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Abstract. High Angular Resolution Imaging (HARDI) can better explore the
complex micro-structure of white matter compared to Di� usion Tensor Imaging
(DTI). Orientation Distribution Function (ODF) in HARDI is used to describe
the probability of the �ber direction. There are two type de�nitions of the ODF,
which were respectively proposed in Q-Ball Imaging (QBI) and Di� usion Spec-
trum Imaging (DSI). Some analytical reconstructions methods have been pro-
posed to estimate these two type of ODFs from single shell HARDI data. How-
ever they all have some assumptions and intrinsic modeling errors. In this article,
we propose, almost without any assumption, a uniform analytical method to esti-
mate these two ODFs from DWI signals in q space, which is based on Spherical
Polar Fourier Expression (SPFE) of signals. The solution is analytical and is a lin-
ear transformation from theq-space signal to the ODF represented by Spherical
Harmonics (SH). It can naturally combines the DWI signals in di� erent Q-shells.
Moreover It can avoid the intrinsic Funk-Radon Transform (FRT) blurring error
in QBI and it does not need any assumption of the signals, such as the multiple
tensor model and mono/multi-exponential decay. We validate our method using
synthetic data, phantom data and real data. Our method works well in all experi-
ments, especially for the data with low SNR, low anisotropy and non-exponential
decay.

1 Introduction

High Angular Resolution Di� usion Imaging (HARDI) is used to probe non-Gaussian
di� usion which represents more intricate micro-structure in the tissue. Orientation Dis-
tribution Function (ODF) [1, 2] was proposed to describe the �ber directions. There are
two type of ODFs. One is denoted as� t, proposed using radial projection by Tuch in
QBI [1]. Another one is denoted as� w, proposed as the marginal probability of the
Ensemble Average Propagator (EAP)P(Rr) by Wedeen in DSI [2].� t need to be nor-
malized andZ is the normalization factor. While� w is naturally normalized.

� t(r ) =
1
Z

Z 1

0
P(Rr)dR � w(r ) =

Z 1

0
P(Rr)R2dR=

1
2

Z 1

�1
P(Rr)R2dR (1)

whereR = Rr is the displacement in 3D space. It has been shown that� w is more
sharper than� t [2–4], which means� w is more discriminative for �ber detection.



Historically, Funk-Radon Transform (FRT) was used in QBI to estimate� t numeri-
cally [1] or analytically [5]. However, the intrinsic blurring e� ect of FRT can bring some
errors [1].� w was �rstly proposed in DSI and was estimated from numerical radial in-
tegral after the numerical Fourier Transform of the signals [2]. Most recently, several
similar analytical reconstruction methods were proposed separately to estimate� w from
single shell HARDI data [6, 3, 4]. Elegant analytical solutions were found [6, 3, 4] based
on the mono-exponential decay assumption [7] which gives the full information about
E(q) in the whole 3Dq-space from theE(q0) only in a single shell. The approximated
EAP P̃(Rr) actually is the true EAPP(Rr) convolved by the Fourier transform of the
function E(q;u)q2=q2

0E(q;u)� 1 [7], whereq = qu, q = kqk. It was shown surprisingly
that the estimated̃P(Rr) and ˜� w are sharper than the realP(Rr) and� w [6, 3, 4] in the
synthetic data generated from mixture tensor model. However, since this surprising re-
sults come from the intrinsic modeling error from the unrealistic kernel smooth, it is
still not clear if the methods based on that assumption can work well in the complex
real data with non-exponential decay, low anisotropy and low SNR. Similarly with [7],
the authors in [3] extended mono-exponential model to multi-exponential model so that
it can reduce the modeling error and work for the data in multiple shells. However,
it is impractical because a nonlinear �tting is needed for every direction [7], su� ering
from limited samples, local minima, computational complexity, and an analytic solution
exists only when three b values satisfy an arithmetic process.

E(q) =
NX

n=0

LX

l=0

lX

m=� l

an;l;mRn(kqk)Ym
l (u) Bn;l;m(q) = Rn(kqk)Ym

l (u) (2)

Rn(kqk) = � n(� ) exp
 
�

kqk2

2�

!
L1=2

n (
kqk2

�
) � n(� ) =

"
2

� 3=2

n!
� (n + 3=2)

#1=2

(3)

In [8], the Spherical Polar Fourier Expression (SPFE) was proposed to sparsely rep-
resentE(q). See formulae (2),(3), whereYm

l (u) is thel orderm degree Spherical Har-
monic (SH) basis andRn(q) is the Gaussian-Laguerre polynomial basis. SinceBn;l;m(q)
is the orthonormal basis inR3, any type ofE(q) could be represented by a linear com-
bination offBn;l;mg. After the coe� cientsfan;l;mgof the signal are estimated from a least
square �t or a nonlinear robust estimation [8],� t could be calculated through an in-
ner product of the coe� cientsan;l;m and a kernelbn;l;m. The problem in [8] is thatbn;l;m

needs to be calculated numerically from FFT for every direction or calculated for one
direction then rotated by Wigner rotation matrix for other directions. That is ine� cient
and can bring some numerical error, especially for these kernels which have some delta
functions inside, e.g. the kernels for� t and� w. And it can not provide an elegant ana-
lytical parametrized result like analytical QBI [5].

In this paper, instead of adding strong assumptions for single shell data in [6, 3,
4] and numerical solution using FFT and Wigner matrix in [8], we propose a uniform
analytical estimation method for� t and� w based on SPFE, which includes two linear
transformations from the coe� cientsfan;l;mgof E(q) to the coe� cientsfct

l;mgof � t and
fcw

l;mgof � w represented by SHs. First we deduce the transformations for� t and� w.
Next, we perform the method in some non-exponential synthetic data and a challenging
phantom data. At last we test our methods in a real monkey data with several b values.



2 Analytical ODF Estimation Based On SPF

It has been shown that the line integral ofP(Rr) in R-space in (1) is equivalent to the
integral in the plane inq-space which is orthogonal to the line inR-space [3, 4, 6]. See
formula (4), where4b is the Laplace-Beltrami operator. Our contribution is to deduce
the elegant analytical solution for data in multiple shells based on these previous studies
in [3, 4, 6, 8]. Our analytical estimation methods almost do not need any assumption
about the signal. The only assumption we need is that the signalE(q) can be sparsely
represented by SPF in formula (2), which has been validated in [8].

� t(r ) =
1
Z

ZZ

� r

E(q)q� (rTu)dqdu � w(r ) =
1
4�

�
1

8� 2

ZZ

� r

4bE(q)
q

� (rTu)dqdu (4)

2.1 Estimation of � t

Put the formula (2) into (4), we can easily get the solution.

� t(r ) =
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= 2��
Z

P L
l=0

P l
m=� l

�P N
n=0

P n
i=0 � n(� )

�
i� 0:5

i

�
(� 1)n� iPl(0)an;l;m

�
Ym

l (r ) (6)

wherePl(0) is the Legendre polynomial of orderl at 0. We get (5) because SH is the
eigenfunction of the FRT [5]. From (5) to (6), we use the property of Laguerre polyno-
mial [9]. Thus here we have a linear transformation from the coe� cientsan;l;m of E(q)
to the coe� cientsct

l;m =
P N

n=0
P n

i=0 � n(� )
�
i� 0:5

i

�
(� 1)n� iPl(0)an;l;m. Please note that the au-

thor in [10] gave a solution for� t in page 122. Unfortunately, the integrand there was
wrong because of wrong volume element. Here we give the right analytical formulae.

We also give the result of the integral in a given disk� (r ;C) whose radius isC. In the
formula (4), the integral� t(r ) gives the same weight forE(q) with largeq and forE(q)
with small q. However, if we just have several b values, the error of estimated signal
Ẽ(q) will be small if q is between these b values and will be large ifq is large than all
b values. Thus if an approximateC is given, the disk integral� t(r ;C) may have better
angular resolution than� t(r ) [4]. ConsideringL1=2

n (x) =
P n

i=0 l inxi , l in = (� 1)i
�
n+0:5
n� i

�
1
i! ,

and the lower incomplete gamma function (i; x) =
Rx

0
ti� 1 exp(� t)dt, we have
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2.2 Estimation of � w

Similarly, put the formula (2) into (4) we can get the analytical expression for� w.

� w(r ) =
1
4�

�
1

8� 2

NX

n=0

LX

l=0

lX

m=� l

an;l;m

 Z 2�

0
4bYm

l (u)� (rTu)du
!  Z 1

0

Rn(q)
q

dq
!

(8)

However, we can not solve it just like what we did for� t, because the division
by q introduces a pole. It is a little hard to �nd the analytical solution for� w. And the
author in [10, 8] did not give any solution for that. We solve this problem by considering
E(0) = 1, which is a true fact for any DWI data. That means, for our basis, the identity
E(0) =

P
n;l;m an;l;mRn(0)Ym

l (u) =
P

n;l;m an;l;m� n(� )Ym
l (u) = 1 holds for anyu 2 S2. Also

keep in mind that a constant addition inside4b does not change the �nal result. First we
consider the integral inside a given disk� (r ;C), then we have

� w(r ;C) =
1
4�

�
1
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Now there is no pole! ForIn(C) we have
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where ' 0:5772 is the Euler–Mascheroni constant,E1(x) =
R1

x
exp(� t)

t dt is the expo-
nential integral. Although there are two parts inIn(C) andI1

n(C) tends to in�nity, it actu-
ally has no contribution for� w(r ;C), because

P
n;l;m an;l;m� n(� )Ym

l (u)I1
n(C) = I1

n(C) is a
constant inside4b. Then consideringYm

l (u) is the eigenfunction of FRT and4b, we have
the analytical result for� w(r ;C) and� w(r ) = limC!1 � w(r ;C), cw

l;m = limC!1 cw
l;m(C)
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cw
l;m = 1p
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Now we have two estimations for the true� w. One is the integral in the whole
plane, which is similar with [3], and another one is the integral in a given disk, which
is similar with [4]. However, the mono-exponential decay model was assumed during
the disk in [4], and in the whole plane in [3], so that the integral for the radial integral
could be approximated just using the data in theq-circle. While our method does not
need any assumption on the data and it can handle the data in di� erent q-shells. Also
please note three important points in the formulae above.First, we get the theE1(x) in
the derivation process, but it is negligible. While in [4], it is indispensable.Second, the
formulae (15),(16) tell us that at least order 1 ofRn is needed to represent an anisotropic
ODF. That is true because if we just use the radial basis of order zero, it is easily seen
that the estimated signal is just an isotropic one, which means the estimated ODF is
isotropic. Thus we need to use at least two shells to get a reasonable results, although
our methods can be performed in single shell data.Third, since in (4) 1=q gives small
weight for E(q) with largeq and large weight forE(q) with small q, that means the
error in largeq may be negligible! Thus� w is more robust to estimation error ofE(q).
How to choose an approximateC for � w(r ;C) and� t(r ;C) is still an open question out
of the scope of this paper. And since the improvement of� w(C) in [4] over � w in [3] is
very subtle [4], here we just consider the� w and� t, not � w(C), � t(C).

2.3 Implementation of methods

The Implementation includes two steps. The �rst step is to estimate coe� cientsfan;l;mg
from the observed signalsfE(qi)g. The second step is the uniform linear analytical solu-
tion proposed above fromfan;l;mgto fct

l;mgandfcw
l;mg, which is actually independent of the

�rst step. The whole estimation error is just from the �rst step, since the second step is
analytical and compact. The authors in [8] suggested two methods to estimatefan;l;mg,
a linear least square (LS) �tting with regularization in the radial and spherical parts,
and a non-linear PDE based optimization process, which considers the Rician noise.
Here we choose the LS method in the �rst step since it is more faster. We suggest that
the Rician correction could be performed directly on the DWI data as a pre-processing
step [11, 12], although in our experiments to perform an appropriate comparison of
methods we did not do any Rician correction. For LS estimation, let's denote the sig-
nal vector byE = [E(qi)]S� 1, the coe� cient vector byA = [an;l;m]0:5(L+1)(L+2)(N+1)� 1,
the basis matrix byM = [Rn(q)Ym

l (u)]S� 0:5(L+1)(L+2)(N+1), and the spherical and radial
regularization diagonal matrices respectively byL = [l(l + 1)] and N = [n(n + 1)],
where� l and� n are the regularization terms for spherical and radial parts. ThenA =
(MT M + � lLT L + � nNT N)MT E. For the second step, the linear transformations in (6),
(7), (15), (16) could be also implemented as a matrix multiplication. Thus the whole
process is just a linear matrix multiplication on the data vectorE. Similarly with an-
alytical Q-ball in [5], the matrix is independent ofE and needs to be calculated only
once for the whole data set. It makes our method extremely fast.

There are two important points to consider in the implementation. The �rst one is
aboutE(0). If we have a data set with several b values,b1, b2..., bN, we actually use
N + 1 b values, consideringE(0) = 1 for anyu 2 S2, which makes our estimation



more reasonable and accurate. Otherwise, there is no warranty for the estimated signal
Ẽ(0) = 1. For the single shell HARDI data, consideringb = 0 can let us have 2 shells,
which will improve the results. The second one is how to determine the parameter�
in (3). The authors in [8] proposed a strategy for it, which is dependent on the radial
truncation orderN. However, we think the parameter should be just dependent on the
signal, not on the basis order. ConsideringE(q) = exp(� 4� 2� q2D), b = 4� 2� q2, and a
typical di� usion coe� cient ofD = 0:7� 10� 3mm2=s, a typical b-valueb = 3000s=mm2,
we set� = 1

8� 2� � 0:7� 10� 3 . If 4� 2� = 1, then� is about 700. In our experiments we always
set� = 700.

3 Results on synthetic, phantom and real data

Synthetic data. Gaussian mixture modelS(qs) =
P M

i=1 piGi(qs),Gi(qs) = exp(� q2
su

T
s Dius)

has been used widely to generate synthetic data [1, 5, 6, 3, 4]. However, that could bias
the results in favor of those methods assuming a model based on Gaussian mixture
or mono/multi-exponential decay. Here we choose both Gaussian mixture and non-
Gaussian mixture to validate our methods. We setS(q) =

P M
i=1 pi fi(q), f (q) = G(q) for

a Gaussian mixture model andf (q) = 0:5G(q)+ 0:5T(q), T(q) = exp(�
p

2q2uTDu) for
a non-Gaussian mixture model. It could be proved that the� t and� w of T(q) are the
same as the ODFs ofG(q), although they have di� erent EAPs [9]. Thus we have the ana-
lytical ground truth of ODFs. We set the eigenvalues ofD as [0:3;0:3;1:7]� 10� 3mm2=s.
and use the same way in [5] to add Rician noise withS NR= 1=� , which is de�ned as
the ratio of maximal signal intensity ofS(0) = 1 to the standard deviation� of complex
Gaussian noise. We test the methods withS NR= 10 in four con�gurations of ODF: one
�ber or two orthogonal �bers with Gaussian model or non-Gaussian model. For each
con�guration, data in 4 shells (b=500,1000,2000,3000s=mm2) were generated. For the
single shell methods, e.g.� t estimation in [5] and� w estimation in [3], 4 order SH with
� = 0:006 was chosen. For the proposed methods, we use all data from four shells and
choseN = 2, L = 4, � n = 5e � 8, � l = 1e � 7, � = 700. We recorded the percentage
of correct number of detected ODF maximum and the mean of angular error over 1000
trails [5]. See table 1. The experiments showed: 1) Normally, the� t is more robust to
Rician noise than� w, although� w is more sharper and has better angular resolution.
It is the similar conclusion in [4]. 2) our methods for� t and� t both got better per-
formance than the methods for single shell data in [5, 3]. 3) the method in [3] will get
worse results for the data with non-exponential decay or much noise.
Phantom data. We performed our methods in a public phantom data with 3 shells,
where b-value is 650,1500,2000s=mm2 respectively. This data has been used in the �ber
cup contest in MICCAI 2009 to evaluate tracking methods [13]. The anisotropy of
this data is very low, which makes it hard to detect the �bers. We believe that it is
complex enough to evaluate di� erent reconstruction methods and tracking methods.
We compare our reconstruction method using 3 shells with the method in [3] using
one shell (b=2000), since the result of b=2000 is better than the results ofb = 650
and 1500 for the method in [3]. For our method, we chooseL = 4, � l = 5e � 8 in the
spherical part andN = 1,� n = 1e� 9 in the radial part [8]. To perform a fair comparison,
we chooseL = 4 and tune the Laplacian regularization term� from 0.006 (suggested



Table 1. Each column shows the percentage of correct number of detected ODF maximum and
the mean of angular errors under an given ODF con�guration. The left part and the right part
in each column are respectively for the estimation methods for� t and� w. The �rst four rows
recorded the performance of previous works on single shell data in [5] and in [3] with 81 gradient
directions on the hemisphere. The last row shows the results of our methods using 4 shells.

Fig. 1. First row: phantom data, from left to right: whole view of� w from our method,� w in
region A and B from our method, method in [3] with� = 0:006;0:02;0:03;0:04; Second row:
real data result from our method, from left to right: whole view of� w, � w and� t in region C.

in [5, 3]) to 0.02, 0.03 and 0.04 for the method in [3]. Two crossing areas were chosen
for visualization using min-max normalization [1]. The results were shown in Fig. 1.
It shows that the method using 3 shells is better. The bad performance of the method
in [3] probably comes from the error of the mono-exponential assumption.
Real data. We perform our method in a real monkey data with 3 shells (b= 500, 1500,
3000s=mm2), 30 directions at each b value, TE/TR/matrix=120ms=6000ms=128� 128.
We setL = 4, N = 2, � l = 5e � 8, � n = 1e � 9 and show, in Fig. 1, the results of� t

with min-max normalization and� w without normalization, since� w is sharper than
� t. The glyphs were colored by GFA calculated from ODF [1].

4 Conclusion

We proposed a uniform model-free fast robust analytical ODF reconstruction method
based on Spherical Polar Fourier (SPF) expression of the signal inq-space. The coe� -



cients of the two kinds of ODF under SH could be linearly and analytically calculated
from the coe� cients of the signal under SPF. It is a linear transformation that is inde-
pendent of the data. This transformation matrix is just calculated only once for a whole
data set, which makes the method very fast. Our method can avoid the error from unre-
alistic assumptions and can naturally combine data from di� erent Q-shells. The results
in synthetic data phantom data and real data show that our method can get better results
compared with previous single shell HARDI methods in [5] and in [3], especially for
the data with low anisotropy, low SNR and non-exponential decay.
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