2 requiere to find ω in H1
0 (Ω)

2

such as ∀v ∈ H1
0 (Ω)

2, ∫

Ω

〈
K(p, .)∇ω,∇v

〉
dx =< h, v >H−1(Ω)2×H1

0
(Ω)2 , (6)

with ∇ω =

(
∇ω1

∇ω2

)
.

If a(ω, v) =

∫

Ω

〈
K(p, .)∇ω,∇v

〉
dx, L(v) =< h, v >H−1(Ω)2×H1

0
(Ω)2 , the applications a(., .) and L(.)

are respectively bilinear and linear. A Cauchy-Schwartz inequality proves that a(., .) is continuous on
H1

0 (Ω)
2 × H1

0 (Ω)
2 and L(.) is continuous on H1

0 (Ω)
2. The previous problem is in fact, to find ω in

H1
0 (Ω)

2 such as ∀v ∈ H1
0 (Ω)

2,
a(ω, v) = L(v). (7)

The Lax-Milgram theorem for p = p0 guarantees that this equation is well-posed. The coerciv-
ity of K(p0, .) and the continuity of L(.) on H1

0 (Ω)
2 leads to the inequality satisfied by the solution

β ‖ ω ‖H1
0
(Ω)2≤‖ h ‖H−1(Ω)2 , with β > 0. Therefore, the resolvent of P⊥K(p0, .)P⊥ is compact because

of the compactness of the injection H1
0 (Ω) in H

−1(Ω). By Theorem (7), the resolvent of P⊥K(p, .)P⊥

is compact for all p in D0. As a consequence, this operator is either singular on D0 either invertible
for all p in D0 except for a finite subset (eventually empty) of D0 denoted S. As Problem (7) is
well-posed for p0, this operator is invertible ∀p in D0\S.

Let us show that operator (P⊥K(p, .)P⊥)
−1 is holomorphic on D0\S. By application of the closed

graph theorem to the closed set grad(H1
0 (Ω))

2 of L2(Ω)6, we have (P⊥K(p, .)P⊥)
−1 in L((grad(H1

0 (Ω)))
2).

As P⊥K(p, .)P⊥ is holomorphic on D0, its inverse is holomorphic on D0\S.

Theorem 9 (Kato[3]). If it exists p0 ∈ D0 such as K(p0, .) coercive, then harmonic Maxwell system
in the PML media is well-posed for all real frequency except for a finite discrete subset (eventually
empty) of R.

Proof. By projection of Eq. (6) with the Hodge decomposition, the problem is to find u = u0 + u⊥ ∈
D(A) such as {

P0K(p, .)u+Au0 = f0,

P⊥K(p, .)u = f⊥.
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As u = P0 u+ P⊥ u, the previous system becomes

{
P0K(p, .)P0u+ P0K(p, .)P⊥u+Au = f0,

P⊥K(p, .)P⊥u+ P⊥K(p, .)P0u = f⊥.

With Lem. (2), if Ã is the operator defined by the restriction of the operator A to the set
(H(div0,Ω))

2, then D(Ã) = D(A)∩ (H(div0,Ω))
2, so the problem is to inverse in (H(div0,Ω))

2 the
closed operator

R(p) = P0K0(p, .)P0 − P0K0(p, .)P⊥(P⊥K0(p, .)P⊥)
−1P⊥K0(p, .)P0 + P0K1(p, .)Ã

The operator R(p) is holomorphic on D0\S = D1. By use of Thm. (8) and (7) to the family of
holomorphic operator R(p)+ Ã of type A, it appears that R(p)+ Ã is a holomorphic family of closed
operators with compact resolvents for p ∈ D1. As a consequence, this operator is either singular on
D1 either invertible for all p in D1 except for a locally finite discrete subset (eventually empty) of
D1. Operator P⊥K(p0, .)P⊥ defines a sesquilinear coercive form in (grad(H1

0 (Ω)))
2 because K(p0)

is coercive in L2(Ω)6 which implies P⊥K(p0, .)P⊥ invertible. A is maximal monotone and K(p0, .) is
monotone coercive and bounded in L2(Ω)6, thus the operator A+K(p0, .) is invertible. Finally, the
operator R(p0, .) + Ã is invertible on (H(div0,Ω))

2. So R(p) + Ã is invertible for all p in D1 except
for a locally finite discrete subset (eventually empty) of D1. This proves that the operator K(p, .)+A

is invertible on L2(Ω)6 for all p in D1 except for a locally finite discrete subset (eventually empty) of
D1.

4.4 Study of the coercivity of the PML matrix

According to Thm. (9), to have existence and uniqueness of the solution, it must exists a p0 in
C such as K(p0,x) is coercive. If we exhibit such a point, the resolvent is not empty and there is no
more alternative.

Property 10. The matrix K(1,x) is symmetric definite and positive for all x in R
3.

Proof. As K(p,x) is defined by Eq. (5), we have

K(p,x)T =
(
det(J(p,x))J(p,x)−1

(
J(p,x)T

)−1
)T

= det(J(p,x))J(p,x)−1
(
J(p,x)T

)−1
= K(p,x),

with J(p,x) =
D(x̃)

D(ϕ(x))

D(ϕ(x))

D(x)
. So K(p,x) is symmetric for all p ∈ C, and a fortiori K(1,x) is

symmetric. If X ∈ R
3 with X 6= 0, then

XTK(1,x)X = XT
(
det(J(1,x))J(1,x)−1

(
J(1,x)T

)−1
)
X

= det(J(1,x))XTJ(1,x)−1
(
J(1,x)T

)−1
X

= det(J(1,x))XTJ(1,x)−1
(
XTJ(1,x)−1

)T
.

If A = XTJ(1,x)−1, then XTK(1,x)X = det(J(1,x))AAT . As AAT is definite positive for all

matrix A, we deduced that K(1,x) is definite positive if det(J(1,x)) > 0. Let F(x) =
D(ϕ(x))

D(x)
be the jacobian matrix of ϕ. As ϕ is an increasing function that represents the embedding in a

manifold M of C3, we have det(F(x)) > 0. Let us denote F0(x) =
D(x̃)

D(ϕ(x))
. For all (i, j) ∈ J1, nK,

F0(x)ij = δij + f ′(ϕ(x)). As f is strictly increasing, det(I3 + F0(x)) > 0.
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5 Explicit formulations for Maxwell’s Equations

Lemma 3. The matrix of the harmonic PML formulation is

K(p,x) = detT(x)
(
T(x)−1P∗MPT(x)∗

−1
)

with T(x) =
Dϕ

Dx
, M = diag




i
∨∏

k

(p+ λk)


 and P∗ = P−1.

Proof. Given the embedding x̃ = ϕ(x) +
1

p
f(ϕ(x)), it is possible to have a general formulation for

the PML matrix. The jacobian matrix J(p,x) is
Dx̃

Dx
=

(
I+

1

p

Df

Dϕ

)
Dϕ

Dx
. As f = gradS

ϕ
, is exists

P a unitary matrix P∗ = P−1 such as
Df

Dϕ
= P∗

(
I+

1

p
D

)
P with D a diagonal matrix and λi,

i = 1, 2, 3 its eigenvalues. With T(x) =
Dϕ

Dx
, we have J(p,x) = P∗

(
I+

1

p
D

)
PT(x). The Hodge

transformation associated is ⋆ = det(J(p,x))J(p,x)−1
(
J(p,x)T

)−1
. The proof is ended by writing

K(p,x) = p⋆.

Theorem 11. The unsteady Maxwell equations in the PML media are

Ī(x)
∂

∂t

(
e
h

)
+ Ā(x)

(
e
h

)
+ B̄(x)

(
u
v

)
+

(
0 −∇×

∇× 0

)(
e
h

)
=

(
−j
−m

)
,

where (u, v) are solutions of the ODE

(
T(x)∗P−1 0

0 T(x)∗P−1

)
∂

∂t

(
u
v

)
+

(
T(x)∗P−1F(x) 0

0 T(x)∗P−1F(x)

)(
u
v

)
=

(
e
h

)
,

with F(x) = diag (λi) ,A(x) = diag




i
∨∑

k

λk − λi


 ,B(x) = diag




i
∨∏

k

(λi − λk)


 and Ī(x) =

M(x)
(
M(x)

)∗−1

, Ā(x) = M(x)

(
A(x) 0
0 A(x)

)(
M(x)

)∗−1

B̄(x) = M(x)

(
B(x) 0
0 B(x)

)(
M(x)

)∗−1

with M(x) = det(T(x))

(
T(x)−1P∗ 0

0 T(x)−1P∗

)
.

Proof. Let (i, j, k) be three different indices.

(p+ λi)(p+ λj)

p+ λk
= p+ (λi + λj − λk)−

(λi − λk)(λj − λk)

p+ λk
,

The diagonal matrix of Lem. (3) can be decomposed as pI3 +A(x) +B(x) (pI3 + F(x))−1 with

F(x) = diag (λi) A(x) = diag




i
∨∑

k

λk − λi


 B(x) = diag




i
∨∏

k

(λi − λk)


 .

With T(x) =

(
Dϕ

Dx

)
, the PML matrix can be decomposed as

det(T(x))
(
T(x)−1P∗

(
pI3 +A(x) +B(x) (pI3 + F(x))−1

)
PT(x)∗

−1
)
. (8)
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We notice that (pI3 + F(x))−1
PT(x)∗

−1

=
(
T(x)∗P−1 (pI3 + F(x))

)−1
. By choosing Ī(x),

Ā(x), B̄(x) and F̃(x) as written above, the Maxwell equations in the PML become
(
pĪ(x) + Ā(x) + B̄(x)

(
pĨ(x) + F̃(x)

)−1
)(

e
h

)
+

(
0 −∇×

∇× 0

)(
e
h

)
=

(
−j
−m

)
.

If

(
u
v

)
=
(
pĨ(x) + F̃(x)

)−1
(
e
h

)
, it is a solution of an ODE that can be introduced in Maxwell’s

equations on R
6 to have




pĪ(x)

(
e
h

)
+ Ā(x)

(
e
h

)
+ B̄(x)

(
u
v

)
+

(
0 −∇×

∇× 0

)(
e
h

)
=

(
−j
−m

)

pĨ(x)

(
u
v

)
+ F̃(x)

(
u
v

)
=

(
e
h

)
.

Using the Laplace inverse transformation ends the proof.

Important remark : this theorem shows an important property of the PML. The spatial part

of the operator

(
0 −∇×

∇× 0

)
is not modified in the PML media. This guarantees the possibility

to choose without constrain the numerical approximation method (Finite Elements, Finites Volumes,
Discontinuous Galerkin, . . . ). Moreover, a Gedney formulation can be obtained with an other simple
element decomposition (for example for an FTDT approximation with leap frog schemes).

The previous formula has been established for Maxwell’s equations in 3D. For bidimensional equa-
tions, the formula is deduced for Thm. (11) through an Hadamard’s method of descent.

6 Some numerical PML examples for a L-shaped geometry

6.1 A general non convex formulation

The embedding is given by θ̃ = θ,

ρ̃ = φ(ρ, θ) +
1

p
f (φ(ρ)−R) ,

and the diffeomorphism is φ(ρ, θ) = kρ + (1 − k)ρ0(θ). The eigenvalues of the jacobian matrix are

α(ρ, θ) = f ′ (φ(ρ, θ)−R), β(ρ, θ) =
f (φ(ρ, θ)−R)

φ(ρ, θ)
. The PML matrix is

K(p, ρ, θ) = Q(θ)P(ρ, θ)

(
p I(ρ, θ) +A(ρ, θ) +B(ρ, θ)

(
pI3 + F(ρ, θ)

)−1
)
PT (ρ, θ)Q(θ)T , (9)

with I(ρ, θ) =

(
k
φ(ρ, θ)

ρ

)
I3, F(ρ, θ) = diag

(
α(ρ, θ), β(ρ, θ), 0

)
,

B(ρ, θ) =

(
k
φ(ρ, θ)

ρ

)
diag

(
α(ρ, θ)(α(ρ, θ)− β(ρ, θ)), β(ρ, θ)(β(ρ, θ)− α(ρ, θ)), α(ρ, θ)β(ρ, θ)

)
,

A(ρ, θ) =

(
k
φ(ρ, θ)

ρ

)
diag

(
β(ρ, θ)− α(ρ, θ), α(ρ, θ)− β(ρ, θ), α(ρ, θ) + β(ρ, θ)

)
,

P(ρ, θ) =




φ(ρ, θ)

ρ
−2 (1− k)

ρ′0(θ)

ρ
0

0 k 0

0 0

(
k
φ(ρ, θ)

ρ

)−1



, and Q(θ) the rotation matrix around the z-

axis. In that case, the matrix behind p is no longer the identity matrix. If [ε] corresponds to this part
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of the matrix det(J(x))
(
J(x)TJ(x)

)−1
, meaning Ã0 =

(
[ε] 0
0 [ε]

)
, the CFL condition associated is

defined though λ0 the smallest eigenvalue of [ε] by
dt

dx
≤ λ0. As its value depends on the mesh, the

CFL condition is the maximal value of

k2 + 4

(
(1− k)

ρ′0(θ)

ρ

)2

+

(
k + (1− k)

ρ0(θ)

ρ

)2

2k

(
k + (1− k)

ρ0(θ)

ρ

)

−

√√√√√√√√√

(
k2 + 4

(
(1− k)

ρ′0(θ)

ρ

)2

+

(
k + (1− k)

ρ0(θ)

ρ

)2
)2

− 1

4k2
(
k + (1− k)

ρ0(θ)

ρ

)2 .

A numerical visualisation on an unstructured mesh of the previous formula shows that the CFL
condition can reach 180, but only for few elements, where the values of ρ′0(θ) are important. As the
matrix is well-conditioned, this formulation can be used for harmonic problems. The domain is reduced
by comparison with a convex formulation, and few more complexity is involved. But for unsteady
problems, the penalization induced by the CFL condition may no be balanced by the reduction of the
triangles’ number. A first solution is to work implicitely.

6.2 A more specific formulation

A part of a L-shaped geometry is convex, so an other idea is to establish a new formula that
takes advantage of this convex part. The PML domain is divided in two parts : one with a cartesian
formula, and the other one with a non convex formula, that matched continously the cartesian PML
at the border of each domain.

Fig. 1 explains the geometry. The domain of study D, the interior L, is represented in white while
the cartesian PML are with horizontal stripes. The diffeomorphim φ transforms D by adding the
black area. In this specific area, whose thickness is controlled by the parameter κ, the waves do not
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decrease. The attenuative effect of the PML starts in the vertical striped area, perpendicularly to the

external boundary of the black area. The embedding is given by x̃ = φ(x)+
1

p




∫
σx(τ)dτ∫
σy(τ)dτ

0


 and the

diffeomorphim is φ(x) =



x+ (κ− 1) inf(x, y)
y + (κ− 1) inf(x, y)

1


.

Figure 1: The different domains for a non convex PML formulation

The PML matrix can be decomposed as

K(p,x) = T(x)
(
pI+A(x) +B(x) (pI3 + F(x))−1

)
T(x)T ,

with I =
1

κ
I3, A(x) =

1

κ
diag

(
σy(x)− σx(x), σx(x)− σy(x), σx(x) + σy(x)

)
,

B(x) =
1

κ
diag (σx(x)(σx(x)− σy(x)), σy(x)(σy(x)− σx(x)), σx(x)σy(x)) and F(x) = diag

(
σx(x), σy(x), 0

)
.

The matrix T(x) is triangular and depends on the non convex part of the domain where it is calcu-

lated. If y ≥ x, T+ =



1 1− κ 0
0 κ 0
0 0 κ


, otherwise T− =




κ 0 0
1− κ 1 0
0 0 κ


. The smallest eigenvalue of

the matrix T(x)T(x)T is
1

κ
+ κ − 1 − (1 − 1

κ
)
√
1 + κ2. As κ ≥ 1, the maximal CFL condition is 1

and does not depend on the shape of the domain. Even if the L-shaped has an important length by
comparison with its width, the CFL condition remains the same, contrarily to the first formulation
established. This embedding has a strong analogy with the cartesian PML and therefore presents a
dissymetry in the waves absorption.

An other solution, based on the convex PML, is to choose x̃ = φ(x)+
1

p
f
(
φ(x)−RI3

)
. The PML ma-

trix becomesK(p,x) = TT (x)

(
pI+A(x) +

1

p+ 2σ(x)
B(x)

)
T(x), where σ stands for the derivative

of the function f , the triangular matrix T(x) is unchanged, I =
1

κ
I3, A(x) =

2σ(x)

κ




0 −1 0
−1 0 0
0 0 1




and B(x) =
2σ2(x)

κ



1 1 0
1 1 0
0 0 0


. The numerical experiments of this paper are obtained with this

formulation.
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6.3 Numerical Simulations

All the following simulations are made with the Maxwell Bidimensional Equations, with Silver
Müller conditions at the boudary of the PML domain, and meshes are unstructured. The origin of
the reference frame is the corner of the L, bewteen the domain of study and the non convex PML.

Two kind of problems will be computed, which correspond to the cases studied in Sec. 3. The
first simulation is the propagation of a RHS

f(x) =

(
0, 0, exp

(
(x− xc)

2 + (y − yc)
2

(x− xc)
2 + (y − yc)

2 −R2

)
1D(x)

)T

,

where D is the disc of center (xc, yc) = (−1,−1) and radius R = 0.5. The pulsation is ω = 2π, the σ
function is of order 2, with a coefficient that guarantees a decrease in the PML at 10−2, and κ = 1/3.

(a) Real part of Ex (b) Imaginary part of Ex

(c) Real part of Ey (d) Imaginary part of Ey

16



(e) Real part of Hz (f) Imaginary part of Hz

As the cartesian PML are a considered as a reference solution for the problems studied, here are
comparison with the non convex PML introduced in this paper. The simulation has the same initial
condition as previously, but the center is moved to the right. For the wave to propagate correctly onto
the L-shaped domain, it has to go through the non convex PML. Fig. (g) shows the cartesian domain
involved, and the black area is the one added in order to apply a cartesian method. Fig. (h) represents
the mesh generated by the PDETOOLBOX of MatLab (like all the others used in this paper).

(g) The different domains for a cartesian PML
formulation

(h) Roughest mesh for the problem with a RHS 6= 0
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(i) Real part of Hz - cartesian PML (j) Real part of Hz - non convex PML

(k) Imaginary part of Hz - cartesian PML (l) Imaginary part of Hz - non convex PML

For the scattering problem, the study of an incident plane wave ϕinc reflected by a L-shaped
geometry Γ of length 3 and width 1 is processed, with ϕinc(x) = (−ky, kx, 1)Texp (ω(−k.x)). k =

(kx, ky)
T gives the direction of the incident wave, and it is chosen as k =

(−1√
2
,
−1√
2

)T

. The boundary

conditions at the boundary of the scatterer are ∀x ∈ ∂Γ, f(x) =

∫

∂ωk
∩∂Γ

−M1ϕinc(x)exp (−ωk.x),

with M1 =

(
n⊗ n 0
−nT 0

)
, n the outer-pointing unit normal and ωk the element considered. The PML

domain has a thickness of 1/3, the function σ is of order 1. Others parameters remain the same as
the previous simulation.
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(m) Imaginary part of Hz (n) Real part of Hz

For the comparison with cartesian PML, the pulsation chosen is ω = 3π, the order of the sigma
function is 2 and the mesh is modified to use a thicker scattering object.

(o) Roughest mesh for the scattering problem

(p) Real part of Hz - cartesian PML (q) Real part of Hz - non convex PML
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On a visual point of view, the non convex PML and the cartesian ones lead to the same solution
in the physical L-shaped domain D. To confirm this, we take into account two errors. Let ϕNC be the
non convex PML solution and ϕC the cartesian PML one. The first error, ε1, corresponds to the l2

norm of the difference on D, and the second one, ε2, represents the local error on each element :

ε1 =

∑
ωk∈D

|ϕNC(ωk)− ϕC(ωk)|2vol(ωk)

∑
ωk

|ϕC(ωk)|2vol(ωk)
ε2(ωk) = |ϕNC(ωk)− ϕC(ωk)|2.

Tab. 1 gives the error ε1 function of the number of elements per wave-length λ. The mesh are
rough, with very few layers, to place ourselves in the worst case. The error ε1 decreases slower with
the refinement of the mesh for the scattering problem. The mesh of Fig. 2(o) is very rough, especially
in the area used especially for the cartesian simulation. The damping starts outside the convexified of
the scatterer, the waves are brutally moved away : there is a lot of dissipation.

ε1 λ/8 λ/16 λ/32

Scattering



5.81e− 2
5.65e− 2
6.67e− 2






1.65e− 2
1.61e− 2
1.76e− 2






1.031e− 2
9.7e− 3
1.07e− 2




RHS 6= 0



1.28e− 2
5.4e− 3
5e− 3






5.6e− 3
5.4e− 3
2.3e− 3






9.72e− 4
9.25e− 4
3e− 4




Table 1: ε1 for (Ex, Ey, Hz) depending of the number of elements per wave length

Fig. (r) gives the error ε2 with a RHS 6= 0, whose support’s center is “centered”, i.e. (−1,−1) and
a mesh of λ/16 elements per wave-length and Fig. (s) for a mesh of λ/8 elements per wave-length,
corresponding to the test (j).

(r) ε2 with λ/16 elements per wave length with a cen-
tered” RHS

(s) ε2 with λ/8 elements per wave length (case test (j))

For unsteady problems, as the PML matrix contains some terms at order −1 in p, an extra equation
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has to be added. The Maxwell Equations on R
3 × R

+ are




Ī(x)
∂ϕ(x, t)

∂t
+ Ā(x)ϕ(x, t) + ψ(x, t) +




0 0 −∂y
0 0 ∂x

−∂y ∂x 0


ϕ(x, t) = 0

∂ψ(x, t)

∂t
+ 2σ(x)ψ(x, t) = B̄(x)ϕ(x, t).

with Ī(x) = T(x)I(x)T(x)T , Ā(x) = T(x)A(x)T(x)T and B̄(x) = T(x)B(x)T(x)T , with the same
kind of boundary conditions as the harmonic problem :The boundary conditions at the boundary
of the scatterer are ∀x ∈ ∂Γ,

∫
∂ωk

∩∂Γ−M1ϕinc(x, t)exp (−ωk.x) exp(iωt). For the simulation, an

implicit Euler scheme is used. The time step is determined by ∆t = min
e

vol(ωe)

vol(∂ωe)
.

(t) Solution of the unsteady problem : third com-
ponent Hz(x, T ) with T = 1.8

Remark : the previous numerical experiments have an unnecessary domain of calculus inside the
non convex PML. At the external boundary of the cartesian PML, the solution is vanishing. This
property is verified in the non convex PML on a parallel of the exhaustion. As a consequence, for a
L-shaped geometry, the non convex area required is less than a L. On Fig. (u) and (v), the vertical
stripes represent the useless domain : the non convex PML domain is very thin. Fig. (u) corresponds
to Fig. (1) while Fig. (v) has an elarged PML domain to show with more visibility the effective
non convex PML domain, which is very thin by comparison with the thickness of the cartesian area
required on this specific geometry.

(u) (v)
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Conclusions

This paper presents a fully proved non convex PML theory and some numerical experiments. The
aim is to obtain the most general formulation possible, thanks to the families (ϕ, f). The hypothesis
of convexity is underneath, through the diffeomorphism ϕ, and absolutely necessary to prevent singu-
larities to appear in the Green function.

The case of the L-shaped geometry can be generalized as long as it is possible to express the dif-
feomorphism from an affinity normal to the boundary of the convexified domain. It is always possible
if the domain is not trapping. For example, a U-shaped geometry where the boundaries are strictly
parallel can not give such an affinity, but if the boundaries are “opened”, ϕ can be found by using the
normals to the convexified.

In the non convex PML, even if the luminuous rays are twisted (consequence of the complex metric
with a different wave speed), the permittivity tensor is more complex -with anisotropic permittivities-
but the restriction of the solution to the physical domain are numerically correct. The trace of the
solution on the boundary, which almost inverses the problem, will be an excellent preconditionner for
integral methods. For harmonic problems, non convex PML present two advantages : the number of
cells (and unknowns) is reduced, and there is no need to inverse the matrix on every elements, which
is sparse. For unsteady problems, the change of the wave speed implies a drop of the CFL conditions
: this saves some memories but no calculus time. As the exageration of the CFL condition depends
on a very few elements, an implicit formulation can be used to solve this problem.

The comparison with cartesian PML gives excellent results, even if the choice of the numerical
approximation was very poor with a Finite Volums method. The use of methods like Discontinuous
Galerkin has to be considered.

In 2001, this approach of the PML theory thanks to pseudo riemannian manifolds with complex
tangent and cotangent bundles was already tried by Lassas [4] for harmonic problem. There are four
major differences between their work and the present one. For the restriction to a bounded domain,
for harmonic problem, some frequencies can be excluded (we remind that Thm. (9) specifies for all p
in H except for a locally finite eventually empty set S) Lassas and Co. do not have that restriction but
their theory implies to set the artificial boundary “far enough” of the domain D. In this paper, it can
be placed as closed as we want. In fact, Lassas and Co. requiere an extra hypothesis to define their
absorbing pseudo riemannian manifold : the asymptotic η-euclidianity of the metric, meaning they
impose a strict convexity and both the metric and the connection have to be majored asymptotically
by an euclidian metric. We do not need that hypothesis. Last point : we study the unsteady problems,
while their work was only about harmonic formulations. Moreover, this paper explicitely gives some
formulations (diffeomorphims and functions) that leads to the unsteady formulation. As the embedding
is defined in a very general way (cartesian and convex PML can be described as well), and the PML
matrix obtained is composed of rational fraction that can be decomposed and gives the Friedrichs
unsteady system while adding an ODE. The problem of chosing the couples (ϕ, f) is general for every
non trapping domain, but has to be written. The diffeomorphism is deductible from an affinity normal
to the boundary of the convexified domain.
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