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Circular choosability ∗

Frédéric Havet‡ Ross J. Kang§ Tobias Müller¶

Jean-Sébastien Sereni‖

Abstract

We study circular choosability, a notion recently introduced by
Mohar and by Zhu. First, we provide a negative answer to a ques-
tion of Zhu about circular cliques. We next prove that cch(G) =
O (ch(G) + ln |V (G)|) for every graph G. We investigate a generali-
sation of circular choosability, the circular f -choosability, where f is
a function of the degrees. We also consider the circular choice num-
ber of planar graphs. Mohar asked for the value of τ := sup{cch(G) :
G is planar}, and we prove that 6 ≤ τ ≤ 8, thereby providing a nega-
tive answer to another question of Mohar. We also study the circular
choice number of planar and outerplanar graphs with prescribed girth,
and graphs with bounded density.
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1 Introduction

Let G = (V,E) be a graph. If p and q are two integers, a (p, q)-colouring of
G is a function c from V to {0, . . . , p−1} such that q ≤ |c(u)− c(v)| ≤ p− q
for each edge uv ∈ E. The circular chromatic number of the graph G is

χc(G) := inf {p/q : G admits a (p, q)-colouring} .

For every integer a, let [a]q be the interval [a − q + 1, a + q − 1] where the
computations are modulo p. Note that if uv ∈ E then c(u) = a implies that
c(v) /∈ [a]q.

A list assignment L of G is a mapping that assigns to every vertex v a set
of non-negative integers, called colours. An L-colouring of G is a mapping
c : V → N such that c(v) ∈ L(v) for every v ∈ V . The list chromatic number
or choice number ch(G) of the graph G is the smallest ℓ such that, for every
list assignment L of G satisfying |L(v)| ≥ ℓ for every v ∈ V , there is a proper
L-colouring of G.

As we describe next, the concept of circular choosability, introduced by
Mohar [13] and Zhu [26], combines the above concepts of circular colouring
and list colouring, respectively, in a natural way.

A list assignment L is a t-(p, q)-list-assignment if L(v) ⊆ {0, . . . , p − 1}
and |L(v)| ≥ tq for each vertex v ∈ V . The graph G is (p, q)-L-colourable if
there exists a (p, q)-L-colouring c, i.e. c is both a (p, q)-colouring and an L-
colouring. For any real number t ≥ 1, the graph G is t-(p, q)-choosable if it is
(p, q)-L-colourable for every t-(p, q)-list-assignment L. Last, G is circularly
t-choosable if it is t-(p, q)-choosable for any p, q. The circular list chromatic
number or circular choice number of G is

cch(G) := inf{t ≥ 1 : G is circularly t-choosable} .

Zhu [26] proved that cch(G) ≥ max{ch(G) − 1, χc(G)} for every graph G.
Note that this definition of circular choosability differs slightly from the

one introduced by Zhu [26], in which p is required to be at least 2q. We
have opted to drop this requirement, because it contradicts Lemma 7 of [26]:
under the original definition [26], the circular choosability of the single edge
K2 = ({v1, v2}, {v1v2}) would be 1. Indeed, suppose that p ≥ 2q and
L(v1), L(v2) ⊆ {0, . . . , p−1} were given with |L(v1)|, |L(v2)| ≥ (1+ε)q. Then
there would exist c1 ∈ L(v1) and c2 ∈ L(v2) such that q ≤ |c1 − c2| ≤ p − q,
implying that K2 would have circular choosability one. On the other hand,
Lemma 7 of [26] implies that cch(K2) ≥ χc(K2) = 2. If cch > 2, then the
condition p ≥ 2q is redundant, so this subtle change in definition is only a
minor correction.
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We also note that there is an alternative, continuous definition for circu-
lar choosability, given by Mohar [13], and shown by Zhu [26] to be equivalent
to the definition given here. In this paper, we prefer to work with list (p, q)-
colouring as defined above.

The paper is organised as follows. In Section 2, we introduce a useful
tool (Lemma 1) and provide a negative answer to a question of Zhu about
circular cliques (Proposition 6). Next, in Section 3, we consider the question,
given a graph G, of whether cch(G) is bounded within a constant factor of
ch(G); we use a probabilistic thinning argument to bound the circular choice
number of a graph by a constant multiple of (ch(G) + ln n), where n is the
number of vertices (Theorem 9). We also adapt this thinning argument and
obtain a better result in the specific case of complete multipartite graphs
(Proposition 10). In Section 4, we investigate a generalisation of circular
choosability, the circular f -choosability, where f is a function of the de-
grees. We attempt to establish an analogue for the result of, independently,
Borodin [4] and Erdős, Rubin and Taylor [6] (Theorem 12). The results of
Section 5 are motivated by a question of Mohar [13], who asked for the value
of

τ := sup{cch(G) : G is planar} .

We prove that 6 ≤ τ ≤ 8 (Theorem 20 and Proposition 22). Then, along
the lines of the odd-girth conjecture, we give bounds (Proposition 24, Corol-
lary 27 and Corollary 29) for the parameter

τ(k) := sup{cch(G) : G is planar and has girth ≥ k} ,

and, more generally, the circular choice number of graphs with bounded
density and prescribed girth (Theorems 26 and 28). We conclude Section 5
by determining

τo(k) := sup{cch(G) : G is outerplanar and has girth ≥ k} ,

for every k ≥ 3 (Theorem 40).
The four main sections are relatively self-contained and may, with a few

exceptions, be read independently of each other.

2 Warming up

We first present two basic tools which are crucial to several of our results.
Given a graph G, integers p ≥ q, t ≥ 1 and a t-(p, q)-list assignment L

of G, suppose that (v1, . . . , v|V (G)|) is an ordering of the vertices of G such
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that v1, . . . , vm are (p, q)-L-precoloured. A colour a ∈ L(vj) is extendable if
there exists some (p, q)-L-colouring c of the subgraph induced by {v1, . . . , vj}
that respects the precolouring, and such that c(vj) = a. For every j ∈
{1, . . . , |V (G)|}, we set Ij := {i : i < j and vivj ∈ E(G)} and we let Xj be
the set of extendable colours of vj . Note that if 1 ≤ j ≤ m then vj has a
unique extendable colour—the one precolouring it—so |Xj | = 1.

Lemma 1 Let (v1, . . . , v|V (G)|) be an ordering of the vertices of G such that
v1, . . . , vm are (p, q)-L-precoloured and each non-precoloured vertex has at
most one neighbour later in the ordering. If |Xi| ≥ 1 for each i ∈ Ij, then
|Xj | ≥ |L(vj)| −

∑

i∈Ij :|Xi|<2q(2q − |Xi|).

Proof. To determine which colours of vj are extendable, it suffices to con-
sider all possible colourings of its lower indexed neighbours with colours
chosen from their respective lists of extendable colours. Since every non-
precoloured vertex has at most one neighbour later in the ordering, a colour
of vj is not extendable for vj if and only if it is in the intersection

⋂

a∈Xi
[a]q

for some i ∈ Ij . These intersection sets are maximised when the Xi are
intervals, giving |

⋂

a∈Xi
[a]q| = 2q − |Xi|, if |Xi| < 2q, and |

⋂

a∈Xi
[a]q| = 0,

otherwise. �

Notes. This lemma is closely related to results of Raspaud and Zhu [17].
Lemma 1 can be considered a more explicit version of their Lemma 2.5 in
which the leaves of the tree are required to have colour lists of size one.

The second basic tool, due to Raspaud and Zhu, can be considered as
a converse of Lemma 1. Whereas Lemma 1 is used to find valid list (p, q)-
colourings, the following lemma is used to find list assignments which do not
admit valid (p, q)-colourings.

Lemma 2 (Raspaud and Zhu [17, Lemma 2.4]) Given a tree T , sup-
pose ℓ : V (T ) → N is a mapping such that

∑

x∈V (T ) ℓ(x) < 2(|V (T )|−1)q+1.
Then there exists a list assignment L of T such that L(V ) ⊆ {0, . . . , p − 1}
and |L(x)| = ℓ(x) for each x ∈ V (T ), and T is not L-(p, q)-colourable.

Note. This lemma is independent of the choice of p. If we choose p large
enough, it is guaranteed that there is a “large gap in the circle”, i.e. for each
k and large enough p, there is an interval I ⊆ {0, . . . , p−1} of length k and a
list assignment L as in Lemma 2 such that L(v)∩ I = ∅ for every v ∈ V (T ).

As a first application of one of these basic tools, we show the following
lemma which is of use to us later on. Given a graph G, a thread of G is a
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path whose internal vertices have degree 2, with possibly the two endvertices
being the same vertex. The length of a thread is the number of edges along
the path.

Lemma 3 Fix a positive integer n. Let L be a
(
2 + 2

n

)
-(p, q)-list-assignment

of the graph G. Suppose that v0v1v2 · · · vnvn+1 is a thread of G of length
n + 1. Then any (p, q)-L-precolouring of G \ {v1, . . . , vn} can be extended to
the entire graph.

Proof. Let t = 2 + 2
n . Since v0 is coloured, v1 has, by Lemma 1, at least

tq − 2q + 1 = 2q
n + 1 extendable colours. Inductively, we can thus show that

vi has at least i2q
n + 1 extendable colours, for i < n. Now, vn+1 is coloured

and vn−1 has at least (n − 1)2q
n + 1 extendable colours; thus, by Lemma 1,

vn has at least tq − (2q − 1)−
(

2q − (n − 1)2q
n − 1

)

= 2 extendable colours,

so that the required colouring indeed exists. �

The following is a direct consequence of Lemma 3 and the fact that the
circular chromatic number of C2k+1 is 2 + 1

k .

Corollary 4 (Zhu [26]) For every odd integer n ≥ 3, the cycle Cn has
circular choice number 2 + 2

n−1 .

The situation for even cycles seems more complex. Clearly, cch(C2n) ≥
cch(K2) = 2 for any n ≥ 2. In a previous version of this work [9], it was
conjectured that 2 is the circular choice number for all even cycles and we
showed that cch(C4) = 2. Shortly afterwards, the conjecture was verified by
Norine [15] using the Combinatorial Nullstellensatz [1].

Theorem 5 (Norine [15]) cch(C2n) = 2 for any n ≥ 2.

2.1 Circular cliques

For any two positive integers a ≥ 2b, the graph Ka/b, called the circular
clique, has vertex set {0, . . . , a − 1} and ij is an edge if and only if b ≤
|i − j| ≤ a − b. Observe that, for any k ≥ 1, K(2k+1)/k ≃ C2k+1. Zhu [26]

proved that cch(C2k+1) = 2 + 1
k for every k ≥ 1 and asked whether the

circular list chromatic number of Ka/b is a
b . This is not the case, since the

circular cliques contain large complete bipartite subgraphs as we see next.

Proposition 6 For every positive integer N , there exist two positive inte-
gers a and b such that a ≥ 2b and the difference between cch(Ka/b) and a

b is
more than N .
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Proof. Let m ≥
(2(N+3)−1

N+3

)
. As is well-known [6], ch(Km,m) ≥ N + 4. Set

a := 2b + 2m for some integer b > 2m. The graph Ka/b contains Km,m as a
subgraph: take the vertices {0, 1, . . . ,m−1}∪{b+m−1, b+m, . . . , b+2m}.
Hence, cch(Ka/b) ≥ ch(Ka/b) − 1 ≥ ch(Km,m) − 1 ≥ N + 3. However,
a
b = 2b+2m

b < 3 since b > 2m. Therefore, cch(Ka/b) −
a
b > N . �

3 Bounds in terms of choosability (and number of
vertices)

The degeneracy δ∗(G) of a graph G is the maximum over all subgraphs H
of G of the minimum degree of H. A graph G is k-degenerate if δ∗(G) ≤ k.
It is well-known that ch(G) ≤ δ∗(G) + 1. The following is an analogue of
this bound for circular choosability.

Lemma 7 (Zhu [26]) cch(G) ≤ 2δ∗(G).

This result was also proved by Zhu [26] to be asymptotically tight by (essen-
tially) showing that the complete bipartite graph Kk,mk , which has degener-

acy k, satisfies cch(Kk,mk) ≥
(
2 − 2k

m

)
k. This led him to pose the following

problem.

Problem 8 Is there a constant α such that, for every graph G, cch(G) ≤
α ch(G)?

Note that if such an α exists then it is at least 2, as ch(Kk,mk) ≤
δ∗(Kk,mk)+1 = k+1. In a previous version of this work [9], we showed that
the answer to Problem 8 yes if we restrict ourselves to 2-choosable graphs.
In this case, we showed that the corresponding constant α is at most 5/2.
Since then, this bound has been improved by Norine, Wong and Zhu [16] to
16/7.

In this section, we establish that cch(G) = O(ch(G) + ln(|V (G)|)) for
every graph G. We then give a better upper bound in the case of complete
multipartite graphs.

3.1 General upper bound

Problem 8 asks whether cch(G) = O(ch(G)). We are not able to settle the
question here, but Theorem 9 below does show that cch(G) = O(ch(G) +
ln(|V (G)|)). We make no attempt to optimise constants.
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Theorem 9 For every graph G with n vertices,

cch(G) ≤ 36 · (ch(G) + ln n) + 3 .

Proof. Fix p, q and set t := 36 · (ch(G) + ln n) + 3. Suppose that lists
L(v) ⊆ Zp of size at least ⌊tq⌋+ 1 are given. If q = 1, then we can certainly
(p, q)-L-colour G, as t > ch(G). So we may assume that q ≥ 2.

Let us partition
{

0, . . . ,
⌊

p−1
q−1

⌋}

into groups gi := {3i, 3i + 1, 3i + 2}

of three consecutive numbers, where the last group may contain less than
three numbers. Out of each group of three, except the very last one, we
pick one element at random, but in such a way that we never pick two
consecutive numbers. To be more precise, for i = 0 we simply pick one
of 0, 1, 2 uniformly at random. Once a choice has been made for gi−1, we
pick one of 3i, 3i+ 1, 3i+ 2 uniformly at random provided we did not choose
3(i−1)+2 from gi−1. Otherwise, we choose one of 3i+1, 3i+2 at random each
with probability 1

2 . The set of selected indices is K := {k : k was chosen}.

With each index k ∈
{

0, . . . ,
⌊

p−1
q−1

⌋}

, we associate an interval Ik = {k(q −

1), . . . , (k + 1)(q − 1) − 1} of Zp. Notice that the Ik are disjoint intervals of
length q − 1. A crucial observation for the sequel is that if k and l are two
distinct elements of K, then |a − b|p ≥ q for every a ∈ Ik and every b ∈ Il.
See Figure 1.

· · ·

I

0 p − 1

3(q − 1) 6(q − 1) 9(q − 1)
⌊

p−1
3(q−1)

⌋

(q − 1)

Figure 1: An illustration of the “thinning” procedure for Theorem 9.

Let us set I :=
⋃

k∈K Ik. For each v ∈ V , we let S(v) := {k ∈ K :
Ik ∩ L(v) 6= ∅}. The idea for the rest of the proof is to show that t was
chosen in such a way that P(|S(v)| < ch(G)) < 1

n for all v. Then it follows
that

P(|S(v)| < ch(G) for some v ∈ V ) < n ·
1

n
= 1 .

In other words, there must exist a choice of non-adjacent intervals, one from
each group of three, for which |S(v)| ≥ ch(G) for all v ∈ V . By the definition
of ch(G), there exists a colouring c of G with c(v) ∈ S(v). Let us define a
new colouring f by choosing f(v) ∈ Ik ∩L(v) if c(v) = k. This can be done
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for each v, by the definition of S(v). Now f is a (p, q)-L-colouring, because
if vw ∈ E(G) then c(v) and c(w) are distinct elements of K. Consequently,
f(v) and f(w) have been chosen from non-adjacent intervals Ic(v) and Ic(w),
and hence |f(v) − f(w)|p ≥ q.

It remains to show that t is chosen such that P(|S(v)| < ch(G)) < 1
n

holds. We first assert that

P (|S(v)| < ch(G)) ≤ P

(

Bi

(

s,
1

6

)

≤ ch(G)

)

, (1)

where s :=
⌈

t
3

⌉
− 1 and Bi(n, p) denotes a binomial random variable with

parameters n and p. In order to prove the assertion, first note that we can
“thin” the lists L(v) to get sublists L′(v) ⊆ L(v) with

|L′(v)| ≥

⌈
|L(v)|

3(q − 1)

⌉

− 1 >
t

3
− 1 ,

and a distance of at least 3(q−1) between elements of L′(v). Indeed, we can
construct L′(v) by taking the first, the (3(q − 1) + 1)th, the (6(q − 1) + 1)th,
and so on up to and including the ((M − 1)(q − 1) + 1)th element of L(v),

where M :=
⌈

tq
3(q−1)

⌉

, and we discard the (M(q−1)+1)th element, to avoid

possible wrap-around effects. Let L′(v) := {a1, . . . , al} with ai ≤ ai+1. For
J ⊆ {1, . . . , i− 1}, let A(i, J) be the event that aj ∈ I for j ∈ J and aj 6∈ I
for all j ∈ {1, . . . , i − 1} \ J . We assert that for every J ⊆ {1, . . . , i − 1}

P(ai ∈ I|A(i, J)) ≥
1

6
. (2)

To see this, note that a1, . . . , ai−1 each give information about the choice
made for some group gl. Also observe that if ai ∈ I3k+1 or ai ∈ I3k+2

for some k, then the probability that ai is covered by I given that A(i, J)
holds is at least 1

3 , because regardless of which element of gk−1 was selected,
the probability that 3k + 1 (respectively 3k + 2) is selected is at least 1

3 .
Now, supposing that ai ∈ I3k for some k, it follows that ai−1 6∈ I3(k−1)+1 ∪
I3(k−1)+2. Therefore, the probability that ai is covered given that A(i, J)
holds is at least the minimum of two probabilities: the probability that 3k
is chosen given that 3(k−1) was chosen from gk−1; and the probability that
3k is chosen given that 3(k − 1) was not chosen from gk−1. This minimum
is 1

6 , which proves (2) and hence also (1).
We use the following incarnation of the Chernoff Bound (see, e.g. [11,

Theorem 2.1, p. 26]).

∀r ≥ 0, P(Bi(k, p) ≤ kp − r) ≤ exp

[

−2
r2

kp

]

.
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Setting r := s
6 − ch(G) ≥ 0, it follows that

P (|S(v)| < ch(G)) ≤ P

(

Bi

(

s,
1

6

)

≤
s

6
− r

)

≤ exp

[

−3
r2

s

]

.

This yields the conclusion provided that

3
(

ch(G) −
s

6

)2
> s ln n.

This certainly holds if s ≥ 12 · (ch(G) + ln n), which is the case as t =
36 · (ch(G) + ln n) + 3. �

Alon [2] has shown that ch(G) = Ω(ln d), where d is the average degree
of G. Theorem 9 thus shows that the existence of such a constant α for
Problem 8 can only be disproved by considering sparse graphs: for each
ε > 0 there is a choice of α = α(ε) that works for all graphs with average
degree at least nε.

We also note that it is straightforward to give an upper bound for cch
in terms of ch that is exponential in ch: the mentioned result of Alon also
shows that ch(G) = Ω(ln(δ∗(G))). Indeed, as there is some subgraph of G
with minimum degree δ∗(G), this subgraph certainly has average degree at
least δ∗(G). On the other hand, cch(G) ≤ 2δ∗(G) so that

cch(G) ≤ eβ ch(G) ,

for some β > 0.

3.2 Complete multipartite graphs

Complete bipartite graphs are a natural class to consider, being the canonical
examples of graphs with low chromatic number, yet high choosability. The
following adaptation of our argument sharpens the general upper bound
given by Theorem 9 in the special case where G is Kr∗m = Km,...,m

︸ ︷︷ ︸
r

, the

balanced complete r-partite graph with each part of size m. Recently, Gazit
and Krivelevich [8] showed that ch(Kr∗m) = (1 + o(1)) ln m

ln(1+ 1

r−1)
, so that

the bound on cch(Kr∗m) given by Proposition 10 below is indeed sharper
than the general upper bound of Theorem 9, which gives a bound of 36 ·
(ch(Kr∗m) + ln(rm)) + 3. Gazit and Krivelevich also considered complete
multipartite graphs with not all parts of equal size, but with not too much
difference in size between the smallest and the largest parts. Our result
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and proof can be adapted to also cover this additional class of complete
multipartite graphs, but we have chosen to omit this here. We note that
Alon and Zaks [3] prove a very similar result to Proposition 10 below for
T -choosability of complete bipartite graphs (and in fact give a similar proof).

Proposition 10 For every positive integers k and m,

cch(Kr∗m) ≤
3(ln m + ln r)

ln
(

1 + 1
6r−1

) + 1 .

Proof. We proceed as in the proof of Theorem 9 and select a subset K ⊆{

0, . . . ,
⌊

p−1
q−1

⌋}

of indices, no two consecutive, at random. We now partition

the indices that have been selected into r sets K1, . . . ,Kr, by assigning each
index k ∈ K uniformly at random to one of K1, . . . ,Kr, independently from
all other elements in K. Let I1 :=

⋃

k∈K1
Ik, . . . , Ir =

⋃

k∈Kr
Ik.

Let V1⊎· · ·⊎Vr be the partition of the vertex-set. We attempt to colour
Kr∗m using only the colours from Ii for the vertices of Vi, for each index i.
This can be done provided that, for each i ∈ {1, 2, . . . , r} and each v ∈ Vi,

L′(v) := L(v) ∩ Ii 6= ∅ . (3)

To see this, notice that if (3) holds then we can define a colouring by picking
an arbitrary f(v) ∈ L′(v) for each v ∈ V . We obtain a proper (p, q)-L-
colouring. Indeed, if vw ∈ E(Kr∗m) then f(v) and f(w) are chosen from
distinct—and thus also non-adjacent—intervals, as (v, w) ∈ Vi×Vj for some
i 6= j and Ki ∩ Kj = ∅. Therefore, |f(v) − f(w)|p ≥ q.

So it suffices to show that P(L′(v) = ∅) < 1
rm . We take a1 ≤ · · · ≤ al in

L(v) with a distance of at least 3(q − 1) between them and l > t
3 − 1. The

probability that aj ∈ Ii given that a1, . . . , aj−1 6∈ Ii is at least 1
6r (by an

argument analogous to the argument used in the proof of Theorem 9), so

P(L′(v) = ∅) <

(

1 −
1

6r

) t
3
−1

.

Now, if t ≥ 3(ln m+ln r)

ln(1+ 1

6r−1)
+ 1 then P(L′(v) = ∅) < 1

rm , which concludes the

proof. �
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4 Circular f-choosability

A graph G is degree-choosable if, for every list-assignment L such that every
vertex has a list of size at least its degree, there exists a proper L-colouring
of G. A theorem independently proved by Borodin [4] and Erdős, Rubin and
Taylor [6]—see also Jensen and Toft’s book [21]—states that a connected
graph is degree-choosable, unless it is a Gallai tree, i.e. unless each of its
blocks is complete or an odd cycle. In this section, we study the analogous
problem for circular choosability. The main result is interesting in itself but
can also be used as a tool to extend list circular colouring from a graph to
larger graphs.

Let G = (V,E) be a graph and f : V → IR+. We say that an f-(p, q)-
list-assignment L is a list assignment such that L(v) ⊆ {0, . . . , p − 1} and
|L(v)| ≥ max{1, f(v)q} for every v ∈ V . The graph G is f-(p, q)-choosable
if it is (p, q)-L-colourable for every f -(p, q)-list-assignment L. Last, G is
circularly f-choosable if it is f -(p, q)-choosable for any p, q. The condition
|L(v)| ≥ max{1, f(v)q} may seem unnatural but is just here to allow some
vertices v to have f(v) = 0.

Every graph is circularly 2d-choosable. This is best possible as cch(K2) =
2; however, K2 is essentially the unique graph attaining the bound. We next
consider (2d − 1)-choosability.

Proposition 11 A connected graph with more than two vertices is circularly
(2d − 1)-choosable.

Proof. Let G be a connected graph with more than two vertices and v
a vertex with degree at least 2. Consider an ordering (v1, v2, . . . , vn = v)
of G such that vi has at least one neighbour in {vi+1, . . . , vn} for every
i < n. Note that vn−1v is an edge. Let us greedily colour the vertices vi

for i ∈ {1, 2, . . . , n − 2}; this is possible since, at each step, vi has at least
(2d(vi)− 1)q − (d(vi)− 1)(2q − 1) = q + d(vi)− 1 colours available. We now
extend this colouring also to vn−1, vn by treating this greedy colouring as a
precolouring and applying Lemma 1. Observe that the number of extendable
colours for vn−1 is at least

(2d(vn−1) − 1)q − (2q − 1)(d(vn−1) − 1) = q + d(vn−1) − 1 .

Therefore, again by Lemma 1, the number of extendable colours for vn is at
least

(2d(vn) − 1)q − (2q − 1)(d(vn) − 1) − (2q − q − d(vn−1) + 1)

=d(vn) + d(vn−1) − 2 ≥ 1 .
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Hence one can extend the colouring to both vn−1 and v. �

Proposition 11 is best possible since the circular choice number of K3 is
3.

4.1 Circular (2d − 2)-choosability

The main result of this section is as follows.

Theorem 12 Let G be a connected graph on more than two vertices.

(i) G is circularly (2d − 2)-choosable if

(a) it is 2-connected and not an odd cycle; or

(b) it is not 2-connected and one of its blocks is neither an edge nor
an odd cycle of length at least 5.

(ii) G is not circularly (2d − 2)-choosable if

(a) it is a tree; or

(b) it is an odd cycle.

Given a tree,
∑

v∈T (2d(v) − 2) = 4|E(T )| − 2|V (T )| = 2|V (T )| − 4.
Thus the fact that a tree is not circularly (2d − 2)-choosable is implied by
Lemma 2.

We now give a lemma which allows us to extend the property of a con-
nected graph H being (2d − 2)-choosable to graphs that contain H as an
induced subgraph.

Lemma 13 Let G be a connected graph. If G has an induced subgraph H
that is circularly (2dH − 2)-choosable and contains at least one edge, then G
is also circularly (2dG − 2)-choosable.

Proof. It suffices to prove the result for a connected induced subgraph H.
We proceed by induction on |V (G)| − |V (H)|, the result holding trivially if
|V (G)|− |V (H)| = 0. Assume now that |V (G)| > |V (H)|. Let x be a vertex
which is at maximal distance from H in G. Then, G − x is a connected
subgraph of G containing H as an induced subgraph.

Let L be a (2dG − 2)-(p, q)-list assignment of G, and let α ∈ L(x). Re-
moving the elements of [α]q from the list of each neighbour of x in G, we
obtain a (2dG−x − 2)-(p, q)-list assignment of G − x. By the induction hy-
pothesis, G−x admits a circular (p, q)-L-colouring c, which can be extended
to G by setting c(x) := α. �
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We now show circular (2d − 2)-choosability for some small important
graphs. The graph composed of two vertices connected with three indepen-
dent paths of length i, j and k is θi,j,k. As we observe later, these graphs
are important for 2-connected graphs. We also consider the flag, the graph
with vertex set {t, u, v, w} and edge set {tu, tv, uv, vw}.

Proposition 14 The following hold.

(i) For every i, j and k, the graph θi,j,k is circularly (2d − 2)-choosable.

(ii) The flag is circularly (2d − 2)-choosable.

Proof of part (i) of Proposition 14. Let xu1 . . . ui−1y, xv1 . . . vj−1y and
xw1 . . . wk−1y be the three paths forming θi,j,k. Since there are no multiple
edges, we may assume that i, j ≥ 2.

Let L be a (2d−2)-(p, q)-list assignment of θi,j,k. Every vertex has a list
of size 2q except x and y which have lists of size 4q.

Suppose that L(u1) ∩ L(v1) 6= ∅, and colour u1 and v1 with the same
colour. Then, greedily extend this colouring according to the ordering
(u1, v1, u2, . . . , ui−1, v2, . . . , vj−1, y, wk−1, . . . , w1, x).

Assume now that L(u1) ∩ L(v1) = ∅. Assign to x a colour α ∈ L(x).
Let a and b be the number of extendable colours of u1 and v1, respectively.
Observe that a+b ≥ 4q−(2q−1) = 2q+1. By Lemma 1, we can extend the
colouring to θi,j,k − y such that ui−1, vj−1 and wk−1 have at least a, b and 1
extendable colours, respectively. Then, y has at least 4q− 6q +a+ b+ 1 ≥ 2
extendable colours. �

Before the proof of the next part, we note the following consequence of
Lemma 1, whose straightforward proof is left to the reader.

Lemma 15 If L is a (p, q)-list assignment of K2 with p ≥ 2q such that
|L(x)| ≥ q and |L(y)| ≥ q + 1, then K2 is (p, q)-L-colourable.

Proof of part (ii) of Proposition 14. Suppose on the contrary that
there exists a (2d − 2)-(p, q)-list assignment L such that the flag is not
(p, q)-L-colourable. We may assume that L(w) = {0}, |L(v)| = 4q and
|L(u)| = |L(t)| = 2q.

Assertion 1 0 /∈ L(t) ∪ L(u).

Suppose otherwise. By symmetry, we may assume that 0 ∈ L(t). Then,
there exists ku ∈ L(u) \ [0]q and kv ∈ L(v) \ ([0]q ∪ [ku]q). Hence, c(t) =
0, c(u) = ku, c(v) = kv, c(w) = 0 is a (p, q)-L-colouring of the flag, a contra-
diction. This proves Assertion 1.

13



Assertion 2 (L(t) ∪ L(u)) ∩ [0]q 6= ∅.

Suppose on the contrary that (L(t)∪L(u))∩[0]q = ∅. Let kt, ku, and kv be the
smallest integers in L(t), L(u), and L(v) \ [0]q, respectively. By symmetry,
we may assume that kt ≤ ku. If kt ≤ kv, then |L(v)\([0]q∪[kt]q)| ≥ q+1 and
|L(u) \ [kt]q| ≥ q. So, by Lemma 15, the colouring c(t) = kt, c(w) = 0 can
be extended to a (p, q)-L-colouring of the flag, a contradiction. If kv < kt,
then |L(t) \ [kv]q| ≥ q + 1 and |L(u) \ [kv]q| ≥ q + 1. So, by Lemma 15, the
colouring c(v) = kv, c(w) = 0 may be extended to a (p, q)-L-colouring of the
flag, a contradiction. This proves Assertion 2.

By symmetry, we assume that (L(t) ∪ L(u)) ∩ [0, q − 1] 6= ∅. Let kt be
the minimum integer in this set. Without loss of generality, we assume that
kt ∈ L(t).

Assertion 3 |L(u) ∩ [kt]q| ≥ q + 1.

Since |L(v)\([0]q∪ [kt]q)| ≥ q+2, it follows that |L(u)\ [kt]q| < q; otherwise,
by Lemma 15, the colouring c(t) = kt, c(w) = 0 can be extended to a (p, q)-
L-colouring of the flag, a contradiction. Thus, |L(u) ∩ [kt]q| ≥ q + 1. This
proves Assertion 3.

Hence, there exist lu and ku = lu + q both in L(u)∩ [kt]q. It follows from
the minimality of kt that lu ∈ [kt − q + 1, 0] ∩ L(u).

Analogously to Assertion 3, we deduce that |L(t)∩ [lu]q| ≥ q + 1. Hence,
there exists lt ∈ L(t)∩[lu−q+1, lu]. Set J := [lt]q∪[ku]q∪[0]q ⊆ [lt−q+1, ku+
q−1]. Since lt ≥ lu−q+1 and ku−lu = q, we deduce that |J | < 4q. It follows
that there exists lv ∈ L(v) \ J . Then c(t) = lt, c(u) = ku, c(v) = lv, c(w) = 0
is a (p, q)-L-colouring of the flag, a contradiction. �

Corollary 16 A 2-connected graph is circularly (2d−2)-choosable unless it
is an odd cycle.

Proof. Let G be a 2-connected graph. If G is an even cycle, then the
result holds by Theorem 5. If G contains a complete graph Kn for some
n ≥ 4, then, by Lemmas 7 and 13, G is circularly (2d − 2)-choosable since
cch(Kn) = n ≤ 2n− 4. So we assume that G is neither a clique nor a cycle.
By Lemma 13 and Proposition 14(i), it suffices to show that G contains an
induced θi,j,k for some i, j, k.

Let C = v1v2 . . . vnv1 be a shortest cycle of G. As G is not a cycle, there
exists a vertex vs of C with a neighbour v outside C. If v has at most two
neighbours in C, then let P be a shortest path from v to C in G− vs (such
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a path exists since G is 2-connected). The subgraph induced by the vertices
of P and vs is θi,j,k for some i, j, k. If v has at least three neighbours in C,
then let vi, vj and vk be three neighbours of v in C with i < j < k. Note
that C is not K3 because G does not contain K4. Therefore, the subgraph of
G induced by vi, vi+1, . . . , vk and v is θi,j,k for some i, j, k, which concludes
the proof. �

Corollary 17 A graph containing the flag as a subgraph is circularly (2d−
2)-choosable.

Proof. If a graph contains the flag, then it contains as an induced sub-
graph either the flag, K4 or L4, the graph obtained from K4 by deleting
an edge, as an induced subgraph. By Lemma 13, it suffices to prove that
each of these three graphs are circularly (2d−2)-choosable. Since the circu-
lar choice number of K4 is 4, it is circularly (2d − 2)-choosable. Note that
L4 = θ1,2,2. Thus, both L4 and the flag are circularly (2d − 2)-choosable by
Proposition 14. �

We are now ready to prove the main theorem.

Proof of Theorem 12. Part (ii) of the theorem follows from Lemma 2
and the fact that cch (C2k+1) = 2 + 1

k > 2. Part (i)(a) is Corollary 16. For
part (i)(b), since a block is also an induced subgraph of G we can apply
Lemma 13 and one of Theorem 5 or Corollary 17. �

For a few graphs, we could not determine whether they are circularly
(2d − 2)-choosable. We offer the following conjecture.

Conjecture 18 A connected graph is circularly (2d−2)-choosable unless it
is a tree or an odd cycle.

This conjecture would be true if every graph consisting of an odd cycle
of length at least 5 and an edge with one endvertex in the cycle is (2d− 2)-
choosable.

Despite not completely characterising the circularly (2d − 2)-choosable
graphs, we can characterise those with a universal vertex. A vertex v of a
graph G is said to be universal if it is adjacent to every other vertex of G.

Corollary 19 A graph with a universal vertex is (2d − 2)-choosable unless
it is K3 or a star.
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5 Planar graphs and graphs of bounded density

5.1 Planar graphs

Mohar [13] asked for the value of τ := sup{cch(G) : G is planar}. We
first show that every planar graph is circularly 8-choosable, and so τ ≤ 8.
Afterwards, we exhibit for each n ≥ 2 a planar graph whose circular choice
number is at least 6 − 1

n , implying τ ≥ 6.
The proof of the following theorem is inspired by the celebrated proof

for 5-choosability of planar graphs by Thomassen [20]. His result can be
considered a subcase (in particular, the case q = 1) of Proposition 21.

Theorem 20 Every planar graph is circularly 8-choosable.

We actually establish the following stronger result.

Proposition 21 Let G be a near triangulation, i.e. a simple plane graph
consisting of a cycle C and vertices and edges inside C such that each
bounded face is bounded by a triangle. Fix two integers p ≥ q, and let
L be a (p, q)-list-assignment such that ∀v ∈ V,L(v) ⊆ {0, . . . , p − 1} with
|L(v)| ≥ 4q − 1 if v ∈ C and |L(v)| ≥ 8q − 3 otherwise. Then any (p, q)-
L-precolouring of two adjacent vertices of C can be extended to a (p, q)-L-
colouring of G.

Proof. The proof is by induction on the number of vertices n. The result
holds if G is a triangle since there are at least 4q− 1− 2(2q− 1) = 1 choices
to colour the last vertex. Assume now that the result is true for every
near triangulation with at most n − 1 ≥ 3 vertices, and let G be a near
triangulation with n vertices. We let u1u2 . . . uk be the outer cycle of G,
and u1 and u2 be the two precoloured vertices.

Case 1: G has a chord uiuj with i < j. We use the induction hypothesis
on the near triangulation whose outer cycle is u1u2 . . . uiujuj+1, . . . , uk, u1.
Next we use the induction hypothesis on the near triangulation whose outer
cycle is uiui+1 . . . ujui, the two precoloured vertices being ui and uj .

Case 2: G has no chord. Let v1, . . . , vd be the neighbours of uk that do
not belong to C. Without loss of generality, we can assume that uk−1v1v2 . . . vdu1

is a path. Let a and b be two colours of L(uk)\[c(u1)]q such that [a]q∩[b]q = ∅.
Such colours exist since |L(uk)| ≥ 4q−1 ≥ 2q+2q−1. We consider the graph
G′ obtained from G by removing the vertex uk. It is a near triangulation
with outer cycle u1u2 . . . uk−1v1v2 . . . vdu1. We define the list-assignment L′

of G′ by L′(v) := L(v) if v /∈ {v1, v2, . . . , vd} and L′(v) := L(v) \ ([a]q ∪ [b]q)
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Figure 2: The graph Hm.

otherwise. Note that |L′(vi)| ≥ 8q − 3 − 2(2q − 1) = 4q − 1 for each i. Thus
we can apply the induction hypothesis to G′ and L′. Now we complete the
colouring of G by colouring uk with a if c(uk−1) /∈ [a]q and with b otherwise.
�

Proposition 22 For each n ≥ 2, there exists a planar graph Gn with
cch(Gn) ≥ 6 − 1

n .

Proof. Let t := 6 − 1
n for some n ≥ 2. Set q := 3n and let p be an

integer much larger than tq = 18n − 3. All the computations and intervals
are modulo p. We consider the planar graph Hm of Figure 2, with m =
2q − 1. We construct the graph Gn by taking (tq)2 copies of Hm indexed
by L(u) × L(v), identifying the vertices u of each copy, and identifying the
vertices v of each copy. Observe that Gn is planar.

We first set L(u) := [r, r + tq − 1] and L(v) := [s, s + tq − 1] with r and
s such that [r − q + 1, r + tq + q − 1] ∩ [s − q + 1, s + tq + q − 1] = ∅. Now,
for each (a, b) ∈ L(u)×L(v), we assign lists to the vertices of the copy Ha,b

of Hm in such a way that if u is coloured a and v is coloured b, then the
subgraph Ha,b cannot be (p, q)-L-coloured. Each xi ∈ Ha,b is adjacent to
both u and v, so we may include the intervals [a]q and [b]q to L(xi), so that
it remains to assign tq − 2(2q − 1) = 6n − 1 = m colours using Lemma 2.
Note that

∑

x∈Ha,b\{u,v}

m = m2 < m(m + 1) + 1 = 2(|V (Ha,b \ {u, v})| − 1)q + 1.

Thus, there is a list assignment L′ of Ha,b \ {u, v} such that L(xi) = m
for each i and Ha,b \ {u, v} is not L′-(p, q)-colourable. By our remark after
Lemma 2, we may select L′ so that its lists are far away from both of
the intervals [a]q and [b]q. Let L(xi) = [a]q ∪ [b]q ∪ L′(xi) and note that
|L(xi)| = tq for each i.

If there is (p, q)-L-colouring of Gn, then we may assume by symmetry
that u is coloured a and v is coloured b. Then for each i, the vertex xi ∈ Ha,b
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may not be assigned a colour from [a]q ∪ [b]q. It follows that there is a (p, q)-
L′-colouring of the subgraph Ha,b \ {u, v}, a contradiction. �

5.2 Planar graphs of prescribed girth

A natural question is to ask what happens when we restrict ourselves to
planar graphs with a given girth. The girth of a graph G is the length of a
smallest cycle of G. We study the circular choice number of planar graphs
with girth at least k and, for each k ≥ 3, we define

τ(k) := sup{cch(G) : G is planar and has girth ≥ k} .

In the previous section, we have seen that 6 ≤ τ(3) = τ ≤ 8.
The corresponding question for circular chromatic number has attracted

a great deal of attention from the graph theoretic community [14, 7, 12, 25,
5]. This is motivated by a notable conjecture of Jaeger [10] on nowhere-zero
flows, which when restricted to planar graphs states the following.

Conjecture 23 Planar graphs of girth k have circular chromatic number

at most 2 +
⌈

k
4

⌉−1
.

This conjecture is somehow sharp as DeVos (cf. [5]) showed that there exist
planar graphs of girth at least k and circular chromatic number greater than

2 +
⌈

k+1
4

⌉−1
. It was shown by Borodin et al. [5] that every planar graph

with girth k has circular chromatic number at most 2 +
⌈

3k+2
20

⌉−1
.

In this section, we establish lower and upper bounds on τ(k). First, we
show that Conjecture 23 cannot be resolved affirmatively by bounding the
circular choice number. In particular, we generalise Proposition 22 to show
that τ(k) ≥ 2 + 4

k−2 .

Proposition 24 For any k ≥ 3 and ε > 0, there exists a planar graph Gk,ε

of girth k with cch(Gk,ε) ≥ 2 + 4
k−2 − ε.

Proof. We may assume that k ≥ 4 due to Proposition 22. We set t :=
2 + 4

k−2 − 1
n where n is an integer greater than max

(
k−2
4 , ε−1

)
. Let p and q

be two integers with q = (k−2)n, and p much larger than tq = 2kn−(k−2).
Note that tq − 2q = 4n + 2 − k > 0. All the computations and intervals are
modulo p.

We consider two cases according to the parity of k. If k = 2l + 1, we
construct the planar graph H ′

m from Hm of Figure 2 by subdividing each of
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the edges uxi and vxi exactly (l − 1) times; see Figure 3. Let u1
i , . . . , u

l−1
i

be the vertices on the induced path of length l between u and xi, and let
v1
i , . . . , v

l−1
i be the vertices on the path between v and xi. If k = 2l + 2 then

we further subdivide the edge xixi+1 once. The arguments and computations
for the two cases are similar, so from now on we only consider the case
k = 2l + 1 ≥ 5. The value of m depends on the parity of k, but for k odd,

we set m :=
⌊

2q−1
k2−4k+2

⌋

.

u1
0

u2
0

ul−2
0

ul−1
0

u1
m

u2
m

ul−2
m

ul−1
m

v1
0

v2
0

vl−2
0

vl−1
0

v1
m

v2
m

vl−2
m

vl−1
m

x0 x1 x2 xm

u

v

Figure 3: The graph H ′
m for the case where k = 2l + 1.

Similarly to Proposition 22, the graph Gk,ε is constructed from (tq)2

copies of H ′
m indexed by L(u) × L(v) by identifying the vertices u of each

copy, and identifying the vertices v of each copy. Such a graph is planar
and has girth exactly k. Again, we set L(u) := [r, r + tq − 1] and L(v) :=
[s, s+tq−1] with r and s chosen so that the lists L(u) and L(v) have circular
distance at least 2q. For each (a, b) ∈ L(u) × L(v), we assign lists to the
vertices of the copy Ha,b of H ′

m in such a way that if u is coloured a and v
is coloured b, then the subgraph Ha,b cannot be (p, q)-L-coloured.

Each u1
i ∈ Ha,b is adjacent to u and each v1

i ∈ Ha,b is adjacent to v, so
we may include the interval [a]q to L(u1

i ) and the interval [b]q to L(v1
i ), so

that it remains to assign tq − (2q − 1) = 4n + 3 − k colours to each of these
vertices. Set ℓ(u1

i ) = ℓ(v1
i ) = 4n + 3 − k and set ℓ(x) = tq = 2kn − (k − 2)
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for every other vertex x in Ha,b \ {u, v}. Note that

∑

x∈Ha,b\{u,v}

ℓ(x) = m(2(4n + 3 − k) + (k − 4)(2kn − (k − 2)))

= 2(k − 2)2mn − (k2 − 4k + 2)m

and

2(|V (Ha,b \ {u, v})| − 1)q + 1 = 2(k − 2)2mn − 2q + 1.

By the choice of m,
∑

x∈Ha,b\{u,v} ℓ(x) < 2(|V (Ha,b \{u, v})|−1)q +1. Since

Ha,b \{u, v} is a tree, it follows from Lemma 2 that there is a list assignment
L′ of Ha,b \ {u, v} such that L(x) = ℓ(x) for each x ∈ Ha,b \ {u, v} and
Ha,b \ {u, v} is not L′-(p, q)-colourable. By our remark after Lemma 2, we
may select L′ so that its lists are far away from both of the intervals [a]q and
[b]q. Let L(u1

i ) = [a]q ∪ L′(u1
i ) and L(v1

i ) = [b]q ∪ L′(v1
i ) for every i and let

L(x) = L′(x) for every other vertex x in Ha,b \ {u, v}. Note that |L(x)| = tq
for each x ∈ Ha,b \ {u, v}.

If there is (p, q)-L-colouring of Gk,ε, then we may assume by symmetry
that u is coloured a and v is coloured b. Then for each i, the vertex u1

i ∈ Ha,b

may not be assigned a colour from [a]q nor may the vertex v1
i ∈ Ha,b be

assigned a colour from [b]q. It follows that there is a (p, q)-L′-colouring of
the subgraph Ha,b \ {u, v}, a contradiction.

�

For the upper bounds, we rely on bounds for a slightly more general
class of graphs—that is, for the class of graphs with bounded density (and
girth). The density or maximum average degree Mad(G) of a graph G is
defined as the maximum, over all subgraphs H of G, of the average degree
of H. Observe that δ(G) ≤ Mad(G) so that by Lemma 7:

Remark 25 cch(G) ≤ 2⌊Mad(G)⌋.

By Euler’s formula, any planar graph with girth at least k has maximum
average degree strictly less than Madk = 2 + 4

k−2 ; thus, if we upper bound
the circular choosability of graphs with bounded density (and prescribed
girth), then we also upper bound the circular choosability of planar graphs
of prescribed girth. The following minor variation of Remark 25 gives a
better bound when Madk is integer and coincides with that given by plugging
Madk into Remark 25 otherwise. If Mad(G) < k + 1, then δ∗(G) ≤ k and
thus τ(k) ≤ 2⌈Madk −1⌉. This bound is however is far from the correct
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behaviour: the lower bound of Proposition 24 approaches 2 as k approaches
infinity, while this last upper bound is 4 for k ≥ 6.

In the next section, we outline how an adaptation of the upper bound
by Borodin et al. [5] gives a much better bound on the circular choosability
in terms of a graph’s density and girth. This result is obtained using a
discharging procedure.

Theorem 26 If G has girth at least 3t + 1 and Mad(G) ≤ 2 + 6
5t+1 , then

cch(G) ≤ 2 + 2
t .

We postpone the proof of Theorem 26 until the next section and we first
demonstrate how this theorem gives us a bound on τ(k).

Corollary 27 τ(k) ≤ 2 + 2
⌈

3k−8
10

⌉−1
.

Proof. Let G be a planar graph with girth at least k. By Euler’s formula,
G has maximum average degree strictly less than Madk = 2 + 4

k−2 . Some

straightforward manipulations show that Madk ≤ 2 + 6
5t+1 is equivalent to

k ≥ 10t+8
3 , so that the theorem applies since 10t+8

3 ≥ 3t + 1. We conclude

that t ≤ 3k−8
10 implies that cch(G) ≤ 2+ 2

t . Therefore, τ(k) ≤ 2+2
⌈

3k−8
10

⌉−1
,

as required. �

In previous work on the odd-girth conjecture for the circular chromatic
number, it was only relevant to consider graphs with large girth, since
χc(G) ≤ χ(G) and Grötzch’s Theorem states that every triangle-free planar
graph has chromatic number at most 3. In the analogous study for circular
choosability, the corresponding values are higher as we have already seen; for
example, τ(6) ≥ 3. Therefore, we find it an interesting problem to improve
the upper bounds on τ(k) for the smaller values of girth k.

Observe that Mad4 = 4 and Mad6 = 3; thus, Remark 25 implies that
τ(4) ≤ 6 and τ(6) ≤ 4. Corollary 27 gives τ(10) ≤ 3. By using more specific
arguments, we can improve upon these bounds for τ(k) for k ≤ 9. Again,
our results rely on considering graphs of bounded density and prescribed
girth and the following theorem is proved in the next section.

Theorem 28 Let k, s and n be positive integers and set r =
⌈

s−2
2

⌉
. The

following hold.

(i) if k ≥ 2 and Mad(G) < k + 1 + k+1
k+1+s with s ∈ {1, 2} then cch(G) ≤

2k + 4
s+2 .
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(ii) If s ≤ 2k + 2, G has girth at least 4 and Mad(G) < k + 1 + k+1−r
k+1+s′−r ,

where s′ = min{k + 2, s}, then cch(G) ≤ 2k + 4
s+2 .

(iii) If 2 ≤ s ≤ k + 2, G has girth at least 6 and Mad(G) < k + 1 +
k+1−r

k+s−r+ 1

k+3−s

, then cch(G) ≤ 2k + 4
s+2 .

We again postpone the proof until the next section and first give the follow-
ing corollary:

Corollary 29 τ(5) ≤ 4 + 1
2 , τ(8) ≤ 3 + 1

3 , and τ(9) ≤ 3.

Proof. By Euler’s formula, every planar graph with girth at least k has
maximum average degree less than Madk = 2 + 4

k−2 . Mad5 = 3 + 1
3 and,

setting k = 2 and s = 6, part (ii) of Theorem 28 gives τ(5) ≤ 4 + 1
2 .

Mad8 = 2 + 2
3 and, setting k = 1 and s = 1, part (i) of Theorem 28 gives

τ(8) ≤ 3 + 1
3 . Mad9 = 2 + 4

7 and, setting k = 1 and s = 2, part (iii) of
Theorem 28 gives τ(9) ≤ 3. �

Table 1 contains a summary of our bounds on τ(k). It is clear that there
is a lot of room for improvement.

k (girth) 3 4 5 6 7 8 9 k ≥ 10

τ(k) upper 8 6 4 + 1
2 4 4 3 + 1

3 3 2 + 2
⌊(3k−8)/10⌋

τ(k) lower 6 4 3 + 1
3 3 2 + 4

5 2 + 2
3 2 + 4

7 2 + 4
k−2

Table 1: Bounds for planar graphs of prescribed girth k.

5.3 Graphs of bounded density (and prescribed girth)

In this section, we prove several upper bounds in terms of a graph’s density
and girth. We use a standard general approach several times: consider a
minimal counterexample, discount certain reducible configurations, and then
perform a discharging procedure. We define a graph G to be x-critical if
cch(G) > x and cch(H) ≤ x for every proper subgraph H of G.

As it is a direct adaptation of the method used by Borodin et al. [5],
we give only an outline of the proof of Theorem 26 by stating the minor
modifications and analogous intermediary lemmas required. The routine
details are left to the reader. We say that two vertices are weakly adjacent
if they are endpoints of the same thread.
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Proof (outline) of Theorem 26. Let G be a
(
2 + 2

t

)
-critical graph.

The following are analogues of Lemma 4.1, Corollary 4.2, Lemma 4.3 and
Lemma 4.4 in the paper of Borodin et al. [5].

Lemma 30 Every thread in G has length at most t.

Note. This lemma is a direct corollary of Lemma 3.

Corollary 31 No three vertices of G with degree at least 3 are pairwise
weakly adjacent and no two threads have the same set of endpoints.

Let Y be the set of vertices of G with degree at least 3. For v ∈ Y , a
weak Y -neighbour (resp. weak 2-neighbour) of v is a vertex in Y (resp. of
degree 2) that is weakly adjacent to v; let NY (v) be the set of weak Y -
neighbours of v. For each pair of weakly adjacent vertices u, v, define lvu

to be the length of the (unique) thread between v and u. For v ∈ Y , let
f(v) = −(t + 1) +

∑

u∈NY (v)(t + 1 − lvu).
The following lemmas are proved using Lemma 1.

Lemma 32 f(v) ≥ 1 for all v ∈ Y .

Proof. Suppose on the contrary that f(v) ≤ 0 for some vertex v. Colour
the graph minus v and the internal vertices of its incident thread. Each
Y -neighbour u of v has one incident colour, and applying Lemma 1 for each
vertex after another along the thread between u and v, we obtain that the
neighbour wu of v on this thread has at least 2q

t (lvu−1) extendable coulours.

Hence applying Lemma 1 for v, we obtain that v has at least 1 − 2q
t f(v)

extendable colours. Hence as f(v) ≤ 0 then G is circularly (2+ 2
t )-choosable,

a contradiction. �

Lemma 33
∑

u∈NY (v) f(u) ≥ t + 2 for all v ∈ Y .

Proof. Suppose on the contrary that
∑

u∈NY (v) f(u) ≤ t+1 for some vertex
v. Note that because the girth is at least 3t + 1, there is no thread between
neighbours of v. Let U be the set of Y -neighbours u of v such that f(u) −
t − 1 + lvu ≤ 0.

Colour the graph G minus the vertices of S∪{v} and the internal vertices
of its adjacent thread. Then every neighbour of v /∈ U has 1 ≥ −2q

t (f(u) +
luv−t) extendable colours. Let u ∈ U . Applying Lemma 1 along the threads
incident to u which are not the thread between u and v similarly to the proof

23



of Lemma 32, we obtain that u has at least −2q
t (f(u) + luv − t) extendable

colours. Thus applying Lemma 1 along the threads incident to v, we obtain

that v has at least 1 + 2q
t

(

t + 1 −
∑

u∈NY (v) f(u)
)

≥ 1 extendable colours.

So G is circularly (2 + 2
t )-choosable, a contradiction. �

Given the above, we execute a discharging procedure as follows.

Discharging rules. Given G whose vertices have their degree as their
initial charge, we define an adjusted charge d∗(u) for each vertex u in G by
the following operations:

(R1). Every v ∈ Y gives each to its weak 2-neighbours the amount 3
5(t+1) .

(R2). Every v ∈ Y gives each of its weak Y -neighbour the amount 3f(v)+(t+2)(d(v)−3)
5(t+1)d(v) .

The reader can verify the following analogues of Lemmas 4.5 and 4.6 in
the paper of Borodin et al. [5].

Lemma 34 Under discharging, every v ∈ Y receives from its weak Y -
neighbours at least t+2

5(t+1) .

Lemma 35 After discharging, d∗(v) ≥ 2 + 4d(v)−2
5(t+1) for all vertices v in G.

Now, it follows that

2|E(G)| =
∑

v∈V (G)

d∗(v) ≥
∑

v∈V (G)

(

2 +
4d(v) − 2

5(t + 1)

)

=

(

1 −
1

5(t + 1)

)

2|V (G)| +
4

5(t + 1)
2|E(G)|

so that 5t+4
5t+5 |V (G)| ≤ 5t+1

5t+5 |E(G)|. Thus, the average degree of G is at least
2(5t+4)
5t+1 = 2 + 6

5t+1 , as required. �

We now proceed with the proof of Theorem 28. The following is a lemma
used to prove Lemma 7. It is also an important ingredient in the proof of
Theorem 28.

Lemma 36 Let k be a positive integer and α ≥ 0. Let G be a (2k + α)-
critical graph. Then G has minimum degree at least k + 1.
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Proof. As cch(G) > 2k + α, there exist ε > 0, two integers p, q and a (2k +
α + ε)-list-assignment L such that G cannot be (p, q)-L-coloured. Observe
that every proper subgraph H of G can be (p, q)-L-coloured since, by the
definition of G, cch(H) ≤ 2k + α. Let t = 2k + α + ε.

Suppose that v is a vertex of degree at most k. By minimality of G, one
can (p, q)-L-colour G−v. To apply Lemma 1, we can consider the colouring
of G− v as a precolouring and, hence, the number of extendable colours for
v is at least tq−k(2q−1) = αq +εq +k ≥ 1. This yields a (p, q)-L-colouring
of G, a contradiction. �

For part (i) of Theorem 28, we require the following lemma.

Lemma 37 Let k be a positive integer and α ≥ 0. Let G be a (2k + α)-
critical graph. Then,

(i) if k ≥ 2, then the neighbours of a vertex of degree k + 1 having degree
k + 1 are pairwise non-adjacent;

(ii) if α ≥ 2
r+2 , then a vertex of degree k + 1 is adjacent to at most r

vertices of degree k + 1; and

(iii) for s ∈ {1, 2}, if α ≥ 4
s+2 , then a vertex of degree k + 2 is adjacent to

at most s vertices of degree k + 1.

Proof. As cch(G) > 2k + α, there exist ε > 0, two integers p, q and a
(2k + α + ε)-list-assignment L such that G cannot be (p, q)-L-coloured. Let
t = 2k + α + ε.

(i) Let v be a vertex of degree k + 1 in G. Let H be the graph induced by
v and its neighbours of degree k + 1 in G. By minimality, there exists a
(p, q)-L-colouring c of G − H. We consider this as a precolouring and now
consider the number of extendable colours for a vertex u of H. There are
at least (2k + α + ε)q − (k + 1 − dH(u))(2q − 1) ≥ (2dH(u) − 2)q colours
available for u, that is not creating conflict with colours of already coloured
neighbours of u. For a contradiction, let us assume that there is an edge
between two of the neighbours of v, i.e. H is not a star. If H is not K3,
then, by Corollary 19, it admits a (p, q)-colouring from the lists of extendable
colours, thus completing a (p, q)-L-colouring of G.

Let us suppose now that H is the complete graph on the vertex set
{v, y, z}. Since k ≥ 2, there is a vertex u not in H adjacent to v. Ob-
serve that, if we consider the subgraph H ′ induced by {u, v, y, z}, then
our goal is to (p, q)-L′-colour it, with L′(u) = {c(u)}, and L′(a) = L(a) \
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⋃

w∈N(a)\V (H′)[c(w)]q for a ∈ {v, y, z}. Note that, for a ∈ {v, y, z}, the list

L′(a) has size at least 4q if au is an edge, and at least 2q otherwise—in
particular, |L′(v)| ≥ 4q. Hence, without loss of generality, we can assume
that L′(y) has size 2q, and if uy is an edge, then these 2q colours are not in
[c(u)]q. The same holds for z. Therefore, the fact that c can be extended to
G directly follows from part (ii) of Proposition 14.

(ii) Let v a vertex of degree k + 1 in G. Suppose that v has r + 1 neigh-
bours v1, . . . , vr+1 of degree k + 1. By (i), the vertices v1, . . . , vi+1 are pair-
wise non-adjacent; this observation is important for the valid application of
Lemma 1. Consider any (p, q)-L-colouring of G − {v1, . . . , vr+1, v} and an
ordering which ends in (v1, . . . , vr+1, v). By Lemma 1, the number of ex-
tendable colours for vi, for any i ∈ {1, 2, . . . , r+1}, is at least tq−k(2q−1) =
αq +k + εq. By Lemma 1, the number of extendable colours for v is at least
tq−(k−r)(2q−1)−(r+1)(2q−(αq+k+εq)) = 2(α−1)q+2(k+εq)+r(αq−1+

k+εq) = (α(r+2)−2)q+2(k+εq)+r(k+εq−1) ≥
(

2
r+2(r + 2) − 2

)

q+1 ≥ 1,

since α ≥ 2
r+2 and k ≥ 1, a contradiction to the t-criticality.

(iii) Suppose that v is a vertex of degree k + 2 with s + 1 neighbours
v1, . . . , vs+1 of degree k+1. Consider any (p, q)-L-colouring of G−{v1, . . . , vs+1, v}
and an ordering which ends in (v1, . . . , vs+1, v). By (ii), the vertices v1, . . . , vs+1

are pairwise non-adjacent, since α ≥ 1. Hence, using Lemma 1, the num-
ber of extendable colours for vi, for any i ∈ {1, 2, . . . , s + 1}, is at least
tq−k(2q−1) = αq+k+εq. Applying the lemma again, the number of extend-
able colours for v is at least tq−(k+1−s)(2q−1)−(s+1)(2q−(αq+k+εq)) =
2(α − 2)q + 2(k + εq) + 1 + s(αq − 1 + k + εq) = (α(s + 2) − 4)q + 2(k +
εq) + s(k + εq − 1) + 1 ≥ 1, since α ≥ 4

s+2 and k ≥ 1, a contradiction to
t-criticality. �

Proof of part (i) of Theorem 28. Suppose that G is
(

2k + 4
s+2

)

-critical.

Then, by Lemmas 36 and 37, G has minimum degree at least k + 1, no two
vertices of degree k + 1 are adjacent, and any vertex of degree k + 2 is
adjacent to at most s vertices of degree k + 1. We perform a discharging
procedure as follows.

Discharging rules. Given G whose vertices have their degree as their
initial charge, we define an adjusted charge d∗(u) for each vertex u in G by
the following operation:

(R1). Every vertex of degree at least k + 2 gives the amount η = 1
k+1+s to
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each of its neighbours of degree k + 1.

We want to show now that the new charge of every vertex v is at least
k + 1 + (k + 1)η. If v has degree k + 1, then its new charge is at least
k+1+(k+1)η since all of its neighbours gave it charge. If v has degree k+2,
then its new charge is at least k+2−sη = k+1+(k+1)η since it has at most s
neighbours of degree k+1 to give charge to. If v has degree at least k+3, then
its new charge is at least k+3−(k+3)η = k+1+(k+2s−1)η ≥ k+1+(k+1)η
since s ≥ 1.

It follows now that the average degree, and hence the maximum average
degree, is at least k+1+(k+1)η. This shows that every graph with circular
choice number more than 2k + 4

s+2 has maximum average degree at least
k + 1 + (k + 1)η, as required. �

To prove parts (ii) and (iii) of Theorem 28, we require the following
lemma. We define a hibernian to be a vertex of degree k+2 with s neighbours
of degree k + 1. A barbarian is a vertex of degree k + 2 with exactly s − 1
neighbours of degree k + 1.

Lemma 38 Let k be a positive integer, s ∈ {0, 1, . . . , k + 2} and α ≥ 0. Let
G a (2k + α)-critical graph of girth g.

(i) If g ≥ 4 and α ≥ 4
s+2 , then a vertex of degree k + 2 is adjacent to at

most s vertices of degree k + 1.

(ii) If g ≥ 5 and α ≥ 3
s+1 , then two hibernians cannot be adjacent.

(iii) If g ≥ 6 and α ≥ 4
3s+1 , then a barbarian is adjacent to at most one

hibernian.

Proof. Take ε, p, q, L and t as in the proof of Lemma 37.

(i) The proof is similar to the proof of Lemma 37(iii), so we omit it here.
Note that the condition g ≥ 4 ensures that the neighbours of a vertex are
pairwise non-adjacent.

(ii) Suppose that v and v′ are adjacent hibernians. Let Vv = {v1, . . . , vs} be
the set of s neighbours of v of degree k +1. Let Vv′ = {v′1, . . . , v

′
s} be the set

of s neighbours of v′ of degree k + 1. Since the girth of G is at least 5, the
sets Vv and Vv′ are disjoint. Furthermore, Vv ∪ Vv′ induces an independent
set in G. This observation makes our subsequent applications of Lemma 1
valid.
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Consider any (p, q)-L-colouring of G \ (Vv ∪ Vv′ ∪ {v, v′}). We wish to
show that such a colouring can be extended to the entire graph G, giving
a contradiction to t-criticality. Let us use an ordering of the vertices of G
which ends (v1, . . . , vs, v

′
1, . . . , v

′
s, v, v′); it is clear that this ordering satisfies

the properties for Lemma 1.
First, the number of extendable colours for vi or v′i, for any i, is at least

x0 := tq − k(2q − 1) = αq + k + εq .

We have x0 ≥ 1, since k ≥ 1 and α, ε ≥ 0. Now, since v is adjacent
to v1, . . . , vs and k + 1 − s precoloured vertices, the number of extendable
colours for v is at least

x := tq − s(2q − x0) − (k + 1 − s)(2q − 1)

= ((s + 1)α − 2)q + k + εq + s(k + εq − 1) + 1.

We have x ≥ 1, since α(s + 1) ≥ 2 and k ≥ 1. Applying Lemma 1, since v′

is adjacent to v′1, . . . , v
′
s, k + 1− s precoloured vertices and v, it follows that

the number of extendable colours for v′ is at least

x′ := tq − s(2q − x0) − (k + 1 − s)(2q − 1) − (2q − x)

= ((s + 1)α − 3)2q + 2{k + εq + s(k + εq − 1) + 1}.

Since α ≥ 3
s+1 and k ≥ 1 then x′ ≥ 0. But this means that G is (p, q)-L-

colourable, a contradiction.

(iii) Suppose that a barbarian w is adjacent to two hibernians v and v′. Since
the girth is at least 6, the neighbourhoods of w, v and v′ are pairwise disjoint
and their union is an independent set. Consider any (p, q)-L-colouring of G\
{v1, . . . , vs, v

′
1, . . . , v

′
s, w1, . . . , ws−1, v, v′, w} and extend the colouring using

the ordering above via Lemma 1. As in (ii) every neighbour of v, v′ or w
has at least x0 = αq + k + εq extendable colours, and v and v′ have at least

x = ((s + 1)α − 2)q + k + εq + s(k + εq − 1) + 1

extendable colours.
Now the number of extendable colours at w is at least

tq− (s− 1)(2q−x0)− (k + 1− s)(2q− 1)− 2(2q−x) ≥ ((3s + 1)α− 4)q + 1 .

So G is (p, q)-L-colourable since α ≥ 4
3s+1 , a contradiction. �
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The proof of part (ii) of Theorem 28 follows from Lemma 38(i) and is
similar to the proof of Theorem 28(i), so we omit it here.

Proof of part (iii) of Theorem 28. Suppose that G is
(

2k + 4
s+2

)

-

critical and has girth at least 6. Then, by Lemmas 36, 37(ii) and 38(i), G
has minimum degree at least k + 1, any vertex of degree k + 1 is adjacent to
at most r vertices of degree k + 1, and any vertex of degree k + 2 is adjacent

to at most s vertices of degree k + 1. Furthermore, 4
s+2 ≥ max

{
3

s+1 , 4
3s+1

}

because s ≥ 2, and thus, using parts (ii), (iii) of Lemma 38, no two hiberni-
ans are adjacent and every barbarian is adjacent to at most one hibernian.
We perform a discharging procedure as follows.

Discharging rules. Given G whose vertices have their degree as their
initial charge, we define an adjusted charge d∗(u) for each vertex u in G by
the following operations:

(R1). Every vertex of degree k + 1 receives charge η = 1
k+s−r+ 1

k+3−s

from

every neighbour of degree at least k + 2.

(R2). Every hibernian receives charge η1 = η
k+3−s = 1

(k+s−r)(k+3−s)+1 from
every non-hibernian neighbour of degree at least k + 2.

We want to show now that the new charge of every vertex is at least
k + 1 + (k + 1 − r)η. If v has degree k + 1, then its new charge is at least
k+1+(k+1−r)η since it has at least k+1−r neighbours that gave it charge η.
If v is a hibernian, then its new charge is at least k+2−sη+(k+2−s)η1 = k+

1+
(

1
η − s + k+2−s

k+3−s

)

η = k+1+(k+1−r)η since it has at most s neighbours

of degree k + 1 to give charge to and it receives η1 charge from all of the
other adjacent vertices. If v is a barbarian, then its new charge is at least

k+2−(s−1)η−η1 = k+1+
(

1
η − s + 1 − 1

k+3−s

)

η = k+1+(k+1−r)η since it

has s−1 neighbours of degree k+1 and at most one hibernian neighbour. If v
is a non-hibernian, non-barbarian vertex of degree k+2, then its new charge

is at least k+2−(s−2)η−(k+2−(s−2))η1 = k+1+
(

1
η − s + 2 − k+4−s

k+3−s

)

η =

k +1+(k +1−r)η since it has at most s−2 neighbours of degree k +1 (and
the rest could be hibernians). If v is a vertex of degree at least k + 3, then
its new charge is at least k + 3 − (k + 3)η ≥ k + 1 + (k + 1 − r)η; this holds
if and only if k + s − r + 1

k+3−s ≥ k + 2 − r
2 , that is s − r

2 − 2 + 1
k+3−s ≥ 0.

This is true when s ≥ 2.
It follows now that the average degree, and hence the maximum average

degree, is at least k + 1 + (k + 1 − r)η. This shows that every graph with
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circular choice number more than 2k+ 4
s+2 and girth at least 6 has maximum

average degree at least k + 1 + (k + 1 − r)η, as required. �

We note that the following result, proven in a previous version of this
work [9], follows from Lemma 36 and parts (i), (ii) of Lemma 37.

Proposition 39 Let k be a positive integer and r ∈ {0, . . . , k}. If Mad(G) <
k + 1 + k+1−r

2k+3−r , then cch(G) ≤ 2k + 2
r+2 .

We do not apply this result elsewhere, but by listing this result we wish to
highlight that the relationship between the circular choice number and the
maximum average degree (and girth) deserves further attention. By improv-
ing the upper bounds of this type, we could gain a better understanding of
the circular choice number for planar graphs (and, more generally, graphs
on surfaces) of prescribed girth.

5.4 Outerplanar graphs of prescribed girth

A graph is outerplanar if it can be drawn in the plane such that the outer
face is incident to every vertex of the graph. For any k ≥ 3, we define

τo(k) := sup{cch(G) : G is outerplanar and has girth ≥ k} .

We show the following theorem.

Theorem 40 τo(k) = 2 + 2
k−2 for all integers k ≥ 3.

We start by exhibiting a class of examples that show that τo(k) is at least
the expression given in the theorem.

Proposition 41 Fix k ≥ 3. For any ε > 0, there exists an outerplanar
graph Ok,ε of girth k whose circular choice number is at least 2 + 2

k−2 − ε.

Proof outline. We define n to be an integer greater than max
(

k−2
2 , ε−1

)
.

Let t := 2 + 2
k−2 − 1

n , set q := 2(k − 2)n, and choose p much larger than
tq = 4kn − 4n − 2k + 4. Note that tq − 2q = 4n − 2k + 4 > 0. We consider
the graph Pm of Figure 4, for some m divisible by k − 2 large enough.
We construct the graph Ok,ε by taking tq copies of Pm and identifying the
vertices u of each copy. To each a ∈ L(u) we associate a copy Pa of Pm

and a corresponding list assignment such that, if u is coloured a, then the
subgraph Pa cannot be (p, q)-L-coloured. As the methods are similar to
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· · ·x0 x1 xk−2 xm

u

Figure 4: The graph Pm.

those of Propositions 22 and 24, we omit the remaining details of the proof.
�

Next we show that τo(k) is at most the expression of Theorem 40. We
note that this upper bound was already proved [22] for even k. We give a
more succinct presentation of the proof and also cover the case for odd k.
The following is a consequence of Lemma 3.

Lemma 42 Fix k ≥ 3. Let L be a
(

2 + 2
k−2

)

-(p, q)-list-assignment of the

cycle Ck. Every precolouring of two adjacent vertices can be extended to a
(p, q)-L-colouring of the entire cycle.

Proposition 43 Let k ≥ 3. Every outerplanar graph of girth at least k has
circular choice number at most 2 + 2

k−2 .

Proof. Suppose on the contrary that there exists an outerplanar graph G of

girth at least k that is
(

2 + 2
k−2

)

-critical. Let L be a
(

2 + 2
k−2 + ε

)

-(p, q)-

list-assignment of G such that G is not (p, q)-L-colourable. The graph G
cannot have any leaves (vertices of degree one). We now note that every
outerplanar graph of girth at least k with no leaves can be inductively built
up from a collection of cycles of length at least k as follows. We start with
a cycle of length at least k. At each step of the construction, we identify
an edge of the outerplanar graph constructed so far with an edge of a new
cycle of length at least k. By following this inductive sequence of long cycles
(in the reverse order), we can repeatedly apply Lemma 42 to produce a
(p, q)-L-colouring of G, a contradiction. �

6 Concluding remarks

We showed that the difference between the circular choice number and circu-
lar chromatic number of a circular clique is unbounded. We provided some
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evidence in support of a positive answer to the question of Problem 8, by
showing that cch(G) = O(ch(G) + ln |V (G)|). We showed, perhaps counter-
intuitively, that the value of τ := sup{cch(G) : G is planar} lies between 6
and 8, rather than between 4 and 5, as Mohar had suggested [13].

Much further work remains. Problem 8 remains open as does the follow-
ing fundamental question posed by Zhu.

Problem 44 (Zhu [26]) Is the circular choice number of every graph a
rational?

Norine [15] recently established that the circular choice number is not always
attained, thereby answering a question of Zhu [26].

The upper bounds we obtained for graphs of bounded density and pre-
scribed girth also imply upper bounds for graphs on surfaces with prescribed
girth (for example, toroidal graphs with prescribed girth); however, it is un-
clear to us how our lower bound examples can be extended or generalised
to guarantee higher circular choice numbers on higher surfaces.

Recently, using the Combinatorial Nullstellensatz, Norine, Wong and
Zhu [16] studied bipartite graphs of bounded density and showed the follow-
ing.

Theorem 45 (Norine et al. [16]) If G is a connected bipartite graph that
is not a tree, then cch(G) ≤ Mad(G).

In particular, all bipartite planar graphs have circular choice number less
than 4; furthermore, all bipartite planar graphs with girth at least k have
circular choice number less than 2 + 2/(⌈k/2⌉− 1). Since the examples Gk,n

of Proposition 24 are bipartite for even k, the above bounds are sharp in
a sense. On the other hand, if we sought to improve upon Proposition 24,
then we must consider more complicated, non-bipartite constructions.

As mentioned before circular choosability is closely related to the notion
of T -choosability, introduced by Tesman [19] and further studied by, for
instance, Alon and Zaks [3] and Waters [23, 24]. Given a set T of forbidden
differences, a T -proper colouring of G is a colouring that satisfies |c(v) −
c(u)| 6∈ T whenever uv ∈ E(G). The T -choosability T -ch(G) of G is the
least number k such that any list assignment L with |L(v)| ≥ k for all
v ∈ V (G) admits a T -proper colouring c with c(v) ∈ L(v) for all v. The
special case when T = Tr = {0, . . . , r} has received a lot of attention. By
considering the proofs it should be clear that many of the bounds on cch(G)
given in this paper extend to Tr-ch(G) when multiplied by r + 1. However,
as might be expected, the “circularity constraint” is an essential difference
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between Tr-choosability and circular choosability. For instance, Sitters [18]

showed that Tr-ch(C2n) =
⌊

4n−2
4n−1(2r + 2)

⌋

+ 1, whereas Norine [15] proved

that cch(C2n) = 2. Since writing this paper it has come to our attention
that the Tr-analogue of Problem 8 has been investigated by Waters [24], who
has shown that Tr-ch(G) ≤ 2(r + 1) for all 2-choosable graphs. Moreover,
Waters’ thesis [23] contains a number of results and proofs that are strikingly
similar to results in our paper and in [26]. In particular, he gave Tr-analogues
of Theorem 20 and Theorem 22 that are essentially the same as ours.
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