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Abstract— The forward problem in electroencephalography

aims to simulate on the scalp the potential V of an electromag-

netic field generated by a simulated source. It must fit precisely

with the electromagnetic propagation in the patient head. Yet,

the skull anisotropy happens to be highly anisotropic, and must

then be modeled. Although boundary element methods cannot

deal with anisotropy like finite element methods, the symmetric

BEM offers a higher accuracy than FEM wherever the conduc-

tivity can be considered as constant (i.e. for the brain and the

scalp). A domain decomposition (DD) framework allows to split

the global system into several ones with smaller computational

domains. Then, one method (BEM or FEM) can be used per vol-

ume. This work presents such a coupling formulation of a 3-DD

method solving iteratively a BEM for the brain, a FEM for the

skull layer, and finally a BEM for the scalp.

Keywords— EEG, BEM, FEM, Coupling, Domain Decompo-

sition

I. INTRODUCTION

The problem of finding the sources in the brain that are

responsible for a measured EEG signal is an inverse prob-

lem of localization whose resolution requires many resolu-

tions of the forward problem. The latter computes the poten-

tial V on the scalp of an electromagnetic field generated by a

simulated source (in our case a dipole Jp). This propagation

through the head is governed by the Maxwell equations in

their quasi-static approximation. The forward problem reso-

lution is achieved solving for V the Poisson equation:







∇ · (Σ∇V ) = ∇ · Jp in Ω

(Σ ∇V ) ·n = 0 on Γ

(1)

,with Σ the head tissues’ conductivity and Γ the Scalp/Air in-

terface (outflow current through the neck is neglected). The

forward model must fit precisely with the electromagnetic

propagation in the patient head. Although the white mat-

ter makes the brain anisotropic, the skull anisotropy has a

strong influence on the results, and must therefore be taken

into account. Indeed, the skull conducts electricity ten to

eighty times stronger in tangential directions than in the ra-

dial one. Finite Element Methods (FEM:s) can deal with this

anisotropy, but offer a poor accuracy when compared to the

symmetric Boundary Element Method (sBEM) in homoge-

nous media. Therefore the coupling of both should yield bet-

ter accuracy ; using the BEM wherever the conductivity can

be considered as constant (i.e. for the scalp and the brain

when we neglect white matter anisotropy), and the FEM for

the skull.

Fig. 1: A three-layer head model with nested regions.

II. THE SYMMETRIC BEM, THE IMPLICIT FEM

AND COUPLING FORMULATIONS

A. The symmetric BEM, and the implicit FEM

Wherever conductivity is considered as constant in a set

of nested regions (see Fig. 1) then the first equation in Eq. 1

becomes σ∆V = ∇ · Jp and can be solved using integral for-

mulations. Instead of the classical formulation that involves

double-layer potentials, we use a formulation that involves

both double-layer and single-layer potentials, to yield a sym-

metric system of equations. The symmetric BEM [1] involves

both the potential and the normal current as unknowns on tri-

angulated surfaces describing the different regions.

FEM:s usually require to mesh the entire volume to spread

the information from the source through the computational



domain. The geometry used to solve the forward problem in

EEG comes from anatomical MRI:s. These 3D-images are

then segmented to obtain a levelset description of the regions

to model. Generation of the (most often tetrahedral) meshes

can be achieved but is usually expensive computationally and

time consuming. The implicit FEM [3] bypasses this mesh

generation step, going directly from the levelsets of the inter-

faces separating the various domains to the matrix associated

to the FEM. It works on Cartesian grids with the potential V

at the node locations as unknown, described with Q1 finite

elements.

The sBEM developped in the open-source code OpenMEEG,

turns out to be much more accurate than other BEM:s, and

also than the implicit FEM (iFEM).

B. A BEM-FEM coupling

Domain decomposition is a widely used numerical tech-

nique that allows to split the computational domain into re-

gions of constant conductivities on the one hand and the skull

on the other hand. We will then be able to use the appropri-

ate method (BEM or FEM) per volume. Boundary conditions

ensure the communication between the sub-problems. Sev-

eral iterations are needed to solve the global system, and a

relaxation at the interfaces is compulsory to ensure conver-

gence.

We first propose a Neumann-Dirichlet approach which iter-

atively solves a BEM for the brain region, and a FEM for

the skull and the scalp region. At iteration k, we first solve a

BEM with Neumann boundary condition, to obtain V at the

brain/skull interface. Secondly, a mixed Dirichlet - homoge-

neous Neumann problem is solved with the FEM using the

newly computed V at the brain/skull interface as boundary

condition. This gives V on the scalp:































σ1∆V k
1 = ∇ · Jp in Ω1,

σ1∂nV k
1 = λ k on Γ1,

∇ · (Σ∇V k
2,3) = 0 in Ω2 ∪Ω3,

V k
2,3 = V k

1 on Γ1,

σ3∂nV k
2,3 = 0 on Γ3,

(2)

Finally, λ k+1 is updated by combining the normal current

computed by the FEM on the brain/skull interface and the

previous λ k with a relaxation parameter ω:

λ
k+1 = (1−ω)λ

k +ω(Σ2∇V k
2 ) ·n on Γ1 , ω > 0

We also present a Neumann-Dirichlet-Neumann coupling

procedure, restricting the FEM to the skull only (see Fig. 2),

and completing the computations with a BEM for the scalp:































































σ1∆V k
1 = ∇ · Jp in Ω1,

σ1∂nV k
1 = λ k

1 on Γ1,

∇ · (Σ2∇V k
2 ) = 0 in Ω2,

V k
2 = V k

1 on Γ1,

V k
2 = V k−1

3 on Γ2,

σ3∆V k
3 = 0 in Ω3,

σ3∂nV k
3 = λ k

2 on Γ2,

σ3∂nV k
3 = 0 on Γ3,

(3)

With relaxations made on the Neumann’s parameters λ1

and λ2:

λ
k+1
1 = (1−ω1)λ k

1 +ω1(Σ2∇V k
2 ) ·n on Γ1 , ω1 > 0

λ
k+1
2 = (1−ω2)λ k

2 +ω2(Σ2∇V k
2 ) ·n on Γ2 , ω2 > 0

(4)

Initial condition for this coupling scheme is: V 0
3 = 0, with

the relaxation parameters: ω1 = ω2 = 1 for k = 1. For k > 1,

relaxation parameters are set manually to ω1 = ω2 = 0.7 ; a

higher relaxation parameter would make the scheme diverge.

Fig. 2: The three-layer head model with the FEM’s grid for the skull.

Special care must be observed for the Neumann problem,

indeed no accumulation of current should appear, therefore

numerically we ensure that:

∫

Ω1
∇ · Jp +

∫

Γ1
λ k

1 = 0 ,∀k

∫

Γ2
λ k

2 = 0 ,∀k

(5)



Fig. 3: RDM for the isotropic case, for pure and coupled methods.

III. NUMERICAL RESULTS.

In order to validate results of the forward problem, analyti-

cal solutions are computed on a three-layer concentric sphere

model [2], for both isotropic and anisotropic skull layer. Radii

of the spheres and conductivities of the different layers are

respectively {0.87, 0.92, 1.0} and {1.0, 0.0125, 1.0} for the

isotropic case. Considering the anisotropic one, we have set

up the conductivity in the tangential direction to ten times

the normal one. The sBEM is computed on 642 point mesh

per surface, and the iFEM considers a Cartesian grid of 90

points in each direction. The BEM-FEM coupling as well

as the BEM-FEM-BEM coupling use the same previous grid

sizes. Computations have been done for 5 dipoles oriented

in Cartesian coordinates: (1, 1, 0), and locations along the

Z-axis: {0.465, 0.615, 0.765, 0.8075, 0.8415}. Accuracies of

the numerical solutions are given by the Relative Difference

Measure (RDM) of the potential on the scalp:

RDM =

∥

∥

∥

∥

Vanalytic

‖Vanalytic‖
−

Vcomputed

‖Vcomputed‖

∥

∥

∥

∥

(6)

Fig. 3 shows the RDM for both pure and coupled methods

in the isotropic case. The iFEM method in blue (dashed) is

the less precise due to the poor grid definition. We see that the

sBEM is the most accurate with a RDM always below the 2%.

The BEM-FEM coupling in red (full with diamonds) shows

a slight improvement compared to the accuracy of the FEM,

whereas the BEM-FEM-BEM coupling really inherits its ac-

curacy from the BEM. Coupling process have been stopped at

40 iterations. At this point the relative residuals computed as:
∥

∥

∥
(Σ2∇V k+1

2 )·n|
Γi
−λ k

i

∥

∥

∥

‖λ k
i ‖

, for i = 1,2 were all below 6.10−5. These

results do not show the full benefit of the coupling, be-

cause the coupling takes its sense for anisotropic conductiv-

ities. As BEM cannot handle anisotropy, they must model

the skull as isotropic and therefore their high accuracy is

partly wasted because of the coarse model approximation.

On Fig. 4, we have plotted the result of the BEM with an

isotropic skull whose conductivity equals 0.0125 compared

with the anisotropic analytical solution with conductivities

(radial, tangential) = (0.0125,0.125). The iFEM as well as

the BEM-FEM-BEM coupling have been computed with an

anisotropic skull. This time, results have been compared on

15 dipoles: the five previous locations for three different ori-

entations: (1, 0, 1) in blue, (1, 1, 0) in green and (0, 0, 1) in

red color. One can see that the coupling (full line) has a better

precision than the BEM (dashed line with diamonds) for all

dipoles expected the two located at (0, 0, 0.8415) with orien-

tations (1, 0, 1) and (0, 0, 1). As it comes closer to the skull,

the singularity of the dipole makes the approximation due

to the iFEM’s grid worse. Using a higher resolution FEM’s

grid, this error should go diminishing. Results on the blue

curve for the coupling are not gratifying; there are some con-

vergence problems with our BEM-FEM-BEM algorithm, for

some dipole orientations, that we have not yet solved.



Fig. 4: RDM for the anisotropic case, for pure and coupled methods.

IV. CONCLUSION

The domain decomposition framework really allows to

take advantage of both the versatility of the FEM in modeling

conductivity and the accuracy of the BEM. It gives hope for

providing accurate solutions of the forward problem without

resorting to diminishing the mesh size in finite element meth-

ods. One could try to find a relaxation parameter changing

through iterations to faster convergence. Parallelism is often

used in the domain decomposition community, but it was not

pertinent in our case since the sBEM has a direct solver, and

only requires a matrix vector product to solve a new Neu-

mann problem for each iteration ; most of the time is spent in

the iterative solver of the FEM.
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element methods using levelsets. In Proceedings of MMBIA 07, 2007.

Author: Emmanuel Olivi
Institute: INRIA
Street: 2004 route des lucioles BP93
City: Sophia-Antipolis Cedex
Country: France
Email: Emmanuel.Olivi@sophia.inria.fr


