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Abstract

Since introduced by Berenger [1], the Perfectly Matched Layers mthod (PML) has become a popular
approach for non re ecting Absorbing Boundary Conditions (ABC) in the num erical solution of the
Maxwell equations on unbounded domains. However, most of the formulation®nly concern paral-
lelepiped or simply convex domains. The goal of this paper is to presenhe theory for non necessarily
convex PML on systems like Maxwell's.
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Introduction

Whenever one solves a Partial Di erential Equations numerically (by a volume discretization), one
has to truncate the domain in some way. A key question is how to termiate the mesh without creating
excessive echoes from the arti cial truncation surface that may spdithe quality of the solution. In
1994, Berenger changed the question : instead of nding an absorbing boundaryondition, he found
an absorbing boundary layer. That is an arti cial material independent of the boundary condition.
When a wave enters the absorbing layer, it is attenuated by absorptin and decays exponentially. Even
if it re ects o the boundary, the returning wave after one round tri p through the absorbing layer is
exponentially small. Moreover, waves do not re ect at the interface Although PML were originally
derived from electromagnetism and Maxwell equations, the same ideas cammediately be applied to
other waves equations.

Chew and Wheedon [2] introduced the notion of complex coordinates sttehing, based on analytic
continuation of Maxwell's equations into spatial complex coordinates wlere the elds are exponen-
tially decaying. In this paper, the stretching is interpreted as writing the same equations in a complex



tangent bundle of a at manifold in C". For a general system, two cases appear. The rst one concerns
equations with an intrinsic form given by exterior derivatives and Hodge operators. In that case, we
can directly study their integral inverses and thus obtain a general RML theory. This allows to reduce
the non necessarily convex PML domain to the closest of the real eld rgion. This leads to a dispersive
formulation : the spatial operator is local and the time one is pseudo-di eential but a localization
can be performed thanks to extra Ordinary Di erential Equations. On the contrary, in a second case,
like for example aeroacoustics' equations with convection, such a forntation is impossible to obtain.
This brings di culties to prove the existence and uniqueness ofthe solution, but it is possible to prove
that an exponentially absorbing and unre ected solution exists in the entire domain.

This paper is about to generalize the PML formulation for non necessarilyconvex domains throught
a di eomorphism ' , de ned thanks to an a nity normal to the convexi ed boundary, and a str ictly in-
cresing functionf , whose properties will be discussed. Such a formulation will alsmcluded \classical"
PML, such as cartesian and convex ones.

1 Flat complex manifolds

In 2001, Lassa<t al. [4] showed that all PML can be obtained through a complexi cation of coordi-
nates that corresponds to at complex manifolds. Instead of stretchingthe coordinates, they changed
the metric de ned on R3. This method presents several advantages. First, when Maxwell'squations
are written in terms of 1-forms, the di erential operators take form of exterior derivatives. Second,
the stretching of the metric allows to treat more general scatteringgeometries than before. Finally,
this formulation is completely invariant as it is done without a reference to speci ¢ coordinate systems.

The manifolds used in this paper are called pseudo-riemannian i€3, meaning real of dimension
3, with complex tangent and cotangent bundles, with a symmetric compl& metric g(:;:) such as its
determinant g = = det(g(:;:)) can always be de ned with the same determination. The purpose of
this section is to geometrically describe the complexi cation of coodinates that de nes the PML.

Let (M ;g) be a real manifold with a complex tangent bundle TM and a riemannian metric gj .
The matrix G = ( g ) is associated to the metricg(:;:). The tangent bundle setTyM for all x in M, is
the sumU + iV, with U and V real vectors tangent tox and its complex dual is the cotangent bundle

T,M. Their bases are the partial derivatives @?; i1 —— for TxM and the exterior di erentials

1 n
dxq;:::;dx, for T, M. An element of TyM (a vector) is a complex linear combinaison on this basis
P

P
i Xj (x)@?. The elements of T, M are covectors on the form i Xj (x)dx;, with X;(x) 2 C. The

bilinear applijcation T™ TM! TM :(u;v)!r yv with the propertiesr y(v+w)=r yv+r yw
regv="Ffryvandr ((fv)= u(f) v+f r yvisalinear connection. In particular, the Levi Civita con-
nection is the only linear connection that conserves the metrig(:; :) and can be expressed through the
Lie brackets [u;v] of u andv. A connection is torsion free ifr yv r yu [u;v]=0andr jg=0. The
complex curvature isR(u;v)w =r yr yw r r yw r ., W. Onabasis ofTM, as @,;@, =0,
the nullity of the curvature means the commutation of the covariant derivatives. If and are two
p-forms, and if : = j 7 is their scalar product (J stands for the set of thﬁ ordonate indices),
the Hodge star operator? is given by the relationship: ~? = 2?2 =( : ) (g dxi1™ " dx,.
Moreover, if n is the dimension of the manifold, then? * =( 1)P(™ P _ The canonic euclidian com-
plex metric gc (:;:) in C2 will be considered as the real submanifold of dimension 3 d®® with complex

X3
tangent and cotangent bundles, and used in cartesian coordinate®(u;v) 2 C3, gc(u;v) = ujVvj.

i=1
If x 7! B(x) is a change of variables, a complex metric ofiR3, denotedgy : TTMR® T,MR3! C3,



can be de ned by g«(u;Vv) = gc (de(u); de(v)), where dr is the di erential of .

In the natural frame of reference, the tangent vectors always commute lt the covariant derivates
only commute if the manifold is at, which provides an intrinsic way of writing the determinant and
the symbol of the operator. A at manifold therefore de nes a parallelism structure that generalizes
the notion of convolution.

1.1 Formalism

The spatial domains involved are : a bounded smooth obstacl®, non necessarily convex that can
be empty, a connex domain , non necessarily simply connex that reprgents the domain of interests,

o is the boundary between and O, 1 is the external boundary. Both areC!, and | can be
rejected to in nity if is not bounded.

Consider the real manifolds with values in C3 described by the change of variables, withp =
"+il 2C,

=" (x)+ ;f ¢ (x)): 1)

Hypotheses 1. The couple(;f ) belongs toC(R3;R3). 8x 2 , we have' (x) = x andf(x) =0.
Moreover, ' (X)j = |C1) (jxj), f is strictly increasing with a linear growth at in nity and it exis ts S
ixi

a convex function such ag = grad S.

These hypotheses will be justi ed later.

Remark : the regularity Cj.,(R%R3)\ C%(R3R?) for (;f ) could be enough if the edges are
lipschitzian (no jump discontinuities) and it could be possible to write the weak exterior di erentials
thanks to the unit partition theorem.

The interest of such a formulation is that the complexi cation of each cormponent is made through
a single function given on allR® and does not dependent anymore of the coordinates. Moreover, it
does not take into account the shape of the PML or their absorbing direcon. As f; = 0 and
"; =id , the system of equations is unchanged inside the studied domain. Ihe functions areCk,
then the manifold M de ned by (1) is a submanifold of classC* and dimension 3 in the R vectorial
spaceC? of dimension 6.

Remgrk : as announced, this formulation is very general : chosing = x and f (x) = (fi(x)) with
X
fi(x)= i( )d and ; a positive function that tends to a constant at in nity, means a cartesian

0
formulation, while f;(x) = @h(dist (x;@)), with h an increasing convex function asymptotically
linear is a convex formulation. In both casesf is the gradient of a convex function and respects Hyp.

(1)

2 Helmholtz problem

Let (M ;g) be an pseudo-riemannian manifold. We de ne the Hodge star operato® corresponding
to the complex metric g, with U~ ?V = g(U; V)dvol g and dvol g = de; * de, * des. The functions
g; are the components of the embedding : M ! C3 that de nes the immersion. The generalized
Laplacian § for r-forms on the manifold M can be generalized for to the metricg(:;:) through

g=( 1) (?d?d d?d?). Ifthe manifoldis at, [ r i;r j]=0, the components of 1-forms are given

by the metric and 8corresponds to the opposite of the Laplace-Beltrami operator :' 7! gir ir it



Denition 1. (M ;g) is an absorbing pseudo-riemannian manifold if
1. the manifold (M ;g) is at and M is di eomorphic to R3 (with  the di eomorphism),

2. it exists M a relatively compact open set where the metric is real and euclidian and\gin
byg= 7g¢® with 7 the pull-back of and g¢ the euclidian metric,

3.8vV2TR, v60; gx(v;v) 60,

4. the immersion : M ! C8 guarantees that the imaginary part ofe(x1) ®(x») is signed and
of constant sign for all (x1;x2) 2 M 2.

For now on, the manifold considered M ; g) will be an absorbing pseudo-riemannian manifold. The
fourth point of Def. (1) uniquely determines the square root

0 1o

X3
frR pg=@ (g g)°A
=1

If fr g Ois positive, M is called an outgoing absorbing pseudo-riemannian manifold.

Theorem 1. The fundamental solution Gy for the g-Helmholtz operator for O-forms on (M ; g)

exp( i! fe Q)

BY2Mi (g PICEVI= vy IS Gulay)= =

with Gy the usual solution for the euclidian metric, y a O-current.
Whenijx vyj!l , Gy andr Gy have an exponential decay irexp (O (jx yj)) (with p = i! +0)

Remark : the Dirac delta is to bg interpreted with respect to the volume form de ned by the
metric g : if isaC! O-formonM, (x) y(x)dvolg(x) = (y).
M

The proof of this theorem can be found in Lassas [4]. For the fundamental sotion of the Helmholtz
equation to be de ned, the fourth condition of Def. (1) must be satis ed. The change of variables is
given by Eqg. (1), and by considering the limit casep = i! , we have

fe v =[ () O 5000 (CONF 2000 OIEC ) TN

Letusdenote F1=[f(" (X)) f(C (yDland[ 1=["(X) ' (y)]. The real and imaginary parts
must not be null simultaneously. The condition [f ] = 0 is straight forward deduced from the previous
equation. But 7
f= @ oy

0 D'
If M(" 1;' 2) is the previous matrix, a condition for [f]=0is (M [ ];[' ]) =0, meaning that [' ] is a
eigenvector of the matrixM + M T associated to a null eigenvalue. A su cient condition is M positive
or null. For a continuous determination of the square root, the imaginary part must be of constant

it t(2 1) dt

, . e , . Df . :
sign. A su cient condition is M symmetric. In that case, the matrix o is also symmetric and

there exists a convex functionS such asf = grad S. This justi es Hyp. (1).



3 Resolution of the Maxwell equations

The study of these equations will rst be made on the whole manifoldM to guarantee the exis-
tence and uniqueness of the solution. Then, the problem on unboundedomain will be restrained to
a bounded one with adapted boundary conditions.

If the hypotheses from the Rauch's theorem [7] are satis ed, every sbng solution is a weak
solution, and strong solutions are smooth with second members of the sanregularity. If the system
has a smooth strong solution, then it has a weak solution. As a consequendae this paper, the electric
and magnetic elds e and h are exclusively smooth 1-forms. Given a metriqg, there is a well-known
one-to-one correspondence between vector elds and 1-forms. Lgtand m be 2-forms standing for the
second members (or Right Hand Side (RHS) of the equation) at coe cients h C! with a compact
support. The harmonic Maxwell's equation in vacuum are

(
p?e dh= |
- (2)
p?h+de= m;
with p="+ik 2C,k=1!=c = p,,o 0, and the Hodge star operator? de ned by the Euclidean
metric to convert 1-forms to 2-forms. The elds are rescaled for symmiy, meaning e ! "oe and
hi P “oh. The Maxwell operator is

:MT.

0 d
M="4 o

and ?(e; h) is the Hodge transformation of (e;h) de ned by (?e;?h. The Maxwell equations on
intrinsic form are

2+m) = ) ©)
Lemma 1. If ' is a O-form and A a 1-form with r A =0 then (A )=( ©)A.
Proof. If A is a 1-form then A is a linear combinaison ofde; whose Hodge transformations are
?de, = deo N des ?de, = dez " deg ?de3 = de; " dey:
Without a loss of generality, we assume thatA = de; andr j:=r g, then
ItaA)y= (2d2d d?2d?)('d ®y)

=( @' @ @3)de+(@ @ )dex+(@ @z )dr3

= ( %)des
Similar results are obtained with A = de, and A = drs;. O

Theorem 2. If A and B are 2-forms such asr A = r B = 0, the application Ga:g (Xx;y) (de ned
thanks to the Green functionGy (x;y) provided by Thm. 1)

._ p p d2d? ?2d GH (x;y)A
Cas (Xy) = d p p ld?2d? Gu(x:y)B

satis es the properties of the Green function for Maxwell's equatios on (M ; g) and

8y 2 M; p+?2M T Gap(iy)= g\y . (4)
y



?
Proof. As p+2M T = E)?d 7d , it comes
: . p A p p id2d? 2d Gh (:y)A
PHMT Gas (5Y)= 54 2d p p 'd?2d? Gu(;y)B
_ p? d?d?+2d2d 0 Gh (5 y)A
= 0 p? d?d?+?2d?d Gu(;y)B
_ (PP dGHGY)A _ Ay
= = lemma (1
(P2 ¢GH(:y)B By ( W

3.1 Case of the Maxwell equations with RHS 60 and O =

For the rest of this paper, we assume that solutions are smooth enough withut loss of generality
thanks to the equivalence provided by the Rauch Theorem [7] betweae strong and weak solutions
and the Friedrichs systems nally obtained. The currents will be written as di erential forms with
distributional coe cients since equations are intrinsic.

Theorem 3. If (M;g) is an outgoing absorbing pseudo-riemannian manifold, then the pbdem given
by (2) without any scattering object has a unique solution

Z i Z
&=  Gao’ o hi=  Gouw"
. X ?X . . . .
Proof. With X;Y 1-forms, we denote? vy T oy Their exterior product, with P;Q 1-forms, is
é N g = X" P+ Y"™Q. Moreover,P Q= P " Q . The weak formulation of Maxwell's

equations, with A and B 1-forms, is

(p?+M) [ A" (AB)= [ ~( p? (AB)+M'(AB)
By applying ? to Eq. (4), we have p?+M ' Gag (;;y) = B . Then,
By
Z
er ?2A+ hA 2B = ﬁ A p2+MT Gags (5y) dvolg(y)
M
e
= h " (P?Gas (1Y) dvolg(y)
M
Z
+ € A MTGag(y) dvol
h AB (1Y) dvolg(y)
M
z z
By commutation of ?, ﬁ N(p?Gas(Yy)) = Gas(;y)™ p? ﬁ
M M
If and 1-forms,d( ~ )=d ~* ~Nd |, therefore
z z z
0= d( » )= d » ~d o
M M M
Z Z

and then d » = N d . With the properties of the Green function,

M M



z z Y4

- MTGag(y) = MT ﬁ "Gag(y)=  Gap(y)"M ﬁ
M M M
Finally
z
er ?A+ hA 7B = Gag (5y)~ (p?+M) E dvol 4(y)
MZ J
S, GaslN)h [ dvolg(y):

P P
This formula is established for any 1-formsA and B. As e = ede; and h = hide;, by choosing
respectively A = de;;B = 0 and A = 0;B = dr;, the componentse; and h; of the electric and
magnetic elds are determined. O

3.2 Case of Maxwell's equations with RHS =0 and O 6 ;

Theorem 4. The Green function Ga (;;y) can be decomposed asg1 , with A and B 1-forms. If
2

(M g) is an outgoing absorbing pseudo-riemannian manifold, we have a &tton-Chu formula with
the solution (e; h) of Problem (2)

Z
e"?A+ h~?B = e Gy h” Gy dvolg(y):
@1
Proof. With A and B 1-forms,
(7 )
e ?A+ h" 7B = ﬁ N p?2+MT Gag(iy) dvolg(y)
R3=0
(7 )
e
= h " (P?Gas(ty)) dvolg(y)
R3=0
(7 )
+ €A M TGag (:;y)  dvolg(y)
Rizo N

Eq. (3) with RHS= 0 becomesp ? ﬁ =M S ButM =MT, so

h
Z Z o
NP ?Gap (5y)) = Gap (1Y) p? h
R3=0 R3=0
z 0O d e
= Gag (y) "
R3:O AB d 0 h
z e z e 0 d
A T . - A (e
Moreover, o h M " Gas (1Y) o h 4 0 Gas (1Y)

With Gag (5;y) = gl , we have
2



e dG,y,+ G, de

n D A9B =
e”?A+ h”" 7B o hAdGL+ G~ ( dh) dvol 4(y)
)

en dGz den Go

= e hAdGi+dhnG,  dVOle)
(2 d(en Gy )
- € 2 .
= e d(h” Gy dvol 4(y):
Z
With Stokes formula, e ?2A+ h” ?B = e Gy h” Gy dvolg(y). O
@ 1

Remark : this theorem gives the solution for a scattering problem for the Maxwd equations, but
also an estimation of the error committed by bounding the domain. In all the space, the restriction of
the solution coincides with the real solution. If the problem is wellposed, there is a correspondance
between the inhomogeous problem and the trace of the solution. If the sotion is homogeous, this
formula gives the error. Moreover, if the errors created on the articial boundary are small, it is useless
to set an arti cial boundary far away for the studied domain D because of the exponential decay of
the Green function : the traces of the PML solution are small and exponetially decay while they
return inside D. Finally, this formula allows the superposition of solutions : for a pefect scatterer,
the solution of Maxwell's equations depends on the trace of the elds onhis object's boundary, which
leads to the following corollary.

Corollary 5.  On (M ;g), Problem (2) has a unique solution
z
E= n GdE]’ 0 - + A GdEJ‘ 0 1 dEJ,
Z@ 0

0

with  and smooth enough currents.

4 Harmonic Problem

In this section, we prove that the PML problem for Maxwell's and waves equations can be written

on the form

., e 0O r e
K(p’x)h+r 0 h =~ m

with (j; m) smooth enough, as well as the following theorem.
Theorem 6. With the following hypotheses :

K(p;x) LY in x

K (p;x) holomorphicinp2 H iR*

9 po 2 H such asRe(K (po; X)) is coercive

9p1 2 H such asK (p1;x) + Af@ with a compact resolvent,

for all p 2 H=S whereS is a locally nite set, eventually empty, and * bounded,(K (p;x) + Af@) !
is bounded inL?%() ™ with maximal monotone boundary conditions.



4.1 Intrinsic form of equations

The contravariant coordinates of a random pointx are denoted by (1;X2; X3), the basis vector of
the cotangent bundle by dx; and dx; stands for the elementary 2-form given by the exterior product
dx; " dxy with j 6 i, k6 iandj<k . With E andH 1-forms, (M ;g) an absorbing pseudo-riemannian
manifold of metric g(:;:), the Maxwell equations are the following equalities of 2-forms

(
p?E dH =0;
p?H+ dE =0:

Wli;h G matrix of the metric and g = det (G), by the Hodge star operator ? on M, a 1-form

E = edx; is changed onto a 2-form whose component imx; is = gg' ¢ (¢! components of the
inverse of g(:;), "~ g complex square root of the determinantg). Therefore ?2E = " gG 'e. The
intrinsic form of Maxwell equations is
( p_
pP9G E dH =0;

pP g6 H + dE =0:

The purpose of this paper is to restrain the solution of Maxwell's equaions to a bounded domain

of R3. The rst step is to write the equations in a more appropriated system of coordinates. Let

us remind that the PML media is de ned by a stretching of coordinates decribed by (1). IfJ(p;Xx) is
the jacobian matrix of this transformation, then

G(p;x) = J(p;x)"I(p;x):
The associated Hodge transformation is

_ 1
2= P86 Upix)= K(pix) = det@(p:x)I(ix) * I(i)T (5)
The domain of the family of operator (K (p;x) + A)p2p, is holomorphic and independent of the
frequency! . As solving a PDE means to inverse its operator, it seems natural to loolprecisely the
kind of operator we have to deal with. The book of Kato [3] gives various toolgo prove existence and
unigueness of solution as long as the family of operator is of type A, which ithe case here.

4.2 Main results on operators of type A

De nition 2. Let X,Y be two Banach spaces. A familyl (u) 2 C(X;Y ) de ned for u in a domain
Do of the complex plane is said to be holomorphic of type A ID(T (u)) = D is independent ofu, and
8(u;v) 2 Dg D , T(u)v is holomorphic.

Theorem 7. Let T(z) 2 C(X) be a holomorphic family of type A on a domainD o of C. We suppose
that the resolvent set ofT (z) is not empty 8z 2 D and that there exists a pointzg in Do such as the
resolvent of T (zp) is compact. Then, for all z in D, the resolvant of T (z) is compact.

4.3 Harmonic Maxwell equations in the PML

In the previous section, we have established that harmonic Maxwell guations in the PML media
can be written as (K (p;x) + A(X))u(x) = f (x), with K : (p;x) 2 Dg I Hom (C®) a holomor-
0O r

0
Dy is a domain of C including a segment like [! min ;i! max], f 2 L?() and A is Maxwell's operator
whose domainD(A) is independent ofp 2 C.

phic functionin p = "+ il 2Dy C,inL()for x,andA = . We suppose that



Solving this equation means inversing the operatorK (p;:)+ A) of domain D(A) at p = i! , which
is an operator of type A. Moreover, (A ; D(A)) is maximal monotone and its resolvent set is not empty.
As K (p;:)is Lt (), the operator ( K(p;:)+ A;D(A)) has a non empty resolvent set for allp in Do.

Thm. (7), the main point of this section, will prove that studying th e (K(p;:)+ A is an operator
of type A with a compact resolvent set, and the study of this set's comctness can be reduced to the
study in a single point, and therefore ensures the existence and igity of the solution.

div 0

Theorem 8 (Petkov[6]). If Q = 0 div

, for all uin D(A)\ (H(div;) ?), then

kUk(Hl()) s C kUk(LZ()) s+ KAuU k(LZ()) 6 t kQU k(LZ()) 6

Denition 3. If Pp:L2() 3! H(dive; ) andP, : L2() 3! (grad (HE()) ?) are the projections
associated to the Hodge decomposition, foraff 2 L?() 3, go = Pog, g» = P> g. The spaceH (div ¢; ) 2
is stable under the action ofA .

Lemma 2. The operator P> K (p;:)P- is invertible on (grad (H())) 2 for all p in Do except for a
nite subset (eventually empty) of Do, denoted byS. Moreover, its inverse is holomorphic onD onS .

Proof. Let h beinH () 2. Inversing P> K (p;:)P~» on (grad (H3())) 2 requiereto nd ! in H§() 2
such as8v 2 H}() 2, 7

K(p:or Krv dx=<hiv>y 152 i 2 (6)

with r ! = Fl,
Z
If a(l;v) = K(p;)r ! rv dx, L(v)=<h;v> 1() 2 HL() 2 the applications a(:;:) and L(:)
are respectively bilinear and linear. A Cauchy-Schwartz inequaliy proves that a(:;:) is continuous on
H3() 2 HE() 2 and L(:) is continuous on H}() 2. The previous problem is in fact, to nd ! in
H3() 2 such as8v 2 H3() 2,
a(l;v) = L(v): (7)

The Lax-Milgram theorem for p = po guarantees that this equation is well-posed. The coerciv-
ity of K (po;:) and the continuity of L(:) on H3() 2 leads to the inequality satis ed by the solution
k! kH&() 2k hky 1y 2, with > 0. Therefore, the resolvent ofP, K (po; )P~ is compact because
of the compactness of the injectionH3() in H (). By Theorem (7), the resolvent of P> K (p;:)P-
is compact for all p in Dg. As a consequence, this operator is either singular ob® ¢ either invertible
for all p in Do except for a nite subset (eventually empty) of Dy denoted S. As Problem (7) is
well-posed forpo, this operator is invertible 8p in DonS.

Let us show that operator (P> K (p;:)P>) ! is holomorphic onDonS. By application of the closed
graph theorem to the closed segrad (H3()) 20ofL?() 8, we have P, K (p;:)P>) YinL((grad (H3())) ?).
As P, K (p;:)P» is holomorphic on D, its inverse is holomorphic onD gnS. O

Theorem 9 (Kato[3]). If it exists pg 2 Do such asK (po;:) coercive, then harmonic Maxwell system
in the PML media is well-posed for all real frequency except for a nie discrete subset (eventually
empty) of R.

Proof. By projection of Eq. (6) with the Hodge decomposition, the problem isto nd u= ug+ u, 2

D(A) such as (
PoK (p;:)u+ A ug = fo;
P, K(p;)u=fs:



As u = Pou + P, u, the previous system becomes

PoK (p;:)Pou + PoK (p;:)Pou+ Au = fy;
P, K(p;:)Pou+ P K(p;:)Pou= fs:

With Lem. (2), if A is the operator de ned by the restriction of the operator A to the set
(H(div o; )) 2, then D(&)= D(A)\ (H(divo;)) 2, so the problem is to inverse in { (div o; )) 2 the
closed operator

R(p) = PoKo(p;:)Po  PoK o(p;:)P2 (P2 Ko(p;:)P2) P> Ko(p;:)Po+ PoK 1(p; )&

The operator R(p) is holomorphic on DonS = D ;. By use of Thm. (8) and (7) to the family of
holomorphic operator R(p)+ A of type A, it appears that R(p)+ A is a holomorphic family of closed
operators with compact resolvents forp 2 D1. As a consequence, this operator is either singular on
D, either invertible for all p in D1 except for a locally nite discrete subset (eventually empty) of
D;. Operator P, K (po;:)P-» de nes a sesquilinear coercive form in grad (H3())) 2 becauseK (po)
is coercive inL?() © which implies P> K (po;:)P> invertible. A is maximal monotone andK (po;:) is
monotone coercive and bounded irL2() 8, thus the operator A + K (po;:) is invertible. Finally, the
operator R(po;:) + A& is invertible on (H(div o; )) 2. SoR(p) + & is invertible for all p in D1 except
for a locally nite discrete subset (eventually empty) of D 1. This proves that the operator K (p;:)+ A
is invertible on L?() © for all p in D1 except for a locally nite discrete subset (eventually empty) of
Di. O

4.4 Study of the coercivity of the PML matrix

According to Thm. (9), to have existence and uniqueness of the solidn, it must exists a pg in
C such asK (po; x) is coercive. If we exhibit such a point, the resolvent is not empy and there is no
more alternative.

Property 10. The matrix K (1;x) is symmetric de nite and positive for all x in R3.

Proof. As K (p;x) is de ned by Eg. (5), we have

K(p;x)T

det (J(p;x))JI(p;x) * I(p;x)T
det (3(p;x)I(P;x) L I(p;x)T t= K (p;x);

D() D( (x))

D(" (x)) D(x)
symmetric. If X 2 R3 with X 6 0, then

with J(p;x) = . SoK(p;x) is symmetric for all p 2 C, and a fortiori K (1;x) is

XT det(I(L:x)IL:x) * Iwx)T ' X

X TK (1;x)X

det (L x)XTIL:x) T I@;x)T *X

det (JLx)XTI@L:x) L xTawx) 7

If A = XTJ(;x) 1, then XTK (1;x)X = det(J(1;x))AAT. As AA T is de nite positive for all

D( (x))
D(x)

be the jacobian matrix of ' . As ' is an increasing function that represents the embedding in a

manifold M of C3, we havedet (F(x)) > 0. Let us denoteFg(x) = D(D'(?x)))' For all (i;j) 2 J1;nK
Fo(x)ij = i + Y (x)). As f is strictly increasing, det (13 + Fo(x)) > O. O

matrix A, we deduced thatK (1;x) is de nite positive if det(J(1;x)) > 0. Let F(x) =




5 Explicit formulations for Maxwell's Equations
Lemma 3. The matrix of the harmonic PML formulation is

K(p;x)= detT(x) T(x) *P MPT (x)
0 1

: Y
with T (x) = [0)7’ M=diag® (p+ X andP =P L
k

Proof. Given the embeddinge = ' (x) + ;f (" (X)), it is possible to have a general formulation for
. . . . . Dr 1Df D . .
. N — = + - _ =
the PML matrix. The jacobian matrix J(p;X) is Dx oD Dx As f = gradS, is exists

. . Df 1 . . .
P a unitary matrix P = P 1 such asD—, =P 1+ BD P with D a diagonal matrix and i,

i =1;2;3 its eigenvalues. With T (x) = B—X we haveld(p;x) =P |+ ;D PT (x). The Hodge

transformation associated is? = det (J(p;x))J(p;x) * J(p;x)T ! The proof is ended by writing
K(p;x) = p~2. [

Theorem 11. The unsteady Maxwell equations in the PML media are

. |
Wgen A ¢ By 0T B L

where (u; v) are solutions of the ODE

0 TX)P ! @t v 0 TX)P 'F(x) v _ h
0 1 1

T(x) P ?! 0 @u , TP YF(x) 0 u e

. 0
X Y

with F(x) = diag ( ):A(x) = diag @ « iX:B(x) = diag@® (i % andI(x) =
k k

M) M(X) ,AX)= M(X) A(()X) A(()X) M)  B(X)= M(x) ng) B?X) M (x)
1
with M (x) = det (T (x)) T(X)o i T(x)0 p

Proof. Let (i;j;k ) be three di erent indices.

P+ )p+ j)_ Ci  Wlj .
0+ L=p+( i+ | k) p+Jk ;

The diagonal matrix of Lem. (3) can be decomposed apls+ A (x)+ B(x)(pls+ F(x)) * with
0 1 0 1

X Y
F(x)=diag (1) A()=diag® « X B =diag® (1 WK:
k k

With T(x) = B—X , the PML matrix can be decomposed as

1

det(T(x)) T(x) 'P plag+A(X)+B(X)(pla+ F(x) * PT(X) (8)



1

We notice that (plz+ F(X)) pT (x) = T(x) P Y(plz+ F(x)) 1. By choosing I (x),

A (x), B(x) and E(x) as written above, the Maxwell equations in the PML become

1 e 0 r e _ i
PIO)+ A(X)+ B(x) pE(xX)+ F(x) Ft e o n T om
If \Lj = pf(x)+ E(x) ﬁ , it is a solution of an ODE that can be introduced in Maxwell's
equations onR® to have
8
e e u 0O r e _ J
Epl) [ +AX) [ +Be) o+ o T 2= ]
3 u u e
ZpP) |, tROO =
Using the Laplace inverse transformation ends the proof. O
Important remark . this theorem shows an important property of the PML. The spatial part

r

0
to choose without constrain the numerical approximation method (Finite Elements, Finites Volumes,
Discontinuous Galerkin, :::). Moreover, a Gedney formulation can be obtained with an other simple
element decomposition (for example for an FTDT approximation with leap frog schemes).

of the operator is not modi ed in the PML media. This guarantees the possibility

The previous formula has been established for Maxwell's equations i8D. For bidimensional equa-
tions, the formula is deduced for Thm. (11) through an Hadamard's method of @scent.

6 Some numerical PML examples for a L-shaped geometry

6.1 A general non convex formulation
The embedding is given by€= |
1

- . =f .

e= (; )+IO () R);
and the dieomorphismis (; )=k +(1 K) o( ). The eigenvalues of the jacobian matrix are
(;)=f°%( ) R), (; )= f((())R) The PML matrix is
K ) = QOPG ) pIG )+AG )+BG ) platFG ) PTG RO ©
G )

I3, F(; )=diag (; ); (; )0,
B(; )= k———= diag (; )G ) G N GHAGDY GGy Gy,
AGH= kS dag ) G rG) GG G,

o . 0 1

P(; )= % 0 k 0 1§, and Q( ) the rotation matrix around the z-
G )
0 kK——~

axis. In that case, the matrix behind p is no longer the identity matrix. If [ "] corresponds to this part



of the matrix det (J(x)) J(x)TJ(x) 1, meaning Aoy = [0] F(')] , the CFL condition associated is

. dt .
de ned though ¢ the smallest eigenvalue of'{] by ax 0. As its value depends on the mesh, the
CFL condition is the maximal value of

2 2
@ra @ 0D 4 ke KU

o( )

2k k+(1 k)
\
H 0 2 2!2
i K+4 @ K o) "y ke KU 1
u
2
t w2 k+@ ko

A numerical visualisation on an unstructured mesh of the previous fornula shows that the CFL
condition can reach 180, but only for few elements, where the values of)( ) are important. As the
matrix is well-conditioned, this formulation can be used for harmonic problems. The domain is reduced
by comparison with a convex formulation, and few more complexity is involed. But for unsteady
problems, the penalization induced by the CFL condition may no be bahnced by the reduction of the
triangles' number. A rst solution is to work implicitely.
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6.2 A more specic formulation

A part of a L-shaped geometry is convex, so an other idea is to establish aew formula that
takes advantage of this convex part. The PML domain is divided in two parts: one with a cartesian
formula, and the other one with a non convex formula, that matched continousy the cartesian PML

at the border of each domain.

Fig. 1 explains the geometry. The domain of studyD, the interior L, is represented in white while
the cartesian PML are with horizontal stripes. The di eomorphim  transforms D by adding the
black area. In this specic area, whose thickness is controlled by thgarameter , the waves do not



decrease. The attenuative e ect of the PML starts in the vertical striped area,ygrpendicularly to the

x()d
external boundary of the black area. The embedding is given by = (x)+ ;% ()d E and the
y

0 . 1 0
X + ( 1)inf (x;y)
dieomorphimis (x)= @y +(  1)inf (x;y)A.

1

Figure 1: The di erent domains for a non convex PML formulation

The PML matrix can be decomposed as

K(p;x)= T(x) pl+AX)+ BX)(pla+F(x) " T(x)T;

with | = 1|3,A(x): 1diag y(X)  x(X); x(X)  y(X); x(X)+ y(x) ,

B(x) = }diag( x(X)C x(X)  y(x)); y()C y(x)  x(x)); x(x) y(x))and F(x) = diag  x(x); y(x);0 .
The matrix T(X) is trizt\pgular and dfpends on the non gonvex part o{ the domain where it is alcu-

11 0 0 0
lated. Ify x, T* = @p 0A | otherwise T = @1 1 O0A. The smallest eigenvalue of
0 0 0 0

the matrix T (x)T (x)T is 1 + 1 (1 })p 1+ 2. As 1, the maximal CFL condition is 1
and does not depend on the shape of the domain. Even if the L-shaped has anportant length by
comparison with its width, the CFL condition remains the same, contrarily to the rst formulation
established. This embedding has a strong analogy with the cartesian PM and therefore presents a
dissymetry in the waves absorption.

: . 1
An other solution, based on the convex PML, is to choose = (x)+ af (x) RIl3z . The PML ma-

trix becomesK (p;x) = TT(x) pl + A(x)+ B(x) T(x),where stands forthe derivative

p+2 (x) 0 1
1 2 (x) o0 10

of the function f, the triangular matrix T (x) is unchanged,l = =l3, A(X) = @1 0 A
0O 0 1

0
and B(x) = 2 ) @

o

. The numerical experiments of this paper are obtained with this

o
O Rk
© Qo

formulation.



6.3 Numerical Simulations

All the following simulations are made with the Maxwell Bidimensional Equations, with Silver
Muller conditions at the boudary of the PML domain, and meshes are unstuctured. The origin of
the reference frame is the corner of the L, bewteen the domain of studgnd the non convex PML.

Two kind of problems will be computed, which correspond to the casestudied in Sec. 3. The
rst simulation is the propagation of a RHS

N (X x>+ (y Yo .
0= 00ee ey v2 re o™

where D is the disc of center &¢;yc) =( 1; 1) and radius R = 0:5. The pulsationis! =2 , the
function is of order 2, with a coe cient that guarantees a decrease in tre PML at 10 2, and = 1=3.
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(e) Real part of H, (f) Imaginary part of H,

As the cartesian PML are a considered as a reference solution for the prtdims studied, here are
comparison with the non convex PML introduced in this paper. The sinulation has the same initial
condition as previously, but the center is moved to the right. For the wave to propagate correctly onto
the L-shaped domain, it has to go through the non convex PML. Fig. (g) shows tle cartesian domain
involved, and the black area is the one added in order to apply a cartesiamethod. Fig. (h) represents
the mesh generated by the PDETOOLBOX of MatLab (like all the others usedin this paper).
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(g) The di erent domains for a cartesian PML (h) Roughest mesh for the problem with a RHS 6 0

formulation
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For the scattering problem, the study of an incident plane wave' i, re ected by a L-shaped
geometry of length 3 and width 1 is processed, with" inc (X) = ( Ky;kx;1)Texp (! ( kix)). k =
T

(kx; ky)T gives the direction of the incident wave, and it is chosen a& = p—%; p—; . The boundary

z
conditions at the boundary of the scatterer are8x 2 @, f(x) = M 1" inc(X)exp (! k:x),
@,\ @
with M = : nTn 8 , N the outer-pointing unit normal and ! ¢ the element considered. The PML

domain has a thickness of £3, the function is of order 1. Others parameters remain the same as
the previous simulation.



(m) Imaginary part of H, (n) Real part of H,

For the comparison with cartesian PML, the pulsation chosen is! = 3 , the order of the sigma
function is 2 and the mesh is modi ed to use a thicker scattering olject.

(0) Roughest mesh for the scattering problem
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(p) Real part of H;, - cartesian PML (q) Real part of H, - non convex PML



On a visual point of view, the non convex PML and the cartesian ones lead tdhe same solution
in the physical L-shaped domainD. To con rm this, we take into account two errors. Let ' nc be the
non convex PML solution and ' ¢ the cartesian PML one. The rst error, "1, corresponds to thel?
norm of the di erence on D, and the second one;' ,, represents the local error on each element :

| 2DJ" ne (k) " c(tw)i®vol (k)
1= — !'DJ- C(! k)j2V0| (| k) "2(! k) = jl NC (! k) ‘ C(! k)jz:

Tab. 1 gives the error"; function of the number of elements per wave-length . The mesh are
rough, with very few layers, to place ourselves in the worst case. Tderror "1 decreases slower with
the re nement of the mesh for the scattering problem. The mesh of Fg. 2(0) is very rough, especially
in the area used especially for the cartesian simulation. The dampingtarts outside the convexi ed of
the scatterer, the waves are brutally moved away : there is a lot of @sipation.

"t =8 =16 =32

5 +—6 +—06 +
58le 2 1.65¢ 2 1:.031e 2

Scattering | @5:65%¢ 2A @1.61e 2A @ 97e 3 A
6:67¢ 2 1766 2 1:.07e 2

3 +—6 +—o6 is
128 2 56e 3 972 4

RHS60 | @54e 3A (@54e 3A @925 4A
5e 3 2:3e 3 3e 4

Table 1: " for (Ex; Ey; H;) depending of the number of elements per wave length

Fig. (r) gives the error ", with a RHS6 0, whose support's center is \centered",i.e. ( 1; 1) and
a mesh of =16 elements per wave-length and Fig. (s) for a mesh of 8 elements per wave-length,
corresponding to the test (j).

() "2 with =16 elements per wave length with a cen-(s) "> with =8 elements per wave length (case test (j))
tered" RHS

For unsteady problems, as the PML matrix contains some terms at order 1in p, an extra equation



has to be added. The Maxwell Equations onR® R* are

8 0 1
- 0o 0 @
% I(x)@((gxylt) +AKX) XD+ (D+@0 0 @A'(x;1)=0
@ @ O
§ @ (x;t)

ot +2 (x) (x;t)= B(x)" (x;t):
with 1(x) = TEO)IX)T(X)T, A(x) = T(X)AX)T(X)T and B(x) = T(x)B(x)T (x)T, with the same
kind of boundary conditions ag the harmonic problem :The boundary conditons at the boundary
of the scatterer are8x 2 @, @,\ @ M 1" inc(X;t)exp (! k:x)exp(i't ). For the simulation, an

vol (! ¢)

vol (@)

implicit Euler scheme is used. The time step is determined by t = mien

(t) Solution of the unsteady problem : third com-
ponent H,(x;T) with T =1:8

Remark : the previous numerical experiments have an unnecessary domain odlculus inside the
non convex PML. At the external boundary of the cartesian PML, the solution is vanishing. This
property is veri ed in the non convex PML on a parallel of the exhaustion. As a consequence, for a
L-shaped geometry, the non convex area required is less than a L. On Fig.u) and (v), the vertical
stripes represent the useless domain : the non convex PML domain iew thin. Fig. (u) corresponds
to Fig. (1) while Fig. (v) has an elarged PML domain to show with more visibility the e ective
non convex PML domain, which is very thin by comparison with the thickness of the cartesian area
required on this speci c geometry.

() v)



Conclusions

This paper presents a fully proved non convex PML theory and some nurmrical experiments. The
aim is to obtain the most general formulation possible, thanks to the familes (;f ). The hypothesis
of convexity is underneath, through the di eomorphism ' , and absolutely necessary to prevent singu-
larities to appear in the Green function.

The case of the L-shaped geometry can be generalized as long as it is possildlexpress the dif-
feomorphism from an a nity normal to the boundary of the convexi ed domain. It is always possible
if the domain is not trapping. For example, a U-shaped geometry where the bundaries are strictly
parallel can not give such an a nity, but if the boundaries are \opened", ' can be found by using the
normals to the convexi ed.

In the non convex PML, even if the luminuous rays are twisted (consegence of the complex metric
with a di erent wave speed), the permittivity tensor is more com plex -with anisotropic permittivities-
but the restriction of the solution to the physical domain are numerically correct. The trace of the
solution on the boundary, which almost inverses the problem, will be arexcellent preconditionner for
integral methods. For harmonic problems, non convex PML present two adantages : the number of
cells (and unknowns) is reduced, and there is no need to inverdae matrix on every elements, which
is sparse. For unsteady problems, the change of the wave speed imglia drop of the CFL conditions
. this saves some memories but no calculus time. As the exageration of ¢hCFL condition depends
on a very few elements, an implicit formulation can be used to solve tis problem.

The comparison with cartesian PML gives excellent results, even ithe choice of the numerical
approximation was very poor with a Finite Volums method. The use of méhods like Discontinuous
Galerkin has to be considered.

In 2001, this approach of the PML theory thanks to pseudo riemannian manifolé with complex
tangent and cotangent bundles was already tried by Lassas [4] for harmonic probin. There are four
major di erences between their work and the present one. For the retriction to a bounded domain,
for harmonic problem, some frequencies can be excluded (we remintat Thm. (9) speci es for all p
in H except for a locally nite eventually empty set S) Lassasand Co. do not have that restriction but
their theory implies to set the arti cial boundary \far enough" of the dom ain D. In this paper, it can
be placed as closed as we want. In fact, Lassasd Co. requiere an extra hypothesis to de ne their
absorbing pseudo riemannian manifold : the asymptotic -euclidianity of the metric, meaning they
impose a strict convexity and both the metric and the connection haveto be majored asymptotically
by an euclidian metric. We do not need that hypothesis. Last point : we sudy the unsteady problems,
while their work was only about harmonic formulations. Moreover, this paper explicitely gives some
formulations (di eomorphims and functions) that leads to the unsteady formulation. As the embedding
is de ned in a very general way (cartesian and convex PML can be desdred as well), and the PML
matrix obtained is composed of rational fraction that can be decomposed and gigethe Friedrichs
unsteady system while adding an ODE. The problem of chosing the coupk (;f ) is general for every
non trapping domain, but has to be written. The di eomorphism is deductible from an a nity normal
to the boundary of the convexi ed domain.
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