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Abstract—There are two usual ways to describe equality in
a dependent typing system, one that uses an external notion
of computation like beta-reduction, and one that introduces a
typed judgement of beta-equality directly in the typing system.

After being an open problem for some time, the general
equivalence between both approaches has been solved by
Adams for a class of pure type systems (PTSs) called functional.
In this paper, we relax the functionality constraint and prove
the equivalence for all semi-full PTSs by combining the ideas
of Adams with a study of the general shape of types in PTSs.

As one application, an extension of this result to systems
with sub-typing would be a first step toward bringing closer
the theory behind a proof assistant such as Coq to its
implementation.

I. INTRODUCTION

There are two traditional ways to specify a dependent type

system. The first one relies on an external notion of equality,

like β-conversion or βη-conversion through a conversion

rule:

Γ ⊢ M : A Γ ⊢ B type A ≡ B

Γ ⊢ M : B
CONV

It is the case of systems like the Extended Calculus

of Constructions (ECC [1]) or the Calculus of Inductive

Constructions [2] on which the proof-system Coq [3] is

based on. Each conversion step is not checked to be well-

typed, but along with Confluence and Subject Reduction,

we can ensure that everything goes fine.

The second one embeds a notion of equality directly in

the type system. So there are two types of judgement: one

to type terms, and one to type equalities. With this kind of

approach, we can ensure that every conversion step is well-

typed:

Γ ⊢e M : A Γ ⊢e A = B

Γ ⊢e M : B
CONV

Those systems are known as “type systems with judgmental

equality”. This is the case of UTT [4] or Martin-Löf’s

Type Theory and Logical Framework [5] from which the

dependently typed programming language Agda 2 [6] is

derived.

Surprisingly, showing the equivalence between those two

definitions is difficult. Geuvers and Werner [7] early noticed

that being able to lift an untyped equality to a typed one,

i.e. to turn a system with β-conversion into a system with

judgmental equality requires to show Subject Reduction in

the latter system:

If Γ ⊢e M : A and M ։β N then Γ ⊢e M = N : A.

Subject Reduction requires the injectivity of dependent

products ΠxA.B :

If Γ ⊢e ΠxA.B = ΠxC .D then

Γ ⊢e A = C and Γ(x : A) ⊢e B = D.

This property relies on a notion of confluence which will

involve Subject Reduction: we are facing a circular depen-

dency.

Usually the systems based on judgmental equality are

better suited for theoretical considerations, like building

models [8]. On the other hand, in systems with untyped

conversion, we can concentrate on the purely computational

content of conversion and get rid of the types which are a

priori useless to compute (e.g. see [9]). However, in both

cases, they seem to describe the same theory and we would

like to be sure that it is effectively the case.

Besides looking for a better understanding of the relations

between typed and untyped equality, another motivation

is to apply such an equivalence to the foundations of

proof-assistants. For instance, in Coq, the construction of

a set-theoretical model (on which relies the consistency of

some standard mathematical axioms) requires the use of

a typed equality. However, the implementation relies on

an untyped version of the same system. By achieving the

equivalence between both presentation, we would be able

to prove the theory equal to its implementation.

For some times, the only way to do it was based on

normalization procedures [10], [4], one system at once.

This approach does not scale easily since it relies on the

construction of a model. Recently, Adams [11] found a

syntactical criterion and proved that every functional Pure

Type System (PTS) is equivalent to its counterpart with

judgmental equality. To do so, he defined an intermediate



system called Typed Parallel One-Step Reduction (TPOSR).

This system embeds the idea of the judgmental systems

with a typed notion of equality, along with the idea of

parallel reduction which is at the heart of the proof of

confluence.

An interesting class of systems for which we would have

this equivalence is the ones with sub-typing, which are not

functional. We managed to get rid of the functionality by

considering instead another class of PTS called full1.

More precisely, in this paper, we shall prove that every

semi-full Pure Type System is equivalent to its judgmental

equality counterpart by combining the approach used by

Adams with a study of the general shape of types in PTSs.

By switching from functional to semi-full, we are one step

closer to adapt this result to full systems like ECC or CIC,

which are underlying systems of Coq.

II. THE META-THEORY OF PTS

In this section, we will give a general description of PTSs

and the main results that we will need on Pure Type Systems

with Judgmental Equality (PTSe).

A. Terms and Untyped Reductions

Definition Structure of terms and contexts

s : Sorts
x : V ars
A, B,M, N ::= s | x | MN | λxA.M | ΠxA.B

Γ ::= ∅ | Γ(x : A)

We consider two separate sets Sorts and Vars, where the

latter is infinite. In the following, we will consider s, si

and t to be in Sorts, and x, y and z to be in V ars. A

context is a list of terms labeled by distinct variables, e.g.

Γ = (x1 : A1) . . . (xn : An), where all the xi are distinct,

and xi can only appear in Aj(j > i). Γ(x) = A is a shortcut

for (x : A) ∈ Γ. ∅ denotes the empty context, the set of xi

such that Γ(xi) exists is called the domain of Γ, or Dom(Γ)
and the concatenation of two contexts whose domains are

disjoint is written Γ1Γ2.

The term λxA.M (resp. ΠxA.B) bounds the variable x
in M (resp. B) but not in A and the set of free variables

(fv) is defined as usual according to those binding rules.

We use an external notion of substitution: [ / ] is the

function of substitution, and M [x/N ] stands for the term

M where all the free variables x have been replaced by N ,

without any variable capture. We can extend the substitution

to contexts (in this case, we consider that x 6∈ Dom(Γ)).
Γ[x/N ] is recursively defined as :

1) ∅[x/N ] = ∅
2) (Γ(y : A))[x/N ] = Γ[x/N ](y : A[x/N ])

1full means that we are allowed to build any dependent product

Later on, we will need to use telescopes for λ and Π-

types, defined as follows:
λ〈〉.M ::= M
Π〈〉.M ::= M

λ〈(x : A)∆〉.M ::= λxA(λ∆).M
Π〈(x : A)∆〉.M ::= ΠxA(Π∆).M

The notion of β-reduction (→β) is defined as the congruence

closure of the relation (λxA.M)N →β M [x/N ] over the

grammar of terms. ։β stands for the reflexive transitive

closure of →β and ≡β for its reflexive-symmetric-transitive

closure.

At this point, it is important to notice the order in which

we can prove things: Confluence of the β-reduction can be

established before even defining the typing system, it is only

a property of the reduction. With it, we can prove some

useful tools like Π-injectivity or Sort Uniqueness:

Lemma II.1. Confluence and its consequences

• If M ։β N and M ։β P then there is Q such that

N ։β Q and P ։β Q.

• Π-injectivity: If ΠxA.B ≡β ΠxC .D then A ≡β C and

B ≡β D
• Sort Uniqueness: If s ≡β t then s = t.

B. Presentation of Pure Type System

1) Pure Type System: A PTS is a generic framework first

presented by Berardi [12] and Terlouw to study a family of

type systems all at once. Popular type systems like simply

typed lambda calculus, System F or CoC are part of this

family. There is plenty of literature on the subject [13] so

we will only recall the main ideas of those systems.

To make the system generic enough, we will abstract the

typing of sorts and Π-types. The set Ax ⊂ (Sorts×Sorts)
is used to type sorts: (s, t) ∈ Ax means that the sort s can be

typed by the sort t. The set Rel ⊂ (Sorts×Sorts×Sorts)
will be used to check the good formation of Π-types. The

typing rules for PTS are given in Fig. 1.

As we can see, the CONV rule relies on the external

notion of β-conversion, so we do not check that every step

of the conversion is well-typed. However, it is easy to prove

Confluence and Subject Reduction, two properties which

ensure that everything goes well.

Theorem II.2. Subject Reduction

If Γ ⊢ M : A and M ։β N , then Γ ⊢ N : A.

Proof: The proof can be found in [13]. We just want

to put forward that it relies on Confluence, more precisely

on the Π-injectivity of β-reduction.

In this paper, we will later consider the sub-class of semi-

full PTS:

Definition Full and semi-full PTS

• A PTS is full if for any s, t, there is u such that

(s, t, u) ∈ Rel.



∅wf

NIL
Γ ⊢ A : s x /∈ Dom(Γ)

Γ(x : A)wf

CONS

Γwf (s, t) ∈ Ax

Γ ⊢ s : t
SORT

Γwf Γ(x) = A

Γ ⊢ x : A
VAR

Γ ⊢ A : s Γ(x : A) ⊢ B : t
(s, t, u) ∈ Rel Γ(x : A) ⊢ M : B

Γ ⊢ λxA.M : ΠxA.B
LAM

Γ ⊢ A : s Γ(x : A) ⊢ B : t (s, t, u) ∈ Rel

Γ ⊢ ΠxA.B : u
PI

Γ ⊢ M : ΠxA.B Γ ⊢ N : A

Γ ⊢ MN : B[x/N ]
APP

Γ ⊢ M : A A ≡ B Γ ⊢ B : s

Γ ⊢ M : B
CONV

Figure 1. Typing Rules for PTS

• A PTS is semi-full if (s, t, u) ∈ Rel enforces that for

all t′, there is u′ such that (s, t′, u′) ∈ Rel.

Obviously, a full PTS is also semi-full.

2) Pure Type System with Judgmental Equality: There

is another way to express PTSs by defining an internal

notion of equality: Pure Type System with Judgmental

Equality (PTSe), where every conversion step is well-typed.

A complete presentation of PTSe can be found in [11]. For

the rest of this paper, we will follow Adams’ method and

focus on the equivalence between PTS and TPOSR.

One result we need about PTSe is that every valid

judgement in PTSe is valid in PTS:

Theorem II.3. From PTSe to PTS

1) If Γ ⊢e M : A then Γ ⊢ M : A.

2) If Γ ⊢e M = N : A then Γ ⊢ M : A, Γ ⊢ N : A and

M ≡β N .

Proof: This theorem is valid for all PTS without restric-

tions. The proof is a simple induction and relies on properties

of PTS, nothing is needed from PTSe at this point apart from

their definition.

III. BASIC META-THEORY OF TPOSR

A. Definition of TPOSR

In his approach to prove the equivalence for the functional

PTSs, Adams defined a system called Typed Parallel One

Step Reduction that inherits from the usual parallel reduction

presentation, but in a typed way. The terms used in TPOSR

are a little more informative than the terms used for PTS: the

co-domain of the function is added as an annotation (with

its binding variable) to all applications, to help proving the

Church-Rosser property. Adams gives a detailed study about

the necessity of this annotation in the third section of [11].

Definition Structure of Annotated Terms

A, B,M, N ::= s | x | M(x)BN | λxA.M | ΠxA.B

All the other notions (context, substitution and untyped

reduction) described for PTS are defined in the same way

for TPOSR with the natural adaptation to the annotated

applications. We define an erasure procedure | | by

induction on the structure of terms that maps TPOSR terms

to PTS ones by inductively removing the additional typing

information within the applications.

The typing rules of TPOSR are presented in Fig. 2.

Sometimes we will write Γ ⊢ M ⊲ N : A, B as a

shortcut for Γ ⊢ M ⊲ N : A and Γ ⊢ M ⊲ N : B, or

Γ ⊢ M ⊲ ? : A as a shortcut for “there is some N such

that Γ ⊢ M ⊲ N : A”.

Then we define the transitive and reflexive-symmetric-

transitive closures of TPOSR in Fig. 3. It is interesting to

notice that we can keep the same type at every step of a

reduction sequence (as we will see further on), but not in an

expansion sequence: without the functionality, we also lose

the fact that a type only lives in a unique sort, so we cannot

enforce to keep the same sort along a conversion sequence

that links two types. But this will not be a problem since

we are only interested in equality at the type level, so we

need to check that every step is a well-formed type but we

do not keep track of its sort.

B. General properties of TPOSR

Without any additional property like functional or semi-

full, we can start to prove some properties of TPOSR:



(empty) ∅wf

(extend)

Γ ⊢ A ⊲ A′ : s

Γ(x : A)wf x /∈ Dom(Γ)

(sort)

Γwf

Γ ⊢ s ⊲ s : t (s, t) ∈ Ax

(var)

Γwf

Γ ⊢ x ⊲ x : A Γ(x) = A

(prod)

Γ ⊢ A ⊲ A′ : s1 Γ(x : A) ⊢ B ⊲ B′ : s2

Γ ⊢ ΠxA.B ⊲ ΠxA′

.B′ : s3 (s1, s2, s3) ∈ Rel

(lam)

Γ ⊢ A ⊲ A′ : s1

Γ(x : A) ⊢ B ⊲ B′ : s2 Γ(x : A) ⊢ M ⊲ M ′ : B

Γ ⊢ λxA.M ⊲ λxA′

.M ′ : ΠxA.B (s1, s2, s3) ∈ Rel

(app)

Γ ⊢ A ⊲ A′ : s1 Γ(x : A) ⊢ B ⊲ B′ : s2

Γ ⊢ M ⊲ M ′ : ΠxA.B Γ ⊢ N ⊲ N ′ : A

Γ ⊢ M(x)BN ⊲ M ′
(x)B′N ′ : B[x/N ] (s1, s2, s3) ∈ Rel

(beta)

Γ ⊢ A ⊲ A′ : s1 Γ(x : A) ⊢ B ⊲ B′ : s2

Γ(x : A) ⊢ M ⊲ M ′ : B Γ ⊢ N ⊲ N ′ : A

Γ ⊢ (λxA.M)(x)BN ⊲ M ′[x/N ′] : B[x/N ] (s1, s2, s3) ∈ Rel

(red)

Γ ⊢ M ⊲ N : A Γ ⊢ A ⊲ B : s

Γ ⊢ M ⊲ N : B

(exp)

Γ ⊢ M ⊲ N : A Γ ⊢ B ⊲ A : s

Γ ⊢ M ⊲ N : B

Figure 2. Typing Rules for the TPOSR system

Γ ⊢ M ⊲ N : A

Γ ⊢ M ⊲
+ N : A

Γ ⊢ M ⊲
+ N : A Γ ⊢ N ⊲

+ P : A

Γ ⊢ M ⊲
+ P : A

Γ ⊢ A ⊲ B : s

Γ ⊢ A ≡ B

Γ ⊢ B ≡ A

Γ ⊢ A ≡ B

Γ ⊢ A ≡ B Γ ⊢ B ≡ C

Γ ⊢ A ≡ C

Figure 3. Multi step Reduction and Equality in TPOSR

Lemma III.1. Weakening

1) If Γ1Γ2 ⊢ M ⊲ N : B, Γ1 ⊢ A ⊲ A′ : s and

x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 ⊢ M ⊲ N : B.

2) If Γ1Γ2 wf , Γ1 ⊢ A ⊲ A′ : s and x /∈ Dom(Γ1Γ2)
then Γ1(x : A)Γ2 wf .

Lemma III.2. Substitution

1) If Γ1(x : A)Γ2 ⊢ M ⊲ N : B and Γ1 ⊢ P ⊲ P ′ : A
then Γ1Γ2[x/P ] ⊢ M [x/P ] ⊲ N [x/P ′] : B[x/P ].

2) If Γ1(x : A)Γ2 wf and Γ1 ⊢ P ⊲ P ′ : A then

Γ1Γ2[x/P ]wf .



We extend the notion of equality on terms to equality on

contexts, which are nothing but ordered lists of terms:

Definition Context Conversion

• ∅ ≡ ∅.

• If Γ ≡ Γ′, Γ ⊢ A ≡ B and x 6∈ Dom(Γ)
⋃

Dom(Γ′),
then Γ(x : A) ≡ Γ′(x : B).

Lemma III.3. Conversion in Context

• If Γ ⊢ M ⊲ N : A and Γ ≡ Γ′ then Γ′ ⊢ M ⊲ N : A.

• If Γ ⊢ M ⊲
+ N : A and Γ ≡ Γ′ then

Γ′ ⊢ M ⊲
+ N : A.

• If Γ ⊢ A ≡ B and Γ ≡ Γ′ then Γ′ ⊢ A ≡ B.

Lemma III.4. Reflexivity

1) If Γ ⊢ M ⊲ N : A, then Γ ⊢ M ⊲ M : A.

2) If Γ ⊢ M ⊲ N : A, then Γ ⊢ N ⊲ N : A.

The following lemma is often called the Generation

lemma, or the Inversion lemma. It allows us to know the

general shape of a reduction based on the shape of the term

that is reduced:

Lemma III.5. Generation

1) If Γ ⊢ s ⊲ N : T then N = s and there is t such that

(s, t) ∈ Ax and either T = t or Γ ⊢ T ≡ t.
2) If Γ ⊢ x ⊲ N : T then N = x and there is A such

that Γ(x) = A and Γ ⊢ T ≡ A.

3) If Γ ⊢ ΠxA.B ⊲ N : T then there are A′, B′, s, t, u
such that N = ΠxA′

.B′, (s, t, u) ∈ Rel,
Γ ⊢ A ⊲ A′ : s, Γ(x : A) ⊢ B ⊲ B′ : t and either

T = u or Γ ⊢ T ≡ u.

4) If Γ ⊢ λxA.M ⊲ N : T then there are

A′, M ′, B,B′, s, t, u such that N = λxA′

.M ′,

(s, t, u) ∈ Rel, Γ ⊢ A ⊲ A′ : s,

Γ(x : A) ⊢ B ⊲ B′ : t, Γ(x : A) ⊢ M ⊲ M ′ : B and

Γ ⊢ T ≡ ΠxA.B.

5) If Γ ⊢ P(x)BQ ⊲ N : T then there are

A, A′, B′, Q′, s, t, u such that (s, t, u) ∈ Rel,
Γ ⊢ A ⊲ A′ : s, Γ(x : A) ⊢ B ⊲ B′ : t,
Γ ⊢ Q ⊲ Q′ : A, Γ ⊢ T ≡ B[x/Q] and

• either Γ ⊢ P ⊲ P ′ : ΠxA.B and N = P ′
(x)B′Q′

for some P ′

• or P = λxA.R, Γ(x : A) ⊢ R ⊲ R′ : B and

N = R′[x/Q′] for some R,R′.

The next theorem is the main reason why we can keep

track of the type while doing several consecutive reductions,

but not while doing expansions:

Lemma III.6. Type Exchange

If Γ ⊢ M ⊲ N : A and Γ ⊢ M ⊲ P : B, then

Γ ⊢ M ⊲ N : B and Γ ⊢ M ⊲ P : A.

Proof: By induction, there are no difficult cases since

we have the annotation on the applications.

This property allows us to prove that the following tran-

sitivity lemma for ⊲
+ is admissible:

Γ ⊢ M ⊲
+ N : A Γ ⊢ N ⊲

+ P : B

Γ ⊢ M ⊲
+ P : A

It will also be used in the proof of Church-Rosser to

avoid using the type uniqueness property at some minor

stage of the proof.

Lemma III.7. Type Correctness

If Γ ⊢ M ⊲ N : A, then there is s ∈ Sorts such as

either: A = s or Γ ⊢ A ⊲ A′ : s for some A′.

Theorem III.8. From TPOSR to PTS and PTSe

1) If Γ ⊢ M ⊲ N : A then |Γ| ⊢ |M | : |A|,
|Γ| ⊢ |N | : |A| and |M | ≡β |N |.

2) If Γ ⊢ M ⊲ N : A then |Γ| ⊢e |M | : |A|,
|Γ| ⊢e |N | : |A| and |Γ| ⊢e |M | = |N | : |A|.

Lemma III.9. Sort and Π-types incompatibility

It is impossible to prove that Γ ⊢ ΠxA.B ≡ s for any

Γ, A,B, s.

Proof: The proof relies on a translation of the equality

judgement Γ ⊢ ΠxA.B ≡ s in the PTSs by erasure of

the annotation with Theorem III.8.1. The confluence of β-

reduction forbids that Πx|A|.|B| ≡ s in any way.

At this point we need to recall what we said about the

order we used to prove things in PTS. We did not present

any kind of confluence for TPOSR. The reason is that, in

a typed framework like PTSe or TPOSR, the Confluence

and Church-Rosser properties are a blocking step. Since

they mix together typing and reduction, it is difficult to

find a proof without involving the Subject Reduction of

the system, and the proof of this theorem involves already

knowing the Π-injectivity property (as required for PTS in

the previous section) which comes from Confluence. The

next two sections will describe how we get rid of this circular

dependency in the functional and semi-full cases.

IV. THE Church-Rosser PROPERTY IN TPOSR

The next step in the meta-theory is to prove the Church-

Rosser property by proving that TPOSR enjoys the Diamond

Property:

Theorem IV.1. Diamond Property

If Γ ⊢ M ⊲ N : A and Γ ⊢ M ⊲ P : B, then there is Q
such that
Γ ⊢ N ⊲ Q : A Γ ⊢ N ⊲ Q : B
Γ ⊢ P ⊲ Q : A Γ ⊢ P ⊲ Q : B

We are trying to close the classic Church-Rosser diamond

diagram in a typed way. Almost all the cases are simply done

by induction, but the possible cases involving an application

constructor (app)/(app), (app)/(beta) or (beta)/(app) resist

in two ways:



1) some types involved in the conclusion of those judge-

ments are substituted (e.g. D[x/N ]), so we do not have

the complete typing information for D. That is why

the annotation is so useful: it lets us use an induction

hypothesis over D.

2) the annotation only gives us information about the co-

domain of the “function”, nothing about the domain.

The second problem is a serious one since it forbids

us to use one of our induction hypothesis: by doing

the proof by induction, we require the context to

be the same in both branches of the theorem. For

example in the (app)/(app) case, we are in the

following situation (after using some generation lemmas):
M = U(x)BV N = U ′

(x)B′V ′ P = U ′′
(x)B′′V ′′

Γ ⊢ U ⊲ U ′ : ΠxA.B Γ ⊢ V ⊲ V ′ : A
Γ ⊢ U ⊲ U ′′ : ΠxC .B Γ ⊢ V ⊲ V ′′ : C
Γ(x : A) ⊢ B ⊲ B′ : s Γ(x : C) ⊢ B ⊲ B′′ : t

The induction hypothesis gives us two more judgments:

• there is U0 such that Γ ⊢ U ′
⊲ U0 : ΠxA.B,ΠxC .B

and Γ ⊢ U ′′
⊲ U0 : ΠxA.B,ΠxC .B.

• there is V0 such that Γ ⊢ V ′
⊲ V0 : A, C and

Γ ⊢ V ′′
⊲ V0 : A, C.

In order to get a common reduct for B′ and B′′, we need

to apply the induction hypothesis, but it requires the second

context to be syntactically equal to Γ(x : A). If we could

have Γ ⊢ A ≡ C, we would be able to apply Lemma III.3 to

make both context match each other and apply the induction

hypothesis.

A. Proof of Church-Rosser in the functional case

By assuming functionality, we get the Uniqueness of

Types property at hand:

Lemma IV.2. Uniqueness of Types

If Γ ⊢ M ⊲ ? : A and Γ ⊢ M ⊲ ? : B, then A = B or

Γ ⊢ A ≡ B.

By applying Lemma III.4.2 to the judgments on V0, we

have that Γ ⊢ V0 ⊲ ? : A, C which gives us Γ ⊢ A ≡ C by

Uniqueness of Types. We can now close all the critical pairs

by applying the correct induction hypothesis.

B. Proof of Church-Rosser in the semi-full case

This time, we do not have the Uniqueness of Types. We

decided to make a deeper study of the types in TPOSR in

order to identify if there was not another way to enforce the

equality of types that we needed to conclude the proof of

the Diamond Property.

In [14], Jutting described a general “shape of types” of

PTSs:

Definition Terms classification in PTS

• Every x is in Tv.

• If M is in Tv, then MN and λxA.M are also in Tv.

• Every s or ΠxA.B is in Ts.

• If M is in Ts, then MN and λxA.M are also in Ts.

Theorem IV.3. Shape of types in PTS

∀M ∈ Tv, if Γ ⊢ M : A and Γ ⊢ M : B, then A ≡ B.

∀M ∈ Ts, if Γ ⊢ M : A and Γ ⊢ M : B, then there are

∆, s, t such that A ։β Π∆.s and B ։β Π∆.t.

He showed that even if a PTS does not have the

Uniqueness of Types property, it enjoys a weaker form of

equality in the sense that two types of a same term may

only differ by the last sort of their telescope form. This is

really close to what we needed to conclude.

It is easy to adapt the definitions of Tv and Ts to the

TPOSR framework. However the shape of types slightly

changes and is expressed as:

Theorem IV.4. Shape of types in TPOSR

If Γ ⊢ M ⊲ ? : A and Γ ⊢ M ⊲ ? : B, then:

• either Γ ⊢ A ≡ B
• or there are ∆, s, t such that:

– either Γ ⊢ A ≡ Π∆.s or A = s and ∆ = 〈〉
– and either Γ ⊢ B ≡ Π∆.t or B = t and ∆ = 〈〉

The additional ∆ = 〈〉 conclusion when A or B is a sort

comes from the fact that our typed equality is reflexive only

on well-typed terms, and a sort (e.g. the third sort of a triplet

of Rel) may not be well-typed. But if A is a sort, we still

want B’s telescope to be empty, even if it is convertible to

a sort.

Proof: The proof is almost trivial by induction on the

first judgement and generation on the second judgement, but

in the (lam) case, we will need to build a Π-type equality

from another equality:

Wrong Lemma. (naı̈ve) Π-functionality

If Γ(x : A) ⊢ B ≡ B′ then Γ ⊢ ΠxA.B ≡ ΠxA.B′.

This is where semi-full is needed: we know in the proof

of this theorem that the first term ΠxA.B is well-typed,

but we cannot enforce that every Π-type that appears in the

conversion sequence will be well-formed. Indeed, since we

cannot keep track of the sorts in the sequence, we know that

every term between B and B′ is well typed by a sort, but we

cannot be sure that every resulting Π-type will have a valid

triplet in Rel. This is why we need the semi-full hypothesis:

we need to be sure that if the first Π-type is well-typed, then

all the other that may appear in the sequence are also well-

typed. A correct statement is:

Lemma IV.5. Π-functionality

If Γ(x : A) ⊢ B ≡ B′, Γ ⊢ A ⊲ ? : s and

(s, t, u) ∈ Rel, then Γ ⊢ ΠxA.B ≡ ΠxA.B′.



This lemma is trivial by induction on the length of the

sequence, as soon as we are semi-full.

You can notice that this property is somehow weaker:

since we do not have yet the Π-injectivity in TPOSR,

we had to trade ։ for ≡ and we do not have the clear

separation between Tv and Ts anymore. However this is

enough to prove the Diamond Property. Now that we have

more information about the shape of types, we can go back

to the main proof.

By applying Theorem IV.4 to the two premises about U
Γ ⊢ U ⊲ U ′ : ΠxA.B and Γ ⊢ U ⊲ U ′′ : ΠxC , B, we get:

• either Γ ⊢ ΠxA.B ≡ ΠxC .B
• or Γ ⊢ ΠxA.B ≡ Π∆.s and Γ ⊢ ΠxC .B ≡ Π∆.t.

In both cases, by erasing the annotations of TPOSR with

Theorem III.8 and using the Π-injectivity of PTSs, we get

|A| ≡ |C|.
In the same way, if we apply Theorem IV.4 to V0, we

have either Γ ⊢ A ≡ C or both of Γ ⊢ A ≡ Π∆′.s′ and

Γ ⊢ C ≡ Π∆′.t′. In the second case, we can again erase the

annotations to translate the equality back to PTSs: |A| ≡ |C|
implies that Π|∆′|.s′ ≡ Π|∆′|.t′. In the untyped setting, we

can easily prove by Confluence that this configuration forces

s′ = t′. Back to TPOSR, we get that Γ ⊢ A ≡ Π∆′.s′ =
Π∆′.t′ ≡ C, so Γ ⊢ A ≡ C.

In both cases, we conclude that Γ ⊢ A ≡ C, so we can

apply the same conclusion as in the previous section, and

finish the proof that the Diamond Property is valid for semi-

full TPOSR.

V. CONSEQUENCES OF Church-Rosser

With Church-Rosser, we can finally settle with all the

missing pieces of theory that are really tedious to show in

a typed framework:

Lemma V.1. Confluence

If Γ ⊢ A ≡ B, there are C, s, t such that

Γ ⊢ A ⊲
+ C : s and Γ ⊢ B ⊲

+ C : t.

Lemma V.2. Π-injectivity

If Γ ⊢ ΠxA.B ≡ ΠxC .D then Γ ⊢ A ≡ C and

Γ(x : A) ⊢ B ≡ D.

Theorem V.3. Subject Reduction

If Γ ⊢ M ⊲ ? : A and M ։β N then Γ ⊢ M ⊲ N : A.

The proof of Π-injectivity in TPOSR completely relies

on Church-Rosser, not directly on the semi-full hypothesis.

So the proof is exactly the same whether we are functional

or semi-full. However, to prove Subject Reduction, we will

need the Π-functionality property in the case where we

reduce a β-redex, so semi-full is also required at this point.

Finally, the Π-injectivity property allows us to refine the

shape of types to retrieve the separation between Tv and

Ts. This gives us a hint for later: a well-typed term in Ts
is nothing but some λ abstractions followed by a term typed

by a sort, which has to be a sort or a Π-type.

Theorem V.4. Full Shape of types in TPOSR

1) If M ∈ Tv, Γ ⊢ M ⊲ ? : A and Γ ⊢ M ⊲ ? : B, then

Γ ⊢ A ≡ B.

2) If M ∈ Ts, Γ ⊢ M ⊲ ? : A and Γ ⊢ M ⊲ ? : B, then

there are ∆, s, t such that:

• either Γ ⊢ A ≡ Π∆.s or A = s and ∆ = 〈〉.
• and either Γ ⊢ B ≡ Π∆.t or B = t and ∆ = 〈〉.

VI. EQUIVALENCE OF TPOSR AND PTS

The last step to prove the equivalence is to prove the

correctness of annotations, i.e. to prove that every judgement

Γ ⊢ M : T can be annotated into a well-typed TPOSR

derivation Γ+ ⊢ M+
⊲ M+ : T+ where |Γ+| = Γ, |M+| =

M and |T+| = T .

To do so, we need to show some basic properties of the

annotation process. Since there are several ways to annotate

a term, we will face some difficult situations while doing

induction. Let’s take a simple example with the construction

of Π-types with the PI rule:

Γ ⊢ A : s Γ(x : A) ⊢ B : t (s, t, u) ∈ Rel

Γ ⊢ ΠxA.B : u
PI

By induction, we get that Γ1 ⊢ A1 ⊲ A1 : s and Γ2(x :
A2) ⊢ B2 ⊲ B2 : t with |Γ1| = |Γ2| = Γ and |A1| =
|A2| = A. To build a Π-type from those two judgments,

we need to relate Γ1 to Γ2 and A1 to A2 in TPOSR. More

precisely, we need to show that if two annotated types come

from the same non-annotated term, and if they are well-

typed in TPOSR, they are equivalent in TPOSR. Only with

this, we will be able to state a similar lemma for context

and prove that our annotation procedure is correct.

However, we have to recall that what we call here types

are just terms typed by a sort, and their typing judgement

may use β-redexes, which will involve “non-types”. So we

will state a more general lemma about the conversion of

different annotated versions of the same PTS term.

Lemma VI.1. Erased Confluence

If |M | = |N | , Γ ⊢ M ⊲ ? : A and Γ ⊢ N ⊲ ? : B , then

there is R such that

Γ ⊢ M ⊲
+ R : A, B and Γ ⊢ N ⊲

+ R : A, B.

The proof is done by induction on M , the

only difficult part is again the application case:
M = P(x)DQ, N = P ′

(x)D′Q′ |P | = |P ′|, |Q| = |Q′|
By generation, we get that P, P ′, Q and Q′ are well-

typed, so by induction, there are P0, Q0 such that:
Γ ⊢ P ⊲

+ P0 : ΠxC .D Γ ⊢ Q ⊲
+ Q0 : C

Γ ⊢ P ′
⊲

+ P0 : ΠxC′

.D′ Γ ⊢ Q′
⊲

+ Q0 : C ′



A. Proof of Erased Confluence in the functional case

Again, thanks to the Uniqueness of Types and Π-

injectivity we get that Γ(x : C) ⊢ D ≡ D′. By Confluence,

we get a common reduct D0 for D and D′, so the common

reduct of M and N is P0 D0
Q0.

B. Proof of Erased Confluence in the semi-full case

We now show that we can adapt the proof of the functional

case to the semi-full case by weakening the statement of the

lemma:

Lemma VI.2. Erased Confluence in semi-full PTS

If |M | = |N | , Γ ⊢ M ⊲ ? : A and Γ ⊢ N ⊲ ? : B , then

there is R such that

Γ ⊢ M ⊲
+ R : A and Γ ⊢ N ⊲

+ R : B.

Without the Uniqueness of Types, we are not sure that

all the correct annotations of an application are convertible,

we can only attest that when it is not the case, they are

convertible apart from their last sort. With this fact in mind,

it is easy to realize that we will not be able to make the

reduction sequences in both types, since the annotations that

appear in the reduction of type A have no chance to match

the types involved in the reduction of type B (and the other

way around).

Another consequence is that we do not have the equality

of the annotations Γ(x : C) ⊢ D ≡ D′ anymore, we just

know that Γ ⊢ P0 ⊲ ? : ΠxC , D, ΠxC′

, D′. But we can

concentrate ourselves on the types of P0.

If P0 ∈ Tv, then we have Γ ⊢ ΠxC .D ≡ ΠxC′

.D′ which

gives, thanks to the Π-injectivity, the equality Γ(x : C) ⊢
D ≡ D′ and allows us to conclude in the same way than

than we did for the functional case.

However, if P0 ∈ Ts, it seems that we are stuck. In the

proof of Church-Rosser, we only cared about the domains

C and C ′, but here we need to find a common reduct for

D and D′. The idea of translating to PTSs to justify that

the a priori different sorts are in fact the same one won’t

work, because this time, it is the very last sort that bothers

us, and even in the untyped setting they may be totally

different. We need something else.

As we previously said, we noticed that terms in Ts have

a very particular shape: they are build around sorts and Π-

types. By erasing the annotations and using the translation

from TPOSR to PTS, we can prove that neither a sort nor

a Π-type can be typed by a Π-type. This means that all the

applications hidden inside a Ts term are simply β-redexes,

which leads to the following (simplified) definition:

Lemma VI.3. Shape of Ts’ terms in TPOSR

If M ∈ Ts, Γ ⊢ M ⊲ ? : A and Γ ⊢ M ⊲ ? : B, then there

are ∆, K, s, t such that:

• Γ ⊢ M ⊲
+ λ∆.K : A and Γ ⊢ A ≡ Π∆.s

• Γ ⊢ M ⊲
+ λ∆.K : B and Γ ⊢ B ≡ Π∆.t

where K is a sort or a Π-type.

The real important fact here is that M reduces to the

exact same telescope in both types and that the proof

requires the framework to be semi-full for the same reason

as Π-functionality. The full statement and the proof are

quite technical, and are not the main point here. They can

be found in the Coq formalization, see [15].

Back to the proof of Lemma. VI.2, since P0’s type is a

Π-type, we are sure that the ∆ involved in its shape is not

empty. As a consequence, we can build a reduction from P0

to a valid λ-abstraction whose domain can be either the type

of Q or Q′ thanks to the conclusion about the types of the

telescope in Lemma VI.3 and the Π-injectivity.

We were not allowed to find a common reduct to D
and D′, but this is not the only solution anymore: the

common reduct here will not be another simple application,

but the result of the β-reduction initiated by the λ-abstraction

reduced from P0 applied to Q (resp. Q′). By generation, we

know that Γ ⊢ A ≡ D[x/Q] and Γ ⊢ B ≡ D′[x/Q′] so we

can do the β-reduction in M and N :
Γ ⊢ P(x)DQ ⊲

+ P0 (x)DQ : D[x/Q]
⊲

+ (λxCλ∆.K)(x)DQ : D[x/Q]
⊲

+ λ∆[x/Q].K[x/Q] : D[x/Q]
⊲

+ λ∆[x/Q0].K[x/Q0] : D[x/Q]
Γ ⊢ P ′

(x)D′Q′
⊲

+ P0 (x)D′Q′ : D′[x/Q′]

⊲
+ (λxC′

λ∆.K)(x)D′Q′ : D′[x/Q′]
⊲

+ λ∆[x/Q′].K[x/Q′] : D′[x/Q′]
⊲

+ λ∆[x/Q0].K[x/Q0] : D′[x/Q′]
In the end, we managed to find a common reduct in

each type without having to find a common reduct for the

annotations, which conclude the proof of this lemma.

C. Consequences of the Erased Confluence

With Lemma VI.2, we can show what we needed about

types and contexts:

Lemma VI.4. Erased Conversion

1) If |A| = |B| ,Γ ⊢ A ⊲ ? : s and Γ ⊢ B ⊲ ? : t then

Γ ⊢ A ≡ B.

2) If |Γ1| = |Γ2| and Γ1 ⊢ M ⊲ N : A, then

Γ2 ⊢ M ⊲ N : A.

We can now conclude the last missing piece of the whole

equivalence process:

Theorem VI.5. From PTS to TPOSR

If Γ ⊢ M : T , then there are Γ+, M+, T+ such that Γ+ ⊢
M+

⊲ M+ : T+, |Γ+| = Γ, |M+| = M and |T+| = T .

Proof: Since we have managed to prove Subject Re-

duction and Lemma VI.4, the proof is strictly the same as

in [11].



Finally, all of this leads us to state that:

Theorem VI.6. Equivalence of PTS and PTSe in the semi-

full case

1) Γ ⊢ M : T iff Γ ⊢e M : T .

2) Γ ⊢e M = N : T iff Γ ⊢ M : T , Γ ⊢ N : T and

M ≡β N .

Proof: This is just a combination of the following

lemmas:

• If Γ ⊢e M : T , then by Theorem II.3, we have Γ ⊢
M : T .

• If Γ ⊢ M : T , by Theorem VI.5 we know that

Γ+ ⊢ M+
⊲ M+ : T+ with |Γ+| = Γ, |M+| = M

and |T+| = T . By Theorem III.8, |Γ+| ⊢e |M+| : |T+|
which is equal to Γ ⊢e M : T .

• If Γ ⊢e M = N : T , so we conclude by Theorem II.3.

• If Γ ⊢ M : T , Γ ⊢ N : T and M ≡β N , by

Confluence, there is P such that M ։β P and

N ։β P . By Theorem VI.5, there are Γ′, M ′, A′

such that |Γ′| = Γ, |M ′| = M , |T ′| = T and
Γ′ ⊢ M ′

⊲ M ′ : A′

⇒ Γ′ ⊢ M ′
⊲ P ′ : A′ (Subject Reduction)

⇒ Γ ⊢e M = P : A (Theorem III.8 and (trans))
We do the same to conclude that Γ ⊢e N = P : A,

so by (sym) and (trans), we finally have

Γ ⊢e M = N : A.

VII. CONCLUSION

We have proven that any semi-full PTS that uses an exter-

nal notion of β-equality (PTS) is equivalent to its counterpart

that uses a typing judgment to deal with β-equality (PTSe).

Along with Adams’ results for any functional PTS, we covert

almost all known PTSs without having to rely on specific

model-based proof of normalization.

The whole process described here is based on some tech-

nically complex lemmas, so everything has been formalized

in the proof-assistant Coq [3], using de Bruijn indices [16]

to handle variable bindings. The whole development can be

found at [15].

The next step should be to adapt this approach to η-

conversion, or to extended type systems with sub-typing.

We are pretty confident in the first one since this will not

change the shape of types in any way. However, the latter

may need some more work to find the right shape of types

once sub-typing is added. If it is the case, we would be able

to apply this result to the ECC system.

However the question of a general equivalence for all PTS

is still an open question since they may be some pathological

PTS which are neither functional nor semi-full which are a

counter-example.
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