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Abstract

Since introduced by Berenger [1], the Perfectly Matched Layers method (PML) has become a popular
approach for non reecting Absorbing Boundary Conditions (ABC) in the num erical solution of the
Maxwell equations on unbounded domains. However, most of the formulationsonly concern paral-
lelepiped or simply convex domains. The goal of this paper is to presentthe theory for non necessarily
convex PML on systems like Maxwell's.
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Introduction

Whenever one solves a Partial Di�erential Equations numerically (by a volume discretization), one
has to truncate the domain in some way. A key question is how to terminate the mesh without creating
excessive echoes from the arti�cial truncation surface that may spoil the quality of the solution. In
1994, Berenger changed the question : instead of �nding an absorbing boundarycondition, he found
an absorbing boundary layer. That is an arti�cial material independent of the boundary condition.
When a wave enters the absorbing layer, it is attenuated by absorption and decays exponentially. Even
if it reects o� the boundary, the returning wave after one round tri p through the absorbing layer is
exponentially small. Moreover, waves do not reect at the interface. Although PML were originally
derived from electromagnetism and Maxwell equations, the same ideas canimmediately be applied to
other waves equations.

Chew and Wheedon [2] introduced the notion of complex coordinates stretching, based on analytic
continuation of Maxwell's equations into spatial complex coordinates where the �elds are exponen-
tially decaying. In this paper, the stretching is interpreted as writing the same equations in a complex
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tangent bundle of a at manifold in Cn . For a general system, two cases appear. The �rst one concerns
equations with an intrinsic form given by exterior derivatives and Hodge operators. In that case, we
can directly study their integral inverses and thus obtain a general PML theory. This allows to reduce
the non necessarily convex PML domain to the closest of the real �eld region. This leads to a dispersive
formulation : the spatial operator is local and the time one is pseudo-di�erential but a localization
can be performed thanks to extra Ordinary Di�erential Equations. On the contrary, in a second case,
like for example aeroacoustics' equations with convection, such a formulation is impossible to obtain.
This brings di�culties to prove the existence and uniqueness ofthe solution, but it is possible to prove
that an exponentially absorbing and unreected solution exists in the entire domain.

This paper is about to generalize the PML formulation for non necessarilyconvex domains throught
a di�eomorphism ' , de�ned thanks to an a�nity normal to the convexi�ed boundary, and a str ictly in-
cresing function f , whose properties will be discussed. Such a formulation will also included \classical"
PML, such as cartesian and convex ones.

1 Flat complex manifolds

In 2001, Lassaset al. [4] showed that all PML can be obtained through a complexi�cation of coordi-
nates that corresponds to at complex manifolds. Instead of stretchingthe coordinates, they changed
the metric de�ned on R3. This method presents several advantages. First, when Maxwell's equations
are written in terms of 1-forms, the di�erential operators take form of exterior derivatives. Second,
the stretching of the metric allows to treat more general scatteringgeometries than before. Finally,
this formulation is completely invariant as it is done without a reference to speci�c coordinate systems.

The manifolds used in this paper are called pseudo-riemannian inC3, meaning real of dimension
3, with complex tangent and cotangent bundles, with a symmetric complex metric g(:; :) such as its
determinant g =

p
det (g(:; :)) can always be de�ned with the same determination. The purpose of

this section is to geometrically describe the complexi�cation of coordinates that de�nes the PML.

Let (M ; g) be a real manifold with a complex tangent bundleT M and a riemannian metric gjl .
The matrix G = ( gij ) is associated to the metricg(:; :). The tangent bundle set Tx M for all x in M , is
the sum U + iV , with U and V real vectors tangent to x and its complex dual is the cotangent bundle

T �
x M . Their bases are the partial derivatives

@
@x1

; : : : ;
@

@xn
for Tx M and the exterior di�erentials

dx1; : : : ; dxn for T �
x M . An element of Tx M (a vector) is a complex linear combinaison on this basis

P
j X j (x)

@
@x j

. The elements ofT �
x M are covectors on the form

P
j X j (x)dx j , with X j (x) 2 C. The

bilinear application T M � T M ! T M : (u; v ) ! r u v with the properties r u (v + w) = r u v + r u w
r f u v = f r u v and r u (f v ) = u(f ) v + f r u v is a linear connection. In particular, the Levi Civita con-
nection is the only linear connection that conserves the metricg(:; :) and can be expressed through the
Lie brackets [u; v ] of u and v . A connection is torsion free ifr u v �r v u � [u; v ] = 0 and r i g = 0. The
complex curvature is R(u; v )w = r u r v w � r v r u w � r [u ;v ]w. On a basis ofT M , as

�
@x i ; @x j

�
= 0,

the nullity of the curvature means the commutation of the covariant derivatives. If � and � are two
p-forms, and if � : � = � J � J is their scalar product (J stands for the set of the ordonate indicesp),
the Hodge star operator? is given by the relationship : � ^ ?� = � ^ ?� = ( � : � )

p
(g) dx1 ^ � � � ^ dxn .

Moreover, if n is the dimension of the manifold, then?� 1� = ( � 1)p(n� p) � . The canonic euclidian com-
plex metric gC (:; :) in C3 will be considered as the real submanifold of dimension 3 ofR6 with complex

tangent and cotangent bundles, and used in cartesian coordinates8(u; v ) 2 C3, gC (u; v ) =
3X

j =1

u j v j .

If x 7! ex(x) is a change of variables, a complex metric onR3, denoted gx : Tx M R3 � Tx M R3 ! C3,
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can be de�ned by gx (u; v ) = gC (dex(u); dex(v )), where dex is the di�erential of ex.

In the natural frame of reference, the tangent vectors always commute but the covariant derivates
only commute if the manifold is at, which provides an intrinsic way of writing the determinant and
the symbol of the operator. A at manifold therefore de�nes a parallelism structure that generalizes
the notion of convolution.

1.1 Formalism

The spatial domains involved are : a bounded smooth obstacleO, non necessarily convex that can
be empty, a connex domain 
, non necessarily simply connex that represents the domain of interests,
� 
 0 is the boundary between 
 and O, � 
 1 is the external boundary. Both are C1, and � 
 1 can be
rejected to in�nity if 
 is not bounded.

Consider the real manifolds with values in C3 described by the change of variables, withp =
" + i! 2 C,

ex = ' (x) +
1
p

f (' (x)) : (1)

Hypotheses 1. The couple ('; f ) belongs toC1(R3; R3). 8x 2 
 , we have' (x) = x and f (x) = 0 .
Moreover, j' (x)j = O

jx j!1
(jx j), f is strictly increasing with a linear growth at in�nity and it exis ts S

a convex function such asf = grad S
'

.

These hypotheses will be justi�ed later.

Remark : the regularity C1
pcw(R3; R3) \ C0(R3; R3) for ( '; f ) could be enough if the edges are

lipschitzian (no jump discontinuities) and it could be possible to write the weak exterior di�erentials
thanks to the unit partition theorem.

The interest of such a formulation is that the complexi�cation of each component is made through
a single function given on all R3 and does not dependent anymore of the coordinates. Moreover, it
does not take into account the shape of the PML or their absorbing direction. As f j 
 = 0
 and
' j 
 = id 
 , the system of equations is unchanged inside the studied domain. If the functions areCk ,
then the manifold M de�ned by (1) is a submanifold of classCk and dimension 3 in theR vectorial
spaceC3 of dimension 6.

Remark : as announced, this formulation is very general : chosing' = x and f (x) = ( f i (x)) with

f i (x) =
Z x

0
� i (� )d� and � i a positive function that tends to a constant at in�nity, means a cartesian

formulation, while f i (x) = @i h(dist (x ; @
)), with h an increasing convex function asymptotically
linear is a convex formulation. In both cases,f is the gradient of a convex function and respects Hyp.
(1)

2 Helmholtz problem

Let (M ; g) be an pseudo-riemannian manifold. We de�ne the Hodge star operator? corresponding
to the complex metric g, with U ^ ?V = g(U; V)dvol g and dvol g = dex1 ^ dex2 ^ dex3. The functions
ex j are the components of the embedding� : M ! C3 that de�nes the immersion. The generalized
Laplacian � r

g for r -forms on the manifold M can be generalized for to the metricg(:; :) through
� r

g = ( � 1)r (?d ? d � d ? d?). If the manifold is at, [ r i ; r j ] = 0, the components of 1-forms are given
by the metric and � 0

g corresponds to the opposite of the Laplace-Beltrami operator � : ' 7! gij r i r j ' .
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De�nition 1. (M ; g) is an absorbing pseudo-riemannian manifold if

1. the manifold (M ; g) is at and M is di�eomorphic to R3 (with � the di�eomorphism),

2. it exists 
 � M a relatively compact open set where the metric is real and euclidian and given
by g = � ?ge, with � ? the pull-back of� and ge the euclidian metric,

3. 8v 2 TR
x ; v 6= 0 ; gx (v ; v ) 6= 0 ,

4. the immersion � : M ! C3 guarantees that the imaginary part ofex(x1) � ex(x2) is signed and
of constant sign for all (x1; x2) 2 M 2.

For now on, the manifold considered (M ; g) will be an absorbing pseudo-riemannian manifold. The
fourth point of Def. (1) uniquely determines the square root

f ex � eyg =

0

@
3X

j =1

(ex j � ey j )2

1

A

1=2

:

If f ex � eyg � 0 is positive, M is called an outgoing absorbing pseudo-riemannian manifold.

Theorem 1. The fundamental solution GH for the g-Helmholtz operator for 0-forms on (M ; g)

8y 2 M ; (� g � p2)�( :; y ) = � � y is GH (x ; y ) =
exp (� i ! f ex � eyg)

4� f ex � eyg

with GH the usual solution for the euclidian metric, � y a 0-current.
When jx � y j ! 1 , GH and r GH have an exponential decay inexp (�O (jx � y j)) (with p = i! + 0 )

Remark : the Dirac delta is to be interpreted with respect to the volume form de�ned by the

metric g : if  is a C1 0-form on M ,
Z

M
 (x)� y (x)dvol g(x) =  (y ).

The proof of this theorem can be found in Lassas [4]. For the fundamental solution of the Helmholtz
equation to be de�ned, the fourth condition of Def. (1) must be satis�ed. The change of variables is
given by Eq. (1), and by considering the limit casep = i! , we have

f ex � eyg2 = [ ' (x) � ' (y )]2 �
1

! 2 [f (' (x)) � f (' (y ))]2 �
2i
!

[' (x) � ' (y )] : [f (' (x)) � f (' (y ))] :

Let us denote [f ] = [ f (' (x)) � f (' (y ))] and [' ] = [ ' (x) � ' (y )]. The real and imaginary parts
must not be null simultaneously. The condition [f ] = 0 is straight forward deduced from the previous
equation. But

[f ] =
Z 1

0
(1 � t)

�
Df
D'

� �
' 1 + t (' 2 � ' 1)

�
dt:

If M (' 1; ' 2) is the previous matrix, a condition for [f ] = 0 is ( M [' ] ; [' ]) = 0, meaning that [ ' ] is a
eigenvector of the matrix M + M T associated to a null eigenvalue. A su�cient condition is M positive
or null. For a continuous determination of the square root, the imaginary part must be of constant

sign. A su�cient condition is M symmetric. In that case, the matrix
�

Df
D'

�
is also symmetric and

there exists a convex functionS such asf = grad S
'

. This justi�es Hyp. (1).
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3 Resolution of the Maxwell equations

The study of these equations will �rst be made on the whole manifoldM to guarantee the exis-
tence and uniqueness of the solution. Then, the problem on unboundeddomain will be restrained to
a bounded one with adapted boundary conditions.

If the hypotheses from the Rauch's theorem [7] are satis�ed, every strong solution is a weak
solution, and strong solutions are smooth with second members of the sameregularity. If the system
has a smooth strong solution, then it has a weak solution. As a consequence, in this paper, the electric
and magnetic �elds e and h are exclusively smooth 1-forms. Given a metricg, there is a well-known
one-to-one correspondence between vector �elds and 1-forms. Letj and m be 2-forms standing for the
second members (or Right Hand Side (RHS) of the equation) at coe�cients in C1 with a compact
support. The harmonic Maxwell's equation in vacuum are

(
p ? e� d h = � j

p ? h + d e = � m;
(2)

with p = " + ik 2 C, k = !=c = !
p

"0 � 0, and the Hodge star operator? de�ned by the Euclidean
metric to convert 1-forms to 2-forms. The �elds are rescaled for symmetry, meaning e !

p
"0e and

h !
p

� 0h. The Maxwell operator is

M =
�

0 d
� d 0

�
= �M T ;

and ?(e; h) is the Hodge transformation of (e; h) de�ned by ( ?e; ?h). The Maxwell equations on
intrinsic form are

(p ? + M )
�

e
h

�
=

�
� j
� m

�
: (3)

Lemma 1. If ' is a 0-form and A a 1-form with r A = 0 then � 1('A ) = (� 0' )A.

Proof. If A is a 1-form then A is a linear combinaison ofdex i whose Hodge transformations are

?dex1 = dex2 ^ dex3 ? dex2 = dex3 ^ dex1 ? dex3 = dex1 ^ dex2:

Without a loss of generality, we assume thatA = dex1 and r i := r @ex i , then

� 1('A ) = � (?d ? d � d ? d?)( 'd ex1)

= ( � @11' � @22' � @33' )dex1 + ( @12' � @12' )dex2 + ( @13' � @13' )dex3

= � (� 0' )dex1:

Similar results are obtained with A = dex2 and A = dex3.

Theorem 2. If A and B are 2-forms such asr A = r B = 0 , the application GA;B (x ; y ) (de�ned
thanks to the Green functionGH (x ; y ) provided by Thm. 1)

GA;B (x ; y ) =
�

p � p � 1d ? d? � ? d
?d p � p � 1d ? d?

� �
GH (x ; y )A
GH (x ; y )B

�
:

satis�es the properties of the Green function for Maxwell's equations on (M ; g) and

8y 2 M ;
�
p + ?M T �

GA;B (:; y ) =
�

A� y

B� y

�
: (4)
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Proof. As
�
p + ?M T

�
=

�
p ?d

� ? d p

�
, it comes

�
p + ?M T �

GA;B (:; y ) =
�

p ?d
� ? d p

� �
p � p � 1d ? d? � ? d

?d p � p � 1d ? d?

� �
GH (:; y )A
GH (:; y )B

�

=
�

p2 � d ? d ? + ? d ? d 0
0 p2 � d ? d ? + ? d ? d

� �
GH (:; y )A
GH (:; y )B

�

=
�

(p2 � � g)GH (:; y )A
(p2 � � g)GH (:; y )B

�
=

�
A� y

B� y

�
(lemma (1))

3.1 Case of the Maxwell equations with RHS 6= 0 and O = ;

For the rest of this paper, we assume that solutions are smooth enough without loss of generality
thanks to the equivalence provided by the Rauch Theorem [7] between strong and weak solutions
and the Friedrichs systems �nally obtained. The currents will be written as di�erential forms with
distributional coe�cients since equations are intrinsic.

Theorem 3. If (M ; g) is an outgoing absorbing pseudo-riemannian manifold, then the problem given
by (2) without any scattering object has a unique solution

ei =
Z

M
Gdex i ;0 ^

�
� j
� m

�
hi =

Z

M
G0;dex i ^

�
� j
� m

�
:

Proof. With X; Y 1-forms, we denote?
�

X
Y

�
=

�
?X
?Y

�
. Their exterior product, with P; Q 1-forms, is

�
X
Y

�
^

�
P
Q

�
= X ^ P + Y ^ Q. Moreover, P � ^ Q = � P ^ Q� . The weak formulation of Maxwell's

equations, with A and B 1-forms, is

(p ? + M )
�

e
h

�
^ ' (A; B ) =

�
e
h

�
^ (� p ? ' (A; B ) + M ' (A; B ))

By applying ? to Eq. (4), we have
�
p ? + M T

�
GA;B (:; y ) =

�
?A� y

?B� y

�
. Then,

e^ ?A + h ^ ?B =
� Z

M

�
e
h

�
^

�
p ? + M T �

GA;B (:; y )
�

dvol g(y )

=
� Z

M

�
e
h

�
^ (p ? GA;B (:; y ))

�
dvol g(y )

+
� Z

M

�
e
h

�
^

�
M T GA;B (:; y )

�
�

dvol g(y )

By commutation of ?,
Z

M

�
e
h

�
^ (p ? GA;B (:; y )) =

Z

M
GA;B (:; y ) ^

�
p ?

�
e
h

��
.

If � and � 1-forms, d (� ^ � ) = d � ^ � � � ^ d � , therefore

0 =
Z

M
d (� ^ � ) =

Z

M
d � ^ � �

Z

M
� ^ d �;

and then
Z

M
d � ^ � =

Z

M
� ^ d � . With the properties of the Green function,
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Z

M

�
e
h

�
^

�
M T GA;B (:; y )

�
=

Z

M
M T

�
e
h

�
^ GA;B (:; y ) =

Z

M
GA;B (:; y ) ^ M

�
e
h

�
:

Finally

e^ ?A + h ^ ?B =
� Z

M
GA;B (:; y ) ^ (p ? + M )

�
e
h

��
dvol g(y )

=
Eq:(3)

� Z

M
GA;B (:; y ) ^

�
� j
� m

��
dvol g(y ):

This formula is established for any 1-formsA and B . As e =
P

ei dex i and h =
P

hi dex i , by choosing
respectively A = dex i ; B = 0 and A = 0 ; B = dex i , the components ei and hi of the electric and
magnetic �elds are determined.

3.2 Case of Maxwell's equations with RHS = 0 and O 6= ;

Theorem 4. The Green function GA;B (:; y ) can be decomposed as
�

G1

G2

�
, with A and B 1-forms. If

(M ; g) is an outgoing absorbing pseudo-riemannian manifold, we have a Stratton-Chu formula with
the solution (e; h) of Problem (2)

e^ ?A + h ^ ?B =
� Z

@
 1

e^ G2 � h ^ G1

�
dvol g(y ):

Proof. With A and B 1-forms,

e^ ?A + h ^ ?B =

( Z

R3=0

�
e
h

�
^

�
p ? + M T �

GA;B (:; y )

)

dvol g(y )

=

( Z

R3=0

�
e
h

�
^ (p ? GA;B (:; y ))

)

dvol g(y )

+

( Z

R3=0

�
e
h

�
^

�
M T GA;B (:; y )

�
)

dvol g(y )

Eq. (3) with RHS= 0 becomes p ?
�

e
h

�
= �M

�
e
h

�
. But �M = M T , so

Z

R3=0

�
e
h

�
^ (p ? GA;B (:; y )) =

Z

R3=0
GA;B (:; y ) ^

�
p ?

�
e
h

��

=
Z

R3=0
GA;B (:; y ) ^

�
0 d

� d 0

� �
e
h

�
:

Moreover,
Z

R3=0

�
e
h

�
^

�
M T GA;B (:; y )

�
=

Z

R3=0

�
e
h

�
^

��
0 d

� d 0

�
GA;B (:; y )

�
.

With GA;B (:; y ) =
�

G1

G2

�
, we have
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e^ ?A + h ^ ?B =

( Z

R3=0

�
e ^ dG2 + G2 ^ de

� h ^ dG1 + G1 ^ (� dh)

� )

dvol g(y )

=

( Z

R3=0

�
e ^ dG2 � de^ G2

� h ^ dG1 + dh ^ G1

� )

dvol g(y )

=

( Z

R3=0

�
d(e^ G2)

� d(h ^ G1)

� )

dvol g(y ):

With Stokes formula, e^ ?A + h ^ ?B =
� Z

@
 1

e^ G2 � h ^ G1

�
dvol g(y ).

Remark : this theorem gives the solution for a scattering problem for the Maxwell equations, but
also an estimation of the error committed by bounding the domain. In all the space, the restriction of
the solution coincides with the real solution. If the problem is well-posed, there is a correspondance
between the inhomogeous problem and the trace of the solution. If the solution is homogeous, this
formula gives the error. Moreover, if the errors created on the artici�al boundary are small, it is useless
to set an arti�cial boundary far away for the studied domain D because of the exponential decay of
the Green function : the traces of the PML solution are small and exponentially decay while they
return inside D . Finally, this formula allows the superposition of solutions : for a perfect scatterer,
the solution of Maxwell's equations depends on the trace of the �elds on this object's boundary, which
leads to the following corollary.

Corollary 5. On (M ; g), Problem (2) has a unique solution

E =
� Z

@
 0

�
� � ^

�
Gdex j ;0

�
2

+  ^
�
Gdex j ;0

�
1

� �
dex j ;

H =
� Z

@
 0

�
� � ^

�
G0;dex j

�
2

+  ^
�
G0;dex j

�
1

� �
dex j :

with � and  smooth enough currents.

4 Harmonic Problem

In this section, we prove that the PML problem for Maxwell's and waves equations can be written
on the form

K (p; x)
�

e
h

�
+

�
0 �r�

r� 0

� �
e
h

�
=

�
� j
� m

�

with ( j; m ) smooth enough, as well as the following theorem.

Theorem 6. With the following hypotheses :

� K (p; x) L 1 in x

� K (p; x) holomorphic in p 2 H � iR+
�

� 9 p0 2 H such asRe(K (p0; x)) is coercive

� 9 p1 2 H such asK (p1; x) + A c
i @i with a compact resolvent,

for all p 2 H =S whereS is a locally �nite set, eventually empty, and
 1 bounded,(K (p; x) + A c
i @i )

� 1

is bounded inL 2(
) m with maximal monotone boundary conditions.
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4.1 Intrinsic form of equations

The contravariant coordinates of a random point x are denoted by (x1; x2; x3), the basis vector of
the cotangent bundle by dx i and d�x i stands for the elementary 2-form given by the exterior product
dx j ^ dxk with j 6= i , k 6= i and j < k . With E and H 1-forms, (M ; g) an absorbing pseudo-riemannian
manifold of metric g(:; :), the Maxwell equations are the following equalities of 2-forms

(
p ? E � dH = 0 ;

p ? H + dE = 0 :

With G matrix of the metric and g = det (G), by the Hodge star operator ? on M , a 1-form
E =

P
ei dx i is changed onto a 2-form whose component ind�x i is

p
ggij ej (gij components of the

inverse of g(:; ),
p

g complex square root of the determinant g). Therefore ?E =
p

gG � 1e. The
intrinsic form of Maxwell equations is

(
p

p
gG � 1E � dH = 0 ;

p
p

gG � 1H + dE = 0 :

The purpose of this paper is to restrain the solution of Maxwell's equations to a bounded domain

 of R3. The �rst step is to write the equations in a more appropriated system of coordinates. Let
us remind that the PML media is de�ned by a stretching of coordinates decribed by (1). If J (p; x) is
the jacobian matrix of this transformation, then

G(p; x) = J(p; x)T J(p; x):

The associated Hodge transformation is

? =
p

gG � 1(p; x) = K (p; x) = det (J(p; x))J(p; x) � 1 �
J (p; x)T � � 1

: (5)

The domain of the family of operator (K (p; x) + A )p2 D 0 is holomorphic and independent of the
frequency ! . As solving a PDE means to inverse its operator, it seems natural to lookprecisely the
kind of operator we have to deal with. The book of Kato [3] gives various toolsto prove existence and
uniqueness of solution as long as the family of operator is of type A, which isthe case here.

4.2 Main results on operators of type A

De�nition 2. Let X ,Y be two Banach spaces. A familyT (u) 2 C(X ; Y ) de�ned for u in a domain
D 0 of the complex plane is said to be holomorphic of type A ifD(T (u)) = D is independent ofu, and
8(u; v) 2 D 0 � D , T (u)v is holomorphic.

Theorem 7. Let T (z) 2 C(X ) be a holomorphic family of type A on a domainD 0 of C. We suppose
that the resolvent set ofT (z) is not empty 8z 2 D 0 and that there exists a pointz0 in D 0 such as the
resolvent of T (z0) is compact. Then, for all z in D 0, the resolvant of T (z) is compact.

4.3 Harmonic Maxwell equations in the PML

In the previous section, we have established that harmonic Maxwell equations in the PML media
can be written as (K (p; x) + A (x))u(x) = f (x), with K : (p; x) 2 D 0 � 
 �! Hom (C6) a holomor-

phic function in p = " + i! 2 D 0 � C, in L 1 (
) for x, and A =
�

0 �r�
r� 0

�
. We suppose that

D 0 is a domain of C including a segment like [i! min ; i! max ], f 2 L 2(
) and A is Maxwell's operator
whose domainD(A ) is independent ofp 2 C.
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Solving this equation means inversing the operator (K (p; :)+ A ) of domain D(A ) at p = i! , which
is an operator of type A. Moreover, (A ; D(A )) is maximal monotone and its resolvent set is not empty.
As K (p; :) is L 1 (
), the operator ( K (p; :) + A ; D(A )) has a non empty resolvent set for allp in D 0.

Thm. (7), the main point of this section, will prove that studying th e (K (p; :) + A is an operator
of type A with a compact resolvent set, and the study of this set's compactness can be reduced to the
study in a single point, and therefore ensures the existence and unicity of the solution.

Theorem 8 (Petkov[6]). If Q =
�

div 0
0 div

�
, for all u in D(A ) \ (H (div ; 
) 2), then

k u k(H 1 (
)) 6 � C
�

k u k(L 2 (
)) 6 + k A u k(L 2 (
)) 6 + k Qu k(L 2 (
)) 6

	
:

De�nition 3. If P0 : L 2(
) 3 ! H (div 0; 
) and P? : L 2(
) 3 ! (grad (H 1
0 (
)) 2) are the projections

associated to the Hodge decomposition, for allg 2 L 2(
) 3, g0 = P0g, g? = P? g. The spaceH (div 0; 
) 2

is stable under the action ofA .

Lemma 2. The operator P? K (p; :)P? is invertible on (grad (H 1
0 (
))) 2 for all p in D 0 except for a

�nite subset (eventually empty) of D 0, denoted byS. Moreover, its inverse is holomorphic onD 0nS .

Proof. Let h be in H � 1(
) 2. Inversing P? K (p; :)P? on (grad (H 1
0 (
))) 2 requiere to �nd ! in H 1

0 (
) 2

such as8v 2 H 1
0 (
) 2, Z






K (p; :)r !; r v

�
dx = < h; v > H � 1 (
) 2 � H 1

0 (
) 2 ; (6)

with r ! =
�

r ! 1

r ! 2

�
.

If a(!; v ) =
Z






K (p; :)r !; r v

�
dx, L (v) = < h; v > H � 1 (
) 2 � H 1

0 (
) 2 , the applications a(:; :) and L(:)

are respectively bilinear and linear. A Cauchy-Schwartz inequality proves that a(:; :) is continuous on
H 1

0 (
) 2 � H 1
0 (
) 2 and L(:) is continuous on H 1

0 (
) 2. The previous problem is in fact, to �nd ! in
H 1

0 (
) 2 such as8v 2 H 1
0 (
) 2,

a(!; v ) = L(v): (7)

The Lax-Milgram theorem for p = p0 guarantees that this equation is well-posed. The coerciv-
ity of K (p0; :) and the continuity of L (:) on H 1

0 (
) 2 leads to the inequality satis�ed by the solution
� k ! kH 1

0 (
) 2 �k h kH � 1 (
) 2 , with � > 0. Therefore, the resolvent ofP? K (p0; :)P? is compact because
of the compactness of the injectionH 1

0 (
) in H � 1(
). By Theorem (7), the resolvent of P? K (p; :)P?

is compact for all p in D 0. As a consequence, this operator is either singular onD 0 either invertible
for all p in D 0 except for a �nite subset (eventually empty) of D 0 denoted S. As Problem (7) is
well-posed forp0, this operator is invertible 8p in D 0nS.

Let us show that operator (P? K (p; :)P? ) � 1 is holomorphic onD 0nS. By application of the closed
graph theorem to the closed setgrad (H 1

0 (
)) 2 of L 2(
) 6, we have (P? K (p; :)P? ) � 1 in L ((grad (H 1
0 (
))) 2).

As P? K (p; :)P? is holomorphic on D 0, its inverse is holomorphic onD 0nS.

Theorem 9 (Kato[3]) . If it exists p0 2 D 0 such asK (p0; :) coercive, then harmonic Maxwell system
in the PML media is well-posed for all real frequency except for a �nite discrete subset (eventually
empty) of R.

Proof. By projection of Eq. (6) with the Hodge decomposition, the problem is to �nd u = u0 + u? 2
D(A ) such as (

P0K (p; :) u + A u0 = f 0;

P? K (p; :)u = f ? :
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As u = P0 u + P? u, the previous system becomes
(

P0K (p; :)P0u + P0K (p; :)P? u + A u = f 0;

P? K (p; :)P? u + P? K (p; :)P0u = f ? :

With Lem. (2), if eA is the operator de�ned by the restriction of the operator A to the set
(H (div 0; 
)) 2, then D( eA ) = D(A ) \ (H (div 0; 
)) 2, so the problem is to inverse in (H (div 0; 
)) 2 the
closed operator

R(p) = P0K 0(p; :)P0 � P0K 0(p; :)P? (P? K 0(p; :)P? ) � 1P? K 0(p; :)P0 + P0K 1(p; :) eA

The operator R(p) is holomorphic on D 0nS = D 1. By use of Thm. (8) and (7) to the family of
holomorphic operator R(p) + eA of type A, it appears that R(p) + eA is a holomorphic family of closed
operators with compact resolvents forp 2 D 1. As a consequence, this operator is either singular on
D 1 either invertible for all p in D 1 except for a locally �nite discrete subset (eventually empty) of
D 1. Operator P? K (p0; :)P? de�nes a sesquilinear coercive form in (grad (H 1

0 (
))) 2 becauseK (p0)
is coercive inL 2(
) 6 which implies P? K (p0; :)P? invertible. A is maximal monotone andK (p0; :) is
monotone coercive and bounded inL 2(
) 6, thus the operator A + K (p0; :) is invertible. Finally, the
operator R(p0; :) + eA is invertible on (H (div 0; 
)) 2. So R(p) + eA is invertible for all p in D 1 except
for a locally �nite discrete subset (eventually empty) of D 1. This proves that the operator K (p; :)+ A
is invertible on L 2(
) 6 for all p in D 1 except for a locally �nite discrete subset (eventually empty) of
D 1.

4.4 Study of the coercivity of the PML matrix

According to Thm. (9), to have existence and uniqueness of the solution, it must exists a p0 in
C such asK (p0; x) is coercive. If we exhibit such a point, the resolvent is not empty and there is no
more alternative.

Property 10. The matrix K (1; x) is symmetric de�nite and positive for all x in R3.

Proof. As K (p; x) is de�ned by Eq. (5), we have

K (p; x)T =
�

det (J(p; x))J(p; x) � 1 �
J (p; x)T � � 1

� T

= det (J(p; x))J(p; x) � 1 �
J (p; x)T � � 1

= K (p; x);

with J(p; x) =
D(ex)

D(' (x))
D(' (x))

D(x)
. So K (p; x) is symmetric for all p 2 C, and a fortiori K (1; x) is

symmetric. If X 2 R3 with X 6= 0, then

X T K (1; x)X = X T
�

det (J(1; x))J(1; x) � 1 �
J (1; x)T � � 1

�
X

= det (J(1; x))X T J(1; x) � 1 �
J (1; x)T � � 1

X

= det (J(1; x))X T J(1; x) � 1 �
X T J(1; x) � 1� T

:

If A = X T J(1; x) � 1, then X T K (1; x)X = det (J(1; x))AA T . As AA T is de�nite positive for all

matrix A , we deduced that K (1; x) is de�nite positive if det (J(1; x)) > 0. Let F(x) =
D(' (x))

D(x)
be the jacobian matrix of ' . As ' is an increasing function that represents the embedding in a

manifold M of C3, we havedet (F(x)) > 0. Let us denoteF0(x) =
D(ex)

D(' (x))
. For all ( i; j ) 2 J1; nK,

F0(x) ij = � ij + f 0(' (x)). As f is strictly increasing, det (I 3 + F0(x)) > 0.
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5 Explicit formulations for Maxwell's Equations

Lemma 3. The matrix of the harmonic PML formulation is

K (p; x) = det T (x)
�

T (x) � 1P � MPT (x) � � 1
�

with T (x) =
D'
Dx

, M = diag

0

B
@

i
_Y

k

(p + � k )

1

C
A and P � = P � 1.

Proof. Given the embedding ex = ' (x) +
1
p

f (' (x)), it is possible to have a general formulation for

the PML matrix. The jacobian matrix J(p; x) is
Dex
Dx

=
�

I +
1
p

Df
D'

�
D'
Dx

. As f = grad S
'

, is exists

P a unitary matrix P � = P � 1 such as
Df
D'

= P �
�

I +
1
p

D
�

P with D a diagonal matrix and � i ,

i = 1 ; 2; 3 its eigenvalues. With T (x) =
D'
Dx

, we haveJ(p; x) = P �
�

I +
1
p

D
�

PT (x). The Hodge

transformation associated is? = det (J(p; x))J(p; x) � 1
�
J (p; x)T

� � 1. The proof is ended by writing
K (p; x) = p?.

Theorem 11. The unsteady Maxwell equations in the PML media are

�I (x)
@
@t

�
e
h

�
+ �A (x)

�
e
h

�
+ �B (x)

�
u
v

�
+

�
0 �r�

r� 0

� �
e
h

�
=

�
� j
� m

�
;

where (u; v) are solutions of the ODE
�

T (x) � P � 1 0
0 T (x) � P � 1

�
@
@t

�
u
v

�
+

�
T (x) � P � 1F(x) 0

0 T (x) � P � 1F(x)

� �
u
v

�
=

�
e
h

�
;

with F(x) = diag (� i ) ; A (x) = diag

0

B
@

i
_X

k

� k � � i

1

C
A ; B (x) = diag

0

B
@

i
_Y

k

(� i � � k )

1

C
A and �I (x) =

M (x)
�

M (x)
� � � 1

, �A (x) = M (x)
�

A (x) 0
0 A (x)

� �
M (x)

� � � 1

�B (x) = M (x)
�

B (x) 0
0 B (x)

� �
M (x)

� � � 1

with M (x) = det (T (x))
�

T (x) � 1P � 0
0 T (x) � 1P �

�
.

Proof. Let ( i; j; k ) be three di�erent indices.

(p + � i )(p + � j )
p + � k

= p + ( � i + � j � � k ) �
(� i � � k )( � j � � k )

p + � k
;

The diagonal matrix of Lem. (3) can be decomposed aspI 3 + A (x) + B (x) (pI 3 + F(x)) � 1 with

F(x) = diag (� i ) A (x) = diag

0

B
@

i
_X

k

� k � � i

1

C
A B (x) = diag

0

B
@

i
_Y

k

(� i � � k )

1

C
A :

With T (x) =
�

D'
Dx

�
, the PML matrix can be decomposed as

det (T (x))
�

T (x) � 1P �
�

pI 3 + A (x) + B (x) (pI 3 + F(x)) � 1
�

PT (x) � � 1
�

: (8)
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We notice that (pI 3 + F(x)) � 1 PT (x) � � 1
=

�
T (x) � P � 1 (pI 3 + F(x))

� � 1
. By choosing �I (x),

�A (x), �B (x) and eF(x) as written above, the Maxwell equations in the PML become
�

p�I (x) + �A (x) + �B (x)
�

peI (x) + eF(x)
� � 1

� �
e
h

�
+

�
0 �r�

r� 0

� �
e
h

�
=

�
� j
� m

�
:

If
�

u
v

�
=

�
peI (x) + eF(x)

� � 1
�

e
h

�
, it is a solution of an ODE that can be introduced in Maxwell's

equations onR6 to have
8
>>><

>>>:

p�I (x)
�

e
h

�
+ �A (x)

�
e
h

�
+ �B (x)

�
u
v

�
+

�
0 �r�

r� 0

� �
e
h

�
=

�
� j
� m

�

peI (x)
�

u
v

�
+ eF(x)

�
u
v

�
=

�
e
h

�
:

Using the Laplace inverse transformation ends the proof.

Important remark : this theorem shows an important property of the PML. The spatial part

of the operator
�

0 �r�
r� 0

�
is not modi�ed in the PML media. This guarantees the possibility

to choose without constrain the numerical approximation method (Finite Elements, Finites Volumes,
Discontinuous Galerkin, : : : ). Moreover, a Gedney formulation can be obtained with an other simple
element decomposition (for example for an FTDT approximation with leap frog schemes).

The previous formula has been established for Maxwell's equations in3D. For bidimensional equa-
tions, the formula is deduced for Thm. (11) through an Hadamard's method of descent.

6 Some numerical PML examples for a L-shaped geometry

6.1 A general non convex formulation

The embedding is given bye� = � ,

e� = � (�; � ) +
1
p

f (� (� ) � R) ;

and the di�eomorphism is � (�; � ) = k� + (1 � k)� 0(� ). The eigenvalues of the jacobian matrix are

� (�; � ) = f 0(� (�; � ) � R), � (�; � ) =
f (� (�; � ) � R)

� (�; � )
. The PML matrix is

K (p; �; � ) = Q(� )P(�; � )
�

p I (�; � ) + A (�; � ) + B (�; � )
�

pI 3 + F(�; � )
� � 1

�
PT (�; � )Q(� )T ; (9)

with I (�; � ) =
�

k
� (�; � )

�

�
I 3, F(�; � ) = diag

�
� (�; � ); � (�; � ); 0

�
,

B (�; � ) =
�

k
� (�; � )

�

�
diag

�
� (�; � )( � (�; � ) � � (�; � )) ; � (�; � )( � (�; � ) � � (�; � )) ; � (�; � )� (�; � )

�
,

A (�; � ) =
�

k
� (�; � )

�

�
diag

�
� (�; � ) � � (�; � ); � (�; � ) � � (�; � ); � (�; � ) + � (�; � )

�
,

P(�; � ) =

0

B
B
B
B
@

� (�; � )
�

� 2 (1 � k)
� 0

0(� )
�

0

0 k 0

0 0
�

k
� (�; � )

�

� � 1

1

C
C
C
C
A

, and Q(� ) the rotation matrix around the z-

axis. In that case, the matrix behind p is no longer the identity matrix. If [ " ] corresponds to this part

13



of the matrix det (J(x))
�
J (x)T J(x)

� � 1, meaning fA 0 =
�

[" ] 0
0 [" ]

�
, the CFL condition associated is

de�ned though � 0 the smallest eigenvalue of [" ] by
dt
dx

� � 0. As its value depends on the mesh, the

CFL condition is the maximal value of

k2 + 4
�

(1 � k)
� 0

0(� )
�

� 2

+
�

k + (1 � k)
� 0(� )

�

� 2

2k
�

k + (1 � k)
� 0(� )

�

�

�

vu
u
u
u
u
u
u
t

 

k2 + 4
�

(1 � k)
� 0

0(� )
�

� 2

+
�

k + (1 � k)
� 0(� )

�

� 2
! 2

� 1

4k2

�
k + (1 � k)

� 0(� )
�

� 2 :

A numerical visualisation on an unstructured mesh of the previous formula shows that the CFL
condition can reach 180, but only for few elements, where the values of� 0

0(� ) are important. As the
matrix is well-conditioned, this formulation can be used for harmonic problems. The domain is reduced
by comparison with a convex formulation, and few more complexity is involved. But for unsteady
problems, the penalization induced by the CFL condition may no be balanced by the reduction of the
triangles' number. A �rst solution is to work implicitely.

6.2 A more speci�c formulation

A part of a L-shaped geometry is convex, so an other idea is to establish a new formula that
takes advantage of this convex part. The PML domain is divided in two parts : one with a cartesian
formula, and the other one with a non convex formula, that matched continously the cartesian PML
at the border of each domain.

Fig. 1 explains the geometry. The domain of studyD , the interior L, is represented in white while
the cartesian PML are with horizontal stripes. The di�eomorphim � transforms D by adding the
black area. In this speci�c area, whose thickness is controlled by theparameter � , the waves do not
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decrease. The attenuative e�ect of the PML starts in the vertical striped area, perpendicularly to the

external boundary of the black area. The embedding is given byex = � (x) +
1
p

0

B
B
B
@

Z
� x (� )d�

Z
� y(� )d�

0

1

C
C
C
A

and the

di�eomorphim is � (x) =

0

@
x + ( � � 1) inf (x; y)
y + ( � � 1) inf (x; y)

1

1

A .

Figure 1: The di�erent domains for a non convex PML formulation

The PML matrix can be decomposed as

K (p; x) = T (x)
�

pI + A (x) + B (x) (pI 3 + F(x)) � 1
�

T (x)T ;

with I =
1
�

I 3, A (x) =
1
�

diag
�

� y(x) � � x (x); � x (x) � � y(x); � x (x) + � y(x)
�

,

B (x) =
1
�

diag (� x (x)( � x (x) � � y(x)) ; � y(x)( � y(x) � � x (x)) ; � x (x)� y(x)) and F(x) = diag
�

� x (x); � y(x); 0
�

.

The matrix T (x) is triangular and depends on the non convex part of the domain where it is calcu-

lated. If y � x, T + =

0

@
1 1� � 0
0 � 0
0 0 �

1

A , otherwise T � =

0

@
� 0 0

1 � � 1 0
0 0 �

1

A . The smallest eigenvalue of

the matrix T (x)T (x)T is
1
�

+ � � 1 � (1 �
1
�

)
p

1 + � 2. As � � 1, the maximal CFL condition is 1

and does not depend on the shape of the domain. Even if the L-shaped has an important length by
comparison with its width, the CFL condition remains the same, contrarily to the �rst formulation
established. This embedding has a strong analogy with the cartesian PML and therefore presents a
dissymetry in the waves absorption.

An other solution, based on the convex PML, is to chooseex = � (x)+
1
p

f
�

� (x) � RI 3

�
. The PML ma-

trix becomesK (p; x) = T T (x)
�

pI + A (x) +
1

p + 2 � (x)
B (x)

�
T (x), where � stands for the derivative

of the function f , the triangular matrix T (x) is unchanged,I =
1
�

I 3, A (x) =
2� (x)

�

0

@
0 � 1 0

� 1 0 0
0 0 1

1

A

and B (x) =
2� 2(x)

�

0

@
1 1 0
1 1 0
0 0 0

1

A . The numerical experiments of this paper are obtained with this

formulation.
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6.3 Numerical Simulations

All the following simulations are made with the Maxwell Bidimensional Equations, with Silver
M•uller conditions at the boudary of the PML domain, and meshes are unstructured. The origin of
the reference frame is the corner of the L, bewteen the domain of studyand the non convex PML.

Two kind of problems will be computed, which correspond to the casesstudied in Sec. 3. The
�rst simulation is the propagation of a RHS

f (x) =

 

0; 0; exp

 
(x � xc)

2 + ( y � yc)
2

(x � xc)
2 + ( y � yc)

2 � R2

!

1D (x)

! T

;

where D is the disc of center (xc; yc) = ( � 1; � 1) and radius R = 0 :5. The pulsation is ! = 2 � , the �
function is of order 2, with a coe�cient that guarantees a decrease in the PML at 10� 2, and � = 1=3.

(a) Real part of Ex (b) Imaginary part of Ex

(c) Real part of Ey (d) Imaginary part of Ey
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(e) Real part of H z (f) Imaginary part of H z

As the cartesian PML are a considered as a reference solution for the problems studied, here are
comparison with the non convex PML introduced in this paper. The simulation has the same initial
condition as previously, but the center is moved to the right. For the wave to propagate correctly onto
the L-shaped domain, it has to go through the non convex PML. Fig. (g) shows the cartesian domain
involved, and the black area is the one added in order to apply a cartesianmethod. Fig. (h) represents
the mesh generated by the PDETOOLBOX of MatLab (like all the others used in this paper).

(g) The di�erent domains for a cartesian PML
formulation

(h) Roughest mesh for the problem with a RHS 6= 0
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(i) Real part of H z - cartesian PML (j) Real part of H z - non convex PML

(k) Imaginary part of H z - cartesian PML (l) Imaginary part of H z - non convex PML

For the scattering problem, the study of an incident plane wave ' inc reected by a L-shaped
geometry � of length 3 and width 1 is processed, with ' inc (x) = ( � ky ; kx ; 1)T exp (! (� k :x)). k =

(kx ; ky)T gives the direction of the incident wave, and it is chosen ask =
�

� 1
p

2
;

� 1
p

2

� T

. The boundary

conditions at the boundary of the scatterer are8x 2 @�, f (x) =
Z

@! k \ @�
� M 1' inc (x)exp (� ! k :x),

with M 1 =
�

n 
 n 0
� nT 0

�
, n the outer-pointing unit normal and ! k the element considered. The PML

domain has a thickness of 1=3, the function � is of order 1. Others parameters remain the same as
the previous simulation.
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(m) Imaginary part of H z (n) Real part of H z

For the comparison with cartesian PML, the pulsation chosen is! = 3 � , the order of the sigma
function is 2 and the mesh is modi�ed to use a thicker scattering object.

(o) Roughest mesh for the scattering problem

(p) Real part of H z - cartesian PML (q) Real part of H z - non convex PML
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On a visual point of view, the non convex PML and the cartesian ones lead tothe same solution
in the physical L-shaped domainD. To con�rm this, we take into account two errors. Let ' NC be the
non convex PML solution and ' C the cartesian PML one. The �rst error, "1, corresponds to thel2

norm of the di�erence on D, and the second one,"2, represents the local error on each element :

"1 =

P

! k 2 D
j' NC (! k ) � ' C (! k )j2vol (! k )

P

! k

j' C (! k )j2vol (! k )
"2(! k ) = j' NC (! k ) � ' C (! k )j2:

Tab. 1 gives the error "1 function of the number of elements per wave-length� . The mesh are
rough, with very few layers, to place ourselves in the worst case. The error "1 decreases slower with
the re�nement of the mesh for the scattering problem. The mesh of Fig. 2(o) is very rough, especially
in the area used especially for the cartesian simulation. The dampingstarts outside the convexi�ed of
the scatterer, the waves are brutally moved away : there is a lot of dissipation.

"1 �= 8 �= 16 �= 32

Scattering

0

@
5:81e � 2
5:65e � 2
6:67e � 2

1

A

0

@
1:65e � 2
1:61e � 2
1:76e � 2

1

A

0

@
1:031e � 2
9:7e � 3
1:07e � 2

1

A

RHS6= 0

0

@
1:28e � 2
5:4e � 3
5e � 3

1

A

0

@
5:6e � 3
5:4e � 3
2:3e � 3

1

A

0

@
9:72e � 4
9:25e � 4

3e � 4

1

A

Table 1: "1 for (Ex ; Ey ; Hz) depending of the number of elements per wave length

Fig. (r) gives the error "2 with a RHS6= 0, whose support's center is \centered", i.e. (� 1; � 1) and
a mesh of�= 16 elements per wave-length and Fig. (s) for a mesh of�= 8 elements per wave-length,
corresponding to the test (j).

(r) " 2 with �= 16 elements per wave length with a cen-
tered" RHS

(s) " 2 with �= 8 elements per wave length (case test (j))

For unsteady problems, as the PML matrix contains some terms at order� 1 in p, an extra equation
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has to be added. The Maxwell Equations onR3 � R+ are
8
>>>><

>>>>:

�I (x)
@'(x; t)

@t
+ �A (x)' (x ; t) +  (x ; t) +

0

@
0 0 � @y

0 0 @x

� @y @x 0

1

A ' (x ; t) = 0

@ (x; t)
@t

+ 2 � (x) (x ; t) = �B (x)' (x ; t):

with �I (x) = T (x)I (x)T (x)T , �A (x) = T (x)A (x)T (x)T and �B (x) = T (x)B (x)T (x)T , with the same
kind of boundary conditions as the harmonic problem :The boundary conditions at the boundary
of the scatterer are 8x 2 @�,

R
@! k \ @� � M 1' inc (x ; t)exp (� ! k :x) exp (i!t ). For the simulation, an

implicit Euler scheme is used. The time step is determined by� t = min
e

vol (! e)
vol (@!e)

.

(t) Solution of the unsteady problem : third com-
ponent H z (x ; T ) with T = 1 :8

Remark : the previous numerical experiments have an unnecessary domain of calculus inside the
non convex PML. At the external boundary of the cartesian PML, the solution is vanishing. This
property is veri�ed in the non convex PML on a parallel of the exhaustion. As a consequence, for a
L-shaped geometry, the non convex area required is less than a L. On Fig. (u) and (v), the vertical
stripes represent the useless domain : the non convex PML domain is very thin. Fig. (u) corresponds
to Fig. (1) while Fig. (v) has an elarged PML domain to show with more visibility the e�ective
non convex PML domain, which is very thin by comparison with the thickness of the cartesian area
required on this speci�c geometry.

(u) (v)
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Conclusions

This paper presents a fully proved non convex PML theory and some numerical experiments. The
aim is to obtain the most general formulation possible, thanks to the families ('; f ). The hypothesis
of convexity is underneath, through the di�eomorphism ' , and absolutely necessary to prevent singu-
larities to appear in the Green function.

The case of the L-shaped geometry can be generalized as long as it is possibleto express the dif-
feomorphism from an a�nity normal to the boundary of the convexi�ed domain. It is always possible
if the domain is not trapping. For example, a U-shaped geometry where the boundaries are strictly
parallel can not give such an a�nity, but if the boundaries are \opened", ' can be found by using the
normals to the convexi�ed.

In the non convex PML, even if the luminuous rays are twisted (consequence of the complex metric
with a di�erent wave speed), the permittivity tensor is more complex -with anisotropic permittivities-
but the restriction of the solution to the physical domain are numerically correct. The trace of the
solution on the boundary, which almost inverses the problem, will be anexcellent preconditionner for
integral methods. For harmonic problems, non convex PML present two advantages : the number of
cells (and unknowns) is reduced, and there is no need to inversethe matrix on every elements, which
is sparse. For unsteady problems, the change of the wave speed implies a drop of the CFL conditions
: this saves some memories but no calculus time. As the exageration of the CFL condition depends
on a very few elements, an implicit formulation can be used to solve this problem.

The comparison with cartesian PML gives excellent results, even ifthe choice of the numerical
approximation was very poor with a Finite Volums method. The use of methods like Discontinuous
Galerkin has to be considered.

In 2001, this approach of the PML theory thanks to pseudo riemannian manifolds with complex
tangent and cotangent bundles was already tried by Lassas [4] for harmonic problem. There are four
major di�erences between their work and the present one. For the restriction to a bounded domain,
for harmonic problem, some frequencies can be excluded (we remind that Thm. (9) speci�es for all p
in H except for a locally �nite eventually empty set S) Lassasand Co. do not have that restriction but
their theory implies to set the arti�cial boundary \far enough" of the dom ain D . In this paper, it can
be placed as closed as we want. In fact, Lassasand Co. requiere an extra hypothesis to de�ne their
absorbing pseudo riemannian manifold : the asymptotic� -euclidianity of the metric, meaning they
impose a strict convexity and both the metric and the connection haveto be majored asymptotically
by an euclidian metric. We do not need that hypothesis. Last point : we study the unsteady problems,
while their work was only about harmonic formulations. Moreover, this paper explicitely gives some
formulations (di�eomorphims and functions) that leads to the unsteady formulation. As the embedding
is de�ned in a very general way (cartesian and convex PML can be described as well), and the PML
matrix obtained is composed of rational fraction that can be decomposed and gives the Friedrichs
unsteady system while adding an ODE. The problem of chosing the couples ('; f ) is general for every
non trapping domain, but has to be written. The di�eomorphism is deductible from an a�nity normal
to the boundary of the convexi�ed domain.
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