
HAL Id: inria-00497116
https://inria.hal.science/inria-00497116v1

Submitted on 2 Jul 2010 (v1), last revised 2 Jul 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memory Access Characterization of OpenMP Workloads
on a Multi-core NUMA Machine

Christiane Pousa Ribeiro, Alexandre Carissimi, Jean-François Méhaut

To cite this version:
Christiane Pousa Ribeiro, Alexandre Carissimi, Jean-François Méhaut. Memory Access Character-
ization of OpenMP Workloads on a Multi-core NUMA Machine. [Research Report] 2010. �inria-
00497116v1�

https://inria.hal.science/inria-00497116v1
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
??

??
--

F
R

+
E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Memory Access Characterization of OpenMP
Workloads on a Multi-core NUMA Machine

Christiane Pousa Ribeiro — Alexandre Carissimi — Jean-François Méhaut

N° ????

June 2010

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Memory A

ess Chara
terization of OpenMP

Workloads on a Multi-
ore NUMA Ma
hine

Christiane Pousa Ribeiro, Alexandre Carissimi , Jean-François

Méhaut

Thème NUM � Systèmes numériques

Équipe-Projet MESCAL

Rapport de re
her
he n° ???? � June 2010 � 26 pages

Abstra
t: Nowadays, on hierar
hi
al shared memory multipro
essors with

Non-Uniform Memory A

ess (NUMA), the number of
ores a

essing mem-

ory banks is
onsiderably high. Su
h a

esses produ
e more stress on the

memory banks, generating load-balan
ing issues, memory
ontention and re-

mote a

esses. In this
ontext, it is important to have a good understanding of

memory a

ess patterns and what are the in�uen
es of data pla
ement on su
h

patterns. In this do
ument, we have investigated memory a

esses behavior of

mi
roben
hmarks and ben
hmarks over a

NUMA platform with multi-
ore

pro
essors. Additionally, we have evaluated a set of memory poli
ies that were

used to pla
e data among the ma
hine memory banks. Our results have shown

that an appropriate sele
tion of data pla
ement,
onsidering the memory a
-

esses,
an generated great improvement gains.

Key-words: multi-
ore pro
essors, NUMA ar
hite
ture, memory a�nity, nu-

meri
al appli
ation, performan
e evaluation,
hara
terization

Memory A

ess Chara
terization of OpenMP

Workloads on a Multi-
ore NUMA Ma
hine

Résumé : Sur les nouvelles ma
hine hiérar
hise multipro
esseurs à mémoire

partagée ave
 ses a

ès mémoire non-uniforme (NUMA), le nombre de
oeurs

que font des a

ès aux banques mémoire est
onsidérablement grand. Ces a

ès

produisent des problèmes d'équilibrage de
harge,
ontention de mémoire et les

a

ès distants
oûteux. Dans
e
ontexte, il est important d'avoir une bonne

ompréhension des
es a

ès de mémoire et quelles sont les in�uen
es de pla
e-

ment des données sur de tels modèles. Dans
e do
ument, nous avons étudié

le
omportement d'a

ès mémoire utilisant ben
hmarks sur une plate-forme

-

NUMA ave
 pro
esseurs multi-
ore. Nous avons aussi évalué un ensemble de

politiques de la mémoire qui ont été utilisés pour pla
er des données sur les

banques mémoire de la ma
hine. Nos résultats ont montré qu'une séle
tion

appropriée de pla
ement des données, en
onsidérant les a

ès mémoire, peut

générer des grands améliorations de performan
e.

Mots-
lés : ar
hite
tures NUMA, multi-
ore pro
esseur, a�nité mémoire,

appli
ation numérique, étude de performan
es,
atégorisation

Memory A

ess Chara
terization of Workloads on NUMA 3

1 Introdu
tion

The
on
ept of

NUMA ma
hines was �rst proposed on 80's/90's to over
ome

s
alability problems on
lassi
al symmetri
 multipro
essors [1℄. A

NUMA

platform is a large s
ale multi-pro
essed system in whi
h the pro
essing elements

are served by a shared memory that is physi
ally distributed into several memory

banks inter
onne
ted by a network. NUMA ar
hite
tures
ombine the e�
ien
y

and s
alability of MPP (Massively Parallel Pro
essing) with the programming

fa
ility of SMP ma
hines [2℄. Be
ause of the network inter
onne
tion, memory

a

ess
osts may vary, depending on the distan
e between pro
essing units and

memory banks. Thus, time spent to a

ess data is
onditioned by the distan
e

between the pro
essor and memory bank where data was pla
ed. The memory

a

ess by a given pro
essor
an be lo
al (data is
lose) or remote (it has to use

the inter
onne
tion network to a

ess the data) [2, 3℄.

The in
reasing number of
ores per pro
essor and the e�orts to over
ome

the memory wall problem remain a problem in High Performan
e Computing

(HPC). Due to this,
a
he-
oherent Non-Uniform Memory A

ess (

NUMA)

platforms are
oming ba
k as
omputing resour
es for numeri
al s
ienti�
 HPC.

Besides the non-uniformity on memory a

ess that were already present on

80's/90's

NUMAs, on nowadays

NUMAs (e.g., ma
hines based on AMD

Opteron and Intel Nehalem pro
essors), the number of
ores a

essing memory

banks is
onsiderably larger than in the older

NUMA ma
hines (e.g., DASH

and SGI). These a

esses produ
e more stress on the memory banks, generating

load-balan
ing issues, memory
ontention and remote a

esses. As these ma-

hines are extensively used in HPC, it is important to redu
e memory a

ess

osts. To do this, we have to understand memory a

ess patterns and what are

the in�uen
es of data pla
ement on su
h patterns [4℄.

In this work, we have investigated memory a

esses behavior of mi
roben
h-

marks and ben
hmarks over a AMD Opteron

NUMA platform with multi-
ore

pro
essors (dual
ore) [5℄. We have fo
us our evaluation on numeri
al s
ienti�

parallel ben
hmarks that have as main
hara
teristi
 high memory
onsumption

(Stream ben
hmark [6℄ and NAS Parallel ben
hmark [7℄). The memory a

esses

behavior investigation has been based on three types memory operations (read

a

ess, write a

ess and read/write a

ess), how data are a

essed (regular, ir-

regular and random a

esses) and how work were distributed to threads. Our

results have shown that memory a

esses behavior is related to data and threads

pla
ement on the ma
hine nodes. To
on�rm su
h results, we have used a set

of memory poli
ies (MAi interfa
e [8℄) on NAS Parallel Ben
hmarks to better

distribute data and improve performan
e.

The report is stru
tured as follows. In Se
tion 2 we introdu
e ben
hmarks

we have used for the
hara
terization. Se
tion 3 des
ribe the

NUMA platform

that has been used on the workload
hara
terization . We present in Se
tion 4

the workload
hara
terization and dis
uss the obtained results. Finally, in the

last se
tion we present our
on
lusions and future work.

2 Mi
roben
hmarks and Ben
hmarks

In this se
tion, we present the mi
roben
hmark and the ben
hmark we have

used in this work to
hara
terize memory a

ess patterns. We �rst present two

RR n° 0123456789

4 Ribeiro & et. al

mi
roben
hmarks, Stream [6℄ and Bandwidth [9℄. After that, we present the

Ben
hIt Ben
hmark [10, 11℄ and NAS Parallel Ben
hmark [12, 7℄.

2.1 Stream

Stream is a simple ben
hmark that is largely used to memory performan
e

evaluation [6℄. It is a syntheti
 ben
hmark appli
ation that measures memory

bandwidth and the
omputation rate ve
tor for
omplex memory a

ess pat-

terns. To
ompute su
h metri
s, Stream uses three ve
tor and four operations

(
opy, s
ale, add, triad). Additionally, in order to avoid any
a
he in�uen
e on

the results, ea
h ve
tor has a large number of elements.

Table 1 shows Stream operations and their spe
i�
ation. As we
an ob-

serve, all operations are performed with double ve
tors. Copy operation allows

user to measure transfer rates between pro
essing unit and memory bank. The

operation s
ale adds a multipli
ation by a s
alar to the
opy operation. Sum

allows users to verify memory system performan
e when multiple loads/stores

are performed. The operation triad is a merge of all operations (
opy, s
ale and

sum).

Table 1: Stream operations

Operation Name Operation Data type

Copy a[i℄ = b[i℄ double

S
ale a[i℄ = q*b[i℄ double

Sum a[i℄ =
[i℄+b[i℄ double

Triad a[i℄ =
[i℄+q*b[i℄ double

In this work, we have used the C implementation of Stream with OpenMP

for
ode parallelization. For the parallel version of Stream, threads share all the

three ve
tors. However, ea
h thread
omputes a
hunk of the workload. The

hunk size is equal for all threads, ex
ept for the last thread that
an has a

larger
hunk size if the number of elements of ve
tors are not divisible by the

number of threads. In our experiments, we have used 2 millions of elements for

ea
h ve
tor of Stream (larger than the
a
he size of the

NUMA platform).

2.2 Bandwidth

Bandwidth is a mi
roben
hmark that has as main goal to measure memory

bandwidth of platforms. It helps users to have a better idea of real bandwidth

of memory subsystem [9℄.

The ben
hmark is
omposed by a set of fun
tions that performs sequential

read and write on main memory and
a
he L2. Bu�ers large than
a
he sizes

for main memory tests are allo
ated with mallo
 and then pointers are used

to a

ess data on read and on write. The same approa
h is performed for

a
he tests. At the end of the exe
ution the ben
hmark generates as output the

bandwidth in MB/s.

INRIA

Memory A

ess Chara
terization of Workloads on NUMA 5

2.3 Ben
hIT

Ben
hIT is a framework that allows users to perform measurements and analysis

of high performan
e systems [10℄. The framework only support systems that

are UNIX based (POSIX
ompliant shell and C-
ompiler). It is
omposed by

several appli
ations (e.g. re�e
tion) and kernels (e.g. BLAS, FFT, Ja
obi) that

provides di�erent levels of perform measurements and analysis.

This framework has been proposed as a proje
t and it aims at providing

the
omputational tools to evaluate a ma
hine in di�erent
ontexts. Addition-

ally, Ben
hIT provides an graphi
al interfa
e that helps users in plotting and

visualizing their results.

Sin
e we are interested in memory
hara
teristi
s, in this work, we will work

with a subset of ben
hmarks from Ben
hIT.The
hosen ben
hmark is named x86

memory ben
hmark and it allows us to measure memory bandwidth (parallel

and sequential way) and memory late
y [11℄.

2.4 NAS Parallel Ben
hmarks

NAS Parallel Ben
hmarks (NPB's) is a ben
hmark derived from
omputational

�uid dynami
s (CFD)
odes and it is
omposed by a set of appli
ations and

kernels [7℄. NPB's appli
ations and kernels perform representative
omputation

and data
ommuni
ation of CFD
odes. Su
h ben
hmark has been implemented

on di�erent languages and using di�erent strategies for
ode parallelization.

Figure 1: Fast Fourier Kernel

From NPB's, we sele
ted �ve kernels/appli
ations: fast Fourier Transform

(FFT), Multigrid (MG), lower and upper triangular system solution (LU), Con-

jugate Gradient method (CG), solution of pentadiagonal equations (SP) and

blo
k tridiagonal equations solution (BT). These kernels were
hosen due to

RR n° 0123456789

6 Ribeiro & et. al

their memory a

ess patterns (both have irregular data a

ess patterns) and

di�erent data stru
tures types. Additionally, they represent important
lasses

of algorithms and
omputations.

FFT is a kernel that
omputes the fast transform of Fourier for three di-

mensional systems. The appli
ation works with
omplex numbers that are rep-

resented with stru
tures. The
omputation is done in one dire
tion by step and

ea
h thread
omputes Z imaginary planes. There are three main steps in the

FFT
omputation and data are shared just in the se
ond step. In our experi-

ments, we used a 512x256x256 matrix. Su
h kernel was implemented in C using

OpenMP to
ode parallelization. Figure 1 shows a s
hema of the appli
ation.

MG is a kernel that uses a V
y
le MultiGrid method to
al
ulate the solution

of the 3D s
alar Poisson equation. The main
hara
teristi
 of this kernel is that

it tests both short and long distan
e data movement. In our experiments, we

have used 102x102x102 elements for matri
es. Su
h kernel was implemented in

C using OpenMP for
ode parallelization.

LU is a well know appli
ation that solves a 3D seven-blo
k-diagonal system

using lower-upper triangular systems solution. This appli
ation works with reg-

ular sparse matri
es and it uses symmetri
 su

essive over relaxation(SSOR)

operations. In our experiments, we have used 102x102x102 elements for matri-

es. LU was implemented in C using OpenMP for
ode parallelization.

Figure 2: Conjugate Gradient Kernel

CG is also a kernel that uses a
onjugate gradient method to
ompute an

approximation to the smallest eigenvalue of a large, sparse, unstru
tured matrix.

This kernel tests unstru
tured ve
tor
omputations and
ommuni
ations. It uses

a matrix with randomly generated lo
ations of entries whi
h gives a large amount

of
a
he misses. The input parameter of this kernel is the size of the array that

will be used for
omputation. In this
ase, we used an array of size 75000. Su
h

kernel was implemented in C using OpenMP for
ode parallelization. Figure 2

presents a s
hema of the appli
ation.

SP is an appli
ation that
omputes the solution for a s
alar pentadiagonal

systems. The
omputation is donne with three dimensions matri
es but, in just

one dire
tion by step. This appli
ation has one parti
ularity, the number of

pro
ess/threads used in the
omputation must be square. Furthermore, this

INRIA

Memory A

ess Chara
terization of Workloads on NUMA 7

Figure 3: S
alar Pentadiagonal Appli
ation

appli
ation has a bottlene
k fun
tion that minimizes the s
alability of the
ode

in some ar
hite
tures, as des
ribe in [13℄. In our experiments, we have used

102x102x102 elements for matri
es. Su
h kernel was implemented in C using

OpenMP for
ode parallelization. Figure 3 presents a s
hema of the appli
ation.

� �

c----BT:

call compute_rhs

call x_solve

call y_solve

call z_solve

call add

c-- ADD function

!$omp parallel do default(shared) private(i,j,k,m)
 do k = 1, grid_points(3)-2
 do j = 1, grid_points(2)-2
 do i = 1, grid_points(1)-2
 do m = 1, 5
 u(m,i,j,k) = u(m,i,j,k) + rhs(m,i,j,k)
 enddo
 enddo
 enddo
 enddo

Figure 4: Blo
k-Tridiagonal Appli
ation

BT is an appli
ation that
omputes a solution for multiple and independent

systems of non diagonally dominant. As in SP, the
omputation is donne with

three dimensions matri
es but, in just one dire
tion by step. The steps on ea
h

dimension are represented by the fun
tions: solve_x, solve_y and sole_z. In

our experiments, we have used 102x102x102 elements for matri
es. Su
h kernel

was implemented in C using OpenMP for
ode parallelization. Figure 4 shows

a s
hema of the appli
ation.

RR n° 0123456789

8 Ribeiro & et. al

3

NUMA Platform

The

NUMA platform used on this work is an eight dual
ore AMD Opteron

Pro
essor 875 2.2 GHz (Figure 5). It is organized in eight nodes of two
ores

with 1 MB of
a
he L2 for ea
h
ore. It has a total of 32 GB of main memory

(4 GB of lo
al memory). Ea
h node has three
onne
tions (HyperTransport [5℄)

whi
h are used to link with other nodes. However, nodes zero and one have just

two
onne
tions to other nodes. On su
h nodes, the third
onne
tion is used

to
onne
t input and output devi
es. The
onne
tions give di�erent memory

laten
ies for remote a

ess by nodes of the platform.

Figure 5: AMD Opteron Pro
essor 875

The
ompiler that has been used for the OpenMP
ode
ompilation was the

GCC (GNU C Compiler) version 4.3. The operating system that has been used

in this ma
hine is Linux version 2.6.23-1-amd64 and the distribution is Debian

with support for NUMA ar
hite
ture (system
alls, user API and numa
tl). A

s
hemati
 representation of this ma
hine is given in Figure 6.

3.1 NUMA Impa
t

On the platform des
ribed on above se
tion, there are NUMA penalties
aused

by di�erent memory a

ess
osts. To better understand the sele
ted platform,

we have been
omputed NUMA penalties by performing some experiments with

Bandwidth and Stream mi
roben
hmarks and numa
tl tool [14℄. The numa
tl

tool allows user to sele
t where to pla
e data and threads among the ma
hine

nodes. It binds data and threads to memory banks and
ores.

We have run the Bandwidth ben
hmark on the Opteron ma
hine to measure

the bandwidth inside a node. Table 2 shows the bandwidth that has been

obtained for
a
he L2 and main memory of a node. Sin
e nodes 0 and 1 have

onne
tions to input and output, we have used numa
tl to run the appli
ation

on node 2 to avoid any I/O interferen
e.

INRIA

Memory A

ess Chara
terization of Workloads on NUMA 9

Figure 6:

NUMA Platforms

Table 2: Bandwidth of Ca
he and Main Memory for a Node

L2
a
he read L2
a
he write Main Memory read Main Memory write

Bandwidth 3532.05 MB/se
 2508.74 MB/se
 1383.69 MB/se
 1157.05 MB/se

In Table 2, we
an observe that bandwidth for read operations are larger

than for write operations. In order to perform a write operation, the ma
hine

has to read the target data from memory into
a
he before performing the write.

Due to this, more data has to be transfered to perform the operation.

Bandwidth ben
hmark is useful to measure memory performan
e of one

node of the NUMA ma
hine. Additionally, it has very simple a

ess patterns

(read and write). In order to evaluate memory performan
e of more
omplex

a

ess patterns and of
on
urrent a

esses on memory we have performed some

experiments with Stream ben
hmark.

Stream have four memory operations and for thiw work we have sele
ted

the most
omplex and signi�
ant operation for our experiments. The sele
ted

operation was the triad operation, in whi
h three arrays and one s
alar are used

(as des
ribed on previous se
tion).

Sin
e we are interested on evaluate

NUMA platform memory a

ess
osts

and how multi-
ores
an impa
t on su
h
osts, we have sele
t as metri
s: average

exe
ution time, bandwidth and NUMA fa
tor 1. Regarding to the average time

to a

ess some data from node i to node j, we have used numa
tl to pla
e data

and threads over the ma
hine. We have done this
omputation for all nodes of

the ma
hine, for read and write operations. Considering bandwidth, we have

1NUMA fa
tor is the ration between the remote laten
y and lo
al laten
y to a

ess some
data

RR n° 0123456789

10 Ribeiro & et. al

� �

�� ��� ���

�� ��� ����� ��������

��������

�� ��� ���

�� ��� ��� ��������

����������

�� ��� ���

�� ��� ��� ����������

��������

�� ��� �����

�� ��� ��� ��������

��������

�	
	���

���

��
	���

��� ����
���

�����������

����
���

���������������
���

������������

Figure 7: Lo
al and Remote Data A

ess Performed by Thread T0.

� �

�� ��� �����

�� ��� ����� ����������

����������

�� ��� �����

�� ��� ����� ����������

����������

�� ��� ���

�� ��� ����� �� �������� ����

��������

�� ��� ���

�� ��� ����� �� �������� ����

��������

�	
��
���	���
�
�

���������	���
�
�

Figure 8: Centralized and Distributed Data and Threads Pla
ement.

omputed the amount of data transfered per se
ond intra and inter nodes, using

di�erent number of
ores (we used Stream for this). For NUMA fa
tor, we have

INRIA

Memory A

ess Chara
terization of Workloads on NUMA 11

al
ulated it for all ma
hine nodes. We have pla
ed data on one node and then,

we have a

essed it by a di�erent node using numa
tl.

The results have been obtained through the average of several exe
utions

varying the number of threads (from 1 to twi
e maximum number of
pus/
ores

of the platform) and data pla
ement strategies. Memory a

esses
osts have

been
omputed by pla
ing data and threads on di�erent nodes of the ma
hine.

Considering to data a

ess, we have pla
ed data on di�erent nodes (lo
al or

remote to thread) of the ma
hine in order to
ompute the impa
t on memory

a

ess
osts (Figure 7). Di�erent data and thread pla
ements have been also

used (8). In this
ase, we have pla
ed data in two fashions: a
entralized way

(allo
ate on only one memory bank) or a distribute way (allo
ate some memory

banks). Considering threads, we have binded them to
ores, using all the
ores

of a pro
essor or using just one
ore per pro
essor. Results have presented a low

standard deviation (1.22), sin
e all experiments have been done with ex
lusive

a

ess to the

NUMA ma
hine. Our results are organized by metri
s, we �rst

present the results for laten
y. After that, we present bandwidth and NUMA

fa
tor results.

Table 3: Average Time in se
onds for Lo
al and Remote Triad Operation.

Operation Name Lo
al Adja
ent Node 2 Hops Node 3 Hops Node

Triad 0.279 0.319 (x1.14) 0.325 (x1.16) 0.386 (x1.38)

Table 3 presents average time for sequential Triad operations for lo
al and

remote data (data size of 30.5MB). The results show that remote operation

osts are more expensive than lo
al ones. The proto
ol used on Opteron ma-

hines to assure
a
he
oheren
e is the MOESI proto
ol [15℄. On su
h proto
ol,

write operations are more expensive than read operations. On write opera-

tion more tra�
 is generated over the network, be
ause the proto
ol have to

invalidate/update data
opies of other nodes.

Figure 9: Average time (s): Centralized x Distributed Data Pla
ement

Figure 9 shows the average time obtained with Triad operation from Stream

ben
hmark when data is allo
ated in just one memory bank (Lo
al Master

RR n° 0123456789

12 Ribeiro & et. al

urve) and when data is distributed among the ma
hine memory banks. We

an observe, that data pla
ement on just one memory bank have generated

worst laten
ies. In this
ase, all threads a

ess
on
urrently the same memory

bank, generating remote a

esses and memory
ontention. Remote a

esses

are generated be
ause some threads are distant from the memory bank where

data was pla
ed and must pass through other nodes to a

ess data. Considering

memory
ontention, several threads uses the same inter
onne
tion links to a

ess

the required data. Someone may think that this is an idiot way of pla
ing data

but several parallel appli
ations have been implemented in this fashion. On

su
h appli
ations, the master thread is responsible for allo
ate and initialize

data. Thus, this thread tou
hes data �rstly and in some operating systems

(e.g., Linux), data is pla
ed on the node that �rst tou
hed it.

Figure 10: Average Time (s): Centralized x Distributed Data and Threads

Pla
ement

In Figure 10, we present average time obtained with data and thread pla
e-

ment presented in Figure 8. The best times have been obtained with lo
al

thread data pla
ement. This is mean that when threads have their data on the

same node the number of remote a

ess is minimized. An important result that

must be observed in this �gure is laten
ies with two
ores. The usage of two

ores has resulted in worse performan
e when
ompared to the usage of only

one
ore per pro
essor (
urves yellow and green). In this
ase, results have been

in�uen
ed by memory
ontention inside the nodes. Thus, we must avoid to use

all the pro
essor
ores when the appli
ation number of threads is smaller than

the ma
hine number of
ores.

In Table 4, we present the NUMA fa
tor for all nodes of this ma
hine. We

have used a tuned version of Stream ben
hmark to
ompute the NUMA fa
tor.

Data size have been larger than
a
he size. Considering our experiments, the

NUMA fa
tor on this platform varies from 1.024 to 1.55, whi
h means that on

NUMAs based on Opteron pro
essors, remote a

ess are not expensive. Some

variations on NUMA fa
tor values may be expe
ted, sin
e it depends on the

memory a

ess patterns of the appli
ation and the
a
he usage.

Figure 11 shows bandwidth results that have been obtained with Stream

Ben
hmark. From one to eight
ores the bandwidth in
reases almost linearly.

INRIA

Memory A

ess Chara
terization of Workloads on NUMA 13

Table 4: NUMA Fa
tor for Opteron Platform Nodes

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

Node 1 1.0000 1.55 1.2122 1.1974 1.2374 1.4388 1.3093 1.3057

Node 2 1.55 1.0000 1.1872 1.2959 1.4606 1.2284 1.3071 1.2589

Node 3 1.2122 1.1872 1.0000 1.1808 1.1632 1.2234 1.1795 1.2305

Node 4 1.1978 1.2959 1.1808 1.0000 1.3860 1.2576 1.0337 1.1648

Node 5 1.2374 1.4606 1.1632 1.3860 1.0000 1.1020 1.3877 1.2820

Node 6 1.4388 1.2284 1.2234 1.2576 1.1020 1.0000 1.1242 1.1318

Node 7 1.3093 1.3071 1.1795 1.0337 1.3877 1.1242 1.0000 1.024

Node 8 1.3057 1.2589 1.2305 1.1648 1.2820 1.1318 1.024 1.0000

However, if the system uses more than eight
ores the overall performan
e de-

reases. In this
ase, inter
onne
tion links start to be saturated.

� �

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��������������

����������
������

� �
���!�"��
�

�

�

� �
��
�
��
��

��
� �
��
�
�
��
�

Figure 11: Memory Bandwidth

In order to
omplete our analysis of NUMA penalties on the sele
ted plat-

form, we have also performed some experiments with Ben
hIT ben
hmark. Ben-

hIT allows us to have a deep understanding of memory bandwidth and read

laten
y of the ma
hine. To measure su
h metri
s the ben
hmark has two ker-

nels in whi
h, several memory a

esses are performed on arrays of di�erent

sizes. Additionally, this ben
hmark express di�erent memory a

ess patterns

(e.g. multiple reader, multiple writer and single reader).

In Figure 12, we present memory bandwidth for di�erent memory a

esses

patterns and number of threads per
pu. We
an noti
e that aggregate band-

widths for multiple parallel threads are similar for read, write and read/write

a

esses. In these experiments, ea
h thread allo
ates data lo
ally, but after they

RR n° 0123456789

14 Ribeiro & et. al

a

esses the others threads data. Due to this, memory bandwidth is saturated

on the ma
hine (bandwidth peak 3500 MB/s). One important result in this �g-

ure is the similarity of results obtained for one thread per
pu and two threads

per
pu.

0

500

1000

1500

2000

2500

3000

3500

10k 100k 1M 10M 100M 1G

M
B

/s

memory size

Memory Bandwidth Multiple-reader

read bandwidth 1 thread/cpu

0

500

1000

1500

2000

2500

3000

3500

10k 100k 1M 10M 100M 1G
M

B
/s

memory size

Memory Bandwidth Multiple-writer

write bandwidth 1 thread/cpu

(a) (b)

0

500

1000

1500

2000

2500

3000

3500

10k 100k 1M 10M 100M 1G

M
B

/s

memory size

Memory Bandwidth Multiple-r1w1

bandwidth 1 thread/cpu

0

500

1000

1500

2000

2500

3000

3500

10k 100k 1M 10M 100M 1G

M
B

/s

memory size

Memory Bandwidth Multiple-reader

read bandwidth 2 threads/cpu

(
) (d)

0

500

1000

1500

2000

2500

3000

3500

10k 100k 1M 10M 100M 1G

M
B

/s

memory size

Memory Bandwidth Multiple-writer

write bandwidth 2 threads/cpu

0

500

1000

1500

2000

2500

3000

3500

10k 100k 1M 10M 100M 1G

M
B

/s

memory size

Memory Bandwidth Multiple-r1w1

bandwidth 2 threads/cpu

(e) (f)

Figure 12: Memory Bandwidth: (a) Multiple Reader 1 thread/
pu (b) Multi-

ple Writer 1 thread/
pu (
) Multiple Reader/Writer 1 thread/
pu (
) Multiple

Reader 2 threads/
pu (e) Multiple Writer 2 threads/
pu (f) Multiple Read-

er/Writer 2 threads/
pu.

Figure 14 shows memory bandwidth for single a

esses on data from a
pu i

to
pu j for read and write operations. We
an observe that read bandwidth for

lo
al a

esses are mu
h larger than for remote a

esses. These results let us to

on
lude that it is important to manage data distribution in order to avoid the

usage of the network inter
onne
tion between the NUMA nodes. Additionally,

INRIA

Memory A

ess Chara
terization of Workloads on NUMA 15

one
an noti
ed that for all data sizes read bandwidth is
onstant for shorter

(CPU 0 a

essing memory of CPU2) and longer a

esses (CPU 0 a

essing mem-

ory of CPU14). Regarding to write bandwidth, we observe a slightly di�eren
e

when
ompared to read bandwidth. In this
ase, more data is transfered be-

tween NUMA nodes, sin
e for written operations data must be �rstly read and

then written.

0

2.5k

5k

7.5k

10k

12.5k

15k

17.5k

20k

10k 100k 1M 10M 100M 1G

M
B

/s

memory size

Memory bandwidth Single-reader

read bandwidth CPU0 locally
read bandwidth CPU0 accessing CPU2 memory
read bandwidth CPU0 accessing CPU4 memory
read bandwidth CPU0 accessing CPU6 memory
read bandwidth CPU0 accessing CPU8 memory

read bandwidth CPU0 accessing CPU10 memory
read bandwidth CPU0 accessing CPU12 memory
read bandwidth CPU0 accessing CPU14 memory

0

2.5k

5k

7.5k

10k

12.5k

15k

17.5k

20k

10k 100k 1M 10M 100M 1G

M
B

/s

memory size

Memory bandwidth Single-writer

memory bandwidth: CPU0 writing memory used by CPU0
memory bandwidth: CPU0 writing memory used by CPU2
memory bandwidth: CPU0 writing memory used by CPU4
memory bandwidth: CPU0 writing memory used by CPU6
memory bandwidth: CPU0 writing memory used by CPU8

memory bandwidth: CPU0 writing memory used by CPU10
memory bandwidth: CPU0 writing memory used by CPU12
memory bandwidth: CPU0 writing memory used by CPU14

(a) (b)

Figure 13: Memory Bandwidth: (a) Single Reader (b) Single Writer.

Read laten
ies for lo
al and remote data a

esses are presented in Figure ??.

We
an observe that laten
ies for lo
al a

esses (Figure ?? (a)) are negligible

until the size of the
a
he L2. When data size is larger than
a
he L2 the number

of
y
les needed to a

ess data be
omes higher be
ause more
a
he misses and

main memory a

esses are generated. Contrary to lo
al a

ess
osts, remote

a

esses are expensive even to small data sets (Figure ?? (b)). This is related

to the
ommuni
ation
osts, on su
h a

esses the network is used to get data

from remote memory banks.

The experimental results presented in this se
tion have led us to
on
lude

that on this platform, it is important to spread data among the ma
hine nodes

(bandwidth optimization) trying to pla
e it
lose to threads (laten
y minimiza-

tion). In this
ase, we
an think about memory poli
ies that spread data in a

round-robin way.

4 Workload Chara
terization

In this se
tion, we present the workload
hara
terization for the Opteron

-

NUMA platform. We �rst present the
hara
terization based on memory a

ess

pattern. After that, we present some experiments we have performed in or-

der to use our
hara
terization to improve performan
e of numeri
al s
ienti�
al

ben
hmarks.

RR n° 0123456789

16 Ribeiro & et. al

0

100

200

300

400

500

600

10k 100k 1M 10M 100M 1G

cy
cl

e
s

memory size

Read Latency - Access Memory

memory latency locally (CPU cycles)

0

100

200

300

400

500

600

700

800

900

10k 100k 1M 10M 100M 1G

cy
cl

e
s

memory size

Read Latency - Access Memory

CPU0 accessing CPU2 memory (CPU cycles)
CPU0 accessing CPU4 memory (CPU cycles)
CPU0 accessing CPU6 memory (CPU cycles)
CPU0 accessing CPU8 memory (CPU cycles)

CPU0 accessing CPU10 memory (CPU cycles)
CPU0 accessing CPU12 memory (CPU cycles)
CPU0 accessing CPU14 memory (CPU cycles)

(a) (b)

Figure 14: Memory Laten
y: (a) Lo
al a

ess (b) Remote a

ess.

4.1 Memory A

ess Chara
terization

In this work, the
hara
terization of memory a

ess patterns have been done

using a tuned version of Stream ben
hmark. In this se
tion, we aim at providing

a good understand of the NUMA impa
t on memory a

esses. We have
onsid-

ered three types of memory operations: read only, write only and read/write.

We have
hosen these operations be
ause they are the basi
 operation of most

part of
omputations. The operations, read only, write only and read/write have

been added on Stream by us. Additionally, we have also
onsidered di�erent

a

ess on the ve
tor (regular, irregular and random) and di�erent strategies to

distribute workload for ea
h thread (stati
 and dynami
).

� �

����������������
	
���
���

�
������������
��������������������

������������������

����������

����
�
	
���
���

�
�����������
���������������������������
������������������������

���
	
���
���

�
�����������

�������������������
����������������!����

����������������
	
���
���

�
������������
��������������������

������������������

����������

����
�
	
���
���

�
�����������
�������������������"�����##�
������������������������

���
	
���
���

�
�����������

�������������������
����������������!����

����������������
	
���
���

�
������������
��������������������

������������������

����������

����
�
	
���
���

�
�����������
���������������������
���������
������������
��������

���
	
���
���

�
�����������
���������������������

��
������������
�������
�������������������������!�
��������

������� ��������� ��	
��

Figure 15: Ve
tor A

ess

INRIA

Memory A

ess Chara
terization of Workloads on NUMA 17

By regular a

ess on ve
tor, we mean that threads a

ess the same set of data

in di�erent phases of the appli
ation whereas in irregular a

ess, data set may

be di�erent. The regular and irregular a

ess have led us to simulate the impa
t

of lo
al and remote a

esses on appli
ation performan
e. The random a

ess

assures that threads will tou
h di�erent memory pages on every memory a

ess

and di�erent threads may a

ess the same page (simulates memory
ontention).

Considering workload distribution, in stati
 distribution, loop iterations are

divided into blo
ks and then assigned to threads in a stati
 fashion. In dynami

distribution, the di�eren
e to the stati
 one is that blo
ks are assigned to threads

during runtime. In su
h distribution, if a thread �nishes its work, it
an steal

blo
ks from other threads.

In order to have di�erent a

ess on ve
tors and workload distribution, we

have made some modi�
ations on Stream Ben
hmark sour
e
ode. Di�erent

a

ess on ve
tors have been implemented by using di�erent ways to index ve
tors

(Figure 15). Considering workload distribution, we have in
luded on Stream

sour
e
ode the OpenMP
lauses s
hedule(dynami
). Besides ve
tor a

ess

and workload distribution, we have also done some
hanges on Stream sour
e

ode using MAi interfa
e [8℄ to apply memory poli
ies on its data and better

ontrol data pla
ement. The memory poli
ies that have been used in these work

are des
ribed in Table 5.

Table 5: MAi Memory Poli
ies Des
ription

Memory Poli
y Des
ription

Bind_blo
k data is divided into blo
ks depending on the number of threads

and pla
ed
lose to the thread that will use it

Cy
li
 data is pla
ed in the memory blo
ks in a linear round-robin way

Skew_mapp a page i is allo
ated in the node (i + ⌊i=M⌋ + 1) mod M ,

where M is the number of memory blo
ks

Prime_mapp a two-phase strategy. In the �rst phase, the poli
y pla
es data using

y
li
 poli
y in (P) virtual memory banks, where P is a

prime greater or equal to M (real number of memory banks). In the

se
ond phase, memory pages previously pla
ed in the virtual memory

blo
ks are reordered and pla
ed into the real memory banks also using

the
y
li
 poli
y

Random memory pages are pla
ed randomly in the NUMA nodes, using a

random uniform distribution

Based on these parameters, we have performed some experiments on the

Opteron

NUMA platform. The results have been obtained through the aver-

age of several exe
utions varying the number of threads of 2, 8 and the maximum

number of
pus/
ores of the platform (one thread per
ore). These results have

presented a low standard deviation, sin
e all experiments have been done with

ex
lusive a

ess to the

NUMA ma
hine. Our results are organized by memory

a

ess operations and for ea
h operation, we show results for the three ve
tor

a

ess types and workload distribution.

RR n° 0123456789

18 Ribeiro & et. al

Figure 16: Average Time for Read Operation

In Figure 16, we
an observe the average time for read operation with di�er-

ent memory poli
ies, ve
tor a

esses and workload distribution. In this �gure,

we show the results for two threads (only two nodes of the ma
hine have been

used), eight threads (all the ma
hine nodes have been used, one thread per
ore)

and sixteen threads (all nodes and
ores have been used).

As brie�y dis
ussed on se
tion NUMA Impa
t, the read operation on Opteron

ma
hines is less expensive than the write operation. Due to this, its impa
t on

the performan
e of the appli
ation is less important than write operations. How-

ever, we have also shown that on NUMA ar
hite
tures even read operations
an

have an important impa
t on the appli
ation performan
e if they are exe
uted

on remote data. For both s
heduling strategies, on general read operation has

presented better performan
e when data was distributed using
y
li
 memory

poli
y. On read operations, the
a
he
oheren
e proto
ol has no in�uen
e in

the performan
e, be
ause it does not have to update or invalidate any
opy.

Furthermore, on
e data have been tou
hed for read, it will still in the
a
he

of the
ore. Thus, only the �rst a

ess on data will impa
t on the appli
ation

performan
e.

Figure 17 shows the average time for write operation with di�erent memory

poli
ies, ve
tor a

esses and workload distribution. In this �gure, we present

results for two threads, eight threads and sixteen threads. On general, for

write operation best performan
e have been obtained with bind_blo
k and
y
li

memory poli
ies.

Considering stati
 s
heduling (Figure 17 (a), (b) and (
)), we have observed

that the best memory poli
y to pla
e data among the

NUMA platform de-

pends on the number of threads. Cy
li
 memory poli
y have presented better

INRIA

Memory A

ess Chara
terization of Workloads on NUMA 19

Figure 17: Average Time for Write Operation

results for a small number of threads (two threads). Su
h memory poli
y have

used two
ores in di�erent nodes to bind threads and two memory banks to

spread data. Due to this, the memory poli
y minimizes memory
ontention,

be
ause it divides a

esses into two memory banks. For a high number of

threads (8 and 16 threads), the best memory poli
y have been bind_blo
k. Be-

sides memory
ontention minimization, this memory poli
y also minimizes the

laten
y
osts for write operations.

The average time that has been obtained for dynami
 s
heduling were dif-

ferent from ones obtained with stati
 s
heduling. In �gure 17 (d), (f) and (g),

we
an observe that skew memory poli
y has presented the worst time for this

operation. This memory poli
y spreads data among the ma
hine nodes by do-

ing a non linear round-robin distribution. Due to this, neighbor memory pages

may be pla
ed in distant memory banks, losing data lo
ality. Cy
li
 memory

poli
y has presented lowest times for write operation. In dynami
 s
heduling,

threads
an steal work and due to this, spread data among the ma
hine nodes

is the best solution. Additionally,
y
li
 preserve data lo
ality, sin
e it pla
es

neighbor pages on adja
ent memory banks.

In Figure 18, we present the average time for read/write operation with

di�erent memory poli
ies, ve
tor a

esses and workload distribution. This �gure

shows results for two threads, eight threads and sixteen threads. On general,

for read/write operation best performan
e have been obtained with bind_blo
k

for stati
 s
heduling and
y
li
 for dynami
 s
heduling.

In stati
 s
heduling, we have observed that bind_blo
k have presented better

results for this operation. Sin
e bind_blo
k
onsiders regular a

ess on data

in its blo
ks pla
ement, it is a suitable memory poli
y for this operation and

RR n° 0123456789

20 Ribeiro & et. al

Figure 18: Average Time for Read/Write Operation

s
heduling. However, for two threads the best memory poli
y for this operation

have been
y
li
. In this
ase, the memory poli
y divides a

esses into two

memory banks, minimizing memory
ontention.

Considering dynami
 s
heduling, for two threads and regular a

ess, skew

memory poli
y has presented the best results. Skew poli
y has preserved data

lo
ality better than
y
li
, generating better performan
e for the operation.

For a high number of threads, the best memory poli
y has been
y
li
. Sin
e

threads
an steal work from other threads,
y
li
 poli
y guarantees that data will

be spread among all nodes of the ma
hine, minimizing memory
ontention. In

Figures 16, 17 and 18, it is important to noti
e that for a high number of threads

(8 and 16 threads) there is not a high di�eren
e between the obtained laten
ies.

On Opteron

NUMA platform, the main
hara
teristi
s are low NUMA fa
tor

and bandwidth problem. This is mean that remote a

ess are not expensive but

bandwidth may be a big problem. Due of this, we have done experiments with

memory poli
ies that distribute data among the ma
hine nodes. Consequently,

average times to perform the operation have been similar for di�erent operations.

However, it is important to remember that in this
hara
terization we have used

a mi
roben
hmark with only 2 millions of a

ess on ve
tors. Thus, even a small

di�eren
e
an be a high di�eren
e on real appli
ations.

We
an
on
lude that on the Opteron

NUMA platform, for a high number

of threads best memory poli
ies are
y
li
 and bind_blo
k. On one hand, read

operations that are less expensive than write and read/write operations have

presented better results with
y
li
. On the other hand, write and read/write

operations have obtained better performan
e with bind_blo
k. For small number

INRIA

Memory A

ess Chara
terization of Workloads on NUMA 21

of threads, the best memory poli
y depends on the a

ess type and workload

distribution.

4.2 Memory A�nity

In this se
tion we present the improvement gains we have obtained on Stream

Ben
hmark and NPB's ben
hmarks by using the memory a

ess
hara
terization

presented on above se
tion. We have used the memory a

ess
hara
terization to

assure memory a�nity on Stream and NPB's appli
ations and kernels. Memory

a�nity is assured when a
ompromise between threads and data is a
hieved by

redu
ing either the number of remote a

esses (laten
y optimization) or the

memory
ontention (bandwidth optimization).

 0

 1

 2

 3

 4

 5

 6

 7

 8

copy scale add triad

E
xe

cu
tio

n
 T

im
e

 (
s)

Benchmarks

 Execution Time for Stream Benchmark Operations on Opteron Machine

First−touch
Hand coded with MAi

Figure 19: Performan
e of Stream Operations on Opteron

In order to guarantee memory a�nity for su
h ben
hmarks, we have
hanged

sour
e
odes using an interfa
e named MAi [8℄. This interfa
e allows us to bet-

ter pla
e data and threads over the

NUMA platform by using some memory

poli
ies. To apply MAi memory poli
ies in sour
e
odes, we have just to allo-

ate data using MAi allo
ators and then apply a memory poli
y to su
h data.

Considering Stream and NPB's
hara
teristi
s, we have sele
ted four di�erent

memory poli
ies from MAi (
y
li
, prime_mapp, skew_mapp and bind_blo
k).

The �rst three memory poli
ies are ideal for irregular appli
ations, sin
e they

spread data among nodes. The latter memory poli
y is suitable for regular ap-

pli
ations where threads always a

ess the same data set. More detail about

sour
e
ode modi�
ations are des
ribed during the results presentation.

We have performed some experiments with the
hanged version of ea
h

ben
hmark and
ompared to the results obtained with their original version.

Su
h results have been obtained through the average of several exe
utions vary-

ing the number of threads from 2 to the maximum number of
pus/
ores of the

platform. These results have presented a low standard deviation, sin
e all ex-

periments have been done with ex
lusive a

ess to the

NUMA ma
hine. Our

results are organized by appli
ation (Stream, FFT, MG, CG, LU, SP and BT).

In Figure 19, we present the average time obtained for ea
h Stream operation

on the

NUMA platform using the original version of the
ode and modi�ed

version with MAi. In the original version of the
ode, the memory poli
y used to

RR n° 0123456789

22 Ribeiro & et. al

pla
e data have been �rst_tou
h, the default memory poli
y of Linux operating

system. As we
an observe, MAi has outperformed �rst_tou
h results for all

operations. Considering the
hara
teristi
s of the appli
ation (regular a

esses

with stati
 workload distribution), we have used bind_blo
k, skew_mapp and

y
li
 memory poli
ies on MAi version of Stream. Bind_blo
k poli
y have been

used for a high number of threads (greater than 8) for all memory operations

(read, write and read/write). This memory poli
y has been
hosen be
ause it

pla
es threads and data
loser, minimizing laten
y
osts and memory
ontention.

Skew_mapp and
y
li
 poli
ies have been used for a small number of threads.

In this
ase, spread data among the ma
hine nodes have presented better results

be
ause it in
reases memory bandwidth.

Figure 20 shows the speedup for NAS Ben
hmarks on Opteron platform for

the original version and the version with memory a�nity optimization using

MAi interfa
e. As one
an observed, MAi version has outperformed most of the

original implementations of NAS ben
hmarks.

 0

 2

 4

 6

 8

 10

BT CG SP MG LU

S
p

e
e

d
u

p
 r

e
la

tiv
e

 t
o

 1
−

T
h

re
a

d
 e

xe
cu

tio
n

Benchmarks

 Speedup for NAS Parallel Benchmarks on Opteron Machine

First−touch
Hand coded with MAi

Figure 20: Performan
e of NAS Parallel Ben
hmarks on Opteron

Figure 20 shows the speedups for FFT on Opteron platform for the original

version and the MAi version. As it
an be observed, Minas has outperformed

all other memory a�nity solutions. As we
an observe in Figure 20, MAi have

obtained better results than the original version of the appli
ation. Consid-

ering the
hara
teristi
s of Opteron platform, we have
hosen prime_mapp as

memory poli
y to be applied in the most important arrays (memory a

ess and

onsumption) of FFT. Su
h poli
y aims at providing a non-uniform distribution

of memory pages among the

NUMA nodes. Due to this fa
t, it spreads mem-

ory pages in a better way, sin
e it avoids any patterns during data distribution.

The used

NUMA has a small NUMA fa
tor and bandwidth optimizations are

important. Additionally, FFT is an irregular appli
ation in whi
h three dimen-

sional arrays are a

essed in a non linear way. On general, the original version

have not presented good results. The original version uses the operating system

memory a�nity management, that for Linux is �rst-tou
h. This memory pol-

i
y optimizes laten
y and
onsidering this platform and appli
ation �rst-tou
h

is not a e�
ient
hoi
e. We
an also observe that the results with MAi and

�rst-tou
h have been similar for two, four and sixteen threads. When a small

number of threads is used memory
ontention is not high, thus di�erent mem-

INRIA

Memory A

ess Chara
terization of Workloads on NUMA 23

ory poli
ies may have the similar performan
e on platforms with small NUMA

fa
tor (remote a

ess
osts are not high).

In Figure 20, we present the speedups obtained with CG on the

NUMA

platform for the original version and the MAi version. As we
an observe, MAi

has performed well on the platform. On general, MAi has been 17% better

than the original version with �rst-tou
h. First-tou
h poli
y is not suited to

irregular appli
ations sin
e it optimizes laten
y instead of redu
ing memory

ontention. This optimization results in several memory a

esses on the same

memory banks. In this
ase,
onsidering the platforms network inter
onne
tions,

we have sele
ted
y
li
 and bind_blo
k memory poli
ies for the platform. Sin
e

Opteron has a low NUMA fa
tor and a simple inter
onne
tion network, we

have applied
y
li
 for arrays that are a

essed irregularly, whereas bind_blo
k

has been applied for those a

essed regularly. Thus, we
an both optimize

bandwidth and redu
e memory
ontention.

Considering the results for MG appli
ation, we
an observe that without

memory a�nity optimizations the OpenMP solution does not present perfor-

man
e gains when the number of threads is in
reased (Figure 20). In MAi

version of MG appli
ation,
y
li
 poli
y has been used to optimize bandwidth.

As MG has irregular read memory a

ess as its main
hara
teristi
 and
onsid-

ering our memory a

ess
hara
terization,
y
li
 is the most suited poli
y.

Generally, the LU version using MAi has been more e�
ient than the original

version with �rst-tou
h (Figure 20). Sin
e threads will use memory pages in

its
omputation �rst-tou
h
an not be used to pla
e memory pages be
ause LU

omputations are not regular. Thus, several memory a

esses on remote memory

banks are performed to a

ess matri
es elements. In this
ase,
onsidering

the platform network inter
onne
tions, we have sele
ted
y
li
 and bind_blo
k

memory poli
ies for LU. Cy
li
 memory poli
y has been
hosen to improve the

bandwidth usage of the ma
hine when the ma
hine was not fully used (2 to 8

threads). Bind_blo
k memory poli
y has been used with 16 threads to optimize

both laten
y and bandwidth.

In the
ase of BT ben
hmark, MAi optimizations on the sour
e
ode have led

to some small performan
e gains when
ompared to the original version. The

ben
hmark BT has several parallel se
tions and all of them uses stati
 s
heduling

strategy. Due to this, workload is split into several
hunks of the same size for all

threads. However, the parallel se
tions are parallelized in di�erent dire
tions.

Be
ause of this threads
omputes di�erent data sets on the di�erent se
tions

of the ben
hmark. In the
ase of the MAi, it would be more e�e
tive to have

memory poli
ies for ea
h di�erent parallel se
tion. However, in this version

of the ben
hmark, we have used the same memory poli
y per variable for all

parallel se
tions of the appli
ations.

5 Related Work

The advent of large s
ale hierar
hi
al shared memory multipro
essors with

NUMA
hara
teristi
s has demanded better understanding of memory a

ess

patterns and the in�uen
es of data pla
ement on su
h patterns. Be
ause of

this resear
h groups have investigated the performan
e and behavior of several

workloads over multi-
ore ma
hines and

NUMA platforms [16, 17, 15, 18℄.

RR n° 0123456789

24 Ribeiro & et. al

S
ienti�
 workload
hara
terization over

NUMA platforms with multi-
ore

pro
essors has already been studied in [16℄. This work is similar to ours and

it has investigated the impa
t of multi-
ores and pro
essor a�nity on hybrid

s
ienti�
 workloads (based on Message Passing Interfa
e (MPI) and OpenMP).

However, the main fo
us of [16℄ was to understand and analyze the impa
t

of multi-
ores on workloads. They do not really address the impa
t of NUMA

hara
teristi
s on numeri
al s
ienti�
 workloads. Sin
e

NUMA platforms have

be
ome more
ommon on HPC (ma
hines based on AMD Opteron pro
essors

[5℄ and Intel Nehalem pro
essors [19℄), it is important to investigate the impa
t

of the non-uniformity on memory a

esses on su
h platforms.

In [17℄, resear
hers have studied the impa
t of
lusters with multi-
ore pro-

essors, multi-pro
essor nodes and multi-
ore, multi-pro
essor nodes on a subset

of NAS parallel ben
hmarks implemented using MPI. They have analyzed inter-

ommuni
ation e�
ien
y,
a
he e�e
ts and initial pro
ess distribution. Based on

su
h analysis, they have proposed some guidelines for optimizing MPI appli
a-

tions on su
h type of
lusters. Thus, they are interested on e�e
ts of multi-
ores

may
ause on MPI appli
ations. In our work, our fo
us is memory a

ess pat-

terns on

NUMAs with multi-
ores, and not the e�e
ts of multi-
ore on some

parti
ular parallel programming interfa
e.

The 2312 Opteron
ores system based on Sun Fire servers was
onsidered as

ase study, in the work [15℄. They have
hara
terized the performan
e behavior

of the
luster and its nodes. Their main obje
t was to investigate performan
e

bottlene
ks and provide some solutions to improve the system utilization. They

have used well know ben
hmarks and some syntheti
 mi
ro-ben
hmarks. The

results showed that performan
e loss are
aused by the inter
onne
tion between

nodes,
a
he hierar
hy and memory a�nity management. This work may be

similar to ours but they do not investigate the e�e
ts of memory a�nity on

memory operations, they do not
onsider data and thread a�nity on their ex-

periments, and they do not
onsider a large set of numeri
al s
ienti�
 workloads.

In [18℄, authors have evaluated the performan
e of multi-
ore platforms

(quad-
ore AMD Bar
elona and dual-
ore Intel Wood
rest) with s
ienti�
 ap-

pli
ations. They have fo
us their analyzes on performan
e of the memory and

ommuni
ation sub-systems. The obtained results have led authors to identify

some
on�gurations to get optimal performan
e on su
h systems. In this work,

authors have
onsidered just multi-
ore aware on the study.

In our work, we have investigated memory a

esses behavior of mi
roben
h-

marks and ben
hmarks over a

NUMA platform with multi-
ore pro
essors.

Additionally, we have evaluated a set of memory poli
ies that were used to

pla
e data among the ma
hine memory banks. Our results have shown that an

appropriate sele
tion of data pla
ement,
onsidering the memory a

esses,
an

generate up to 55% of improvement gains.

6 Con
lusions and Future Work

In this work, we have fo
used our work on
hara
terization of numeri
al s
i-

enti�
 workloads on a

NUMA platform with multi-
ore pro
essors. We have

also presented some performan
e evaluation of the

NUMA platform and NAS

Parallel Ben
hmarks. In order to do the
hara
terization and the performan
e

INRIA

Memory A

ess Chara
terization of Workloads on NUMA 25

evaluation we have performed some experiments using mi
ro-ben
hmarks and

Ben
hmarks.

Our experiments has shown that on parallel numeri
al s
ienti�
 workloads,

di�erent memory a

esses (operations, data a

ess and data distribution) have

di�erent behaviors. Ours results have also shown that su
h di�erent a

ess

need di�erent strategies to pla
e data and threads in order to obtain an optimal

performan
e. The experiments with NPB's have
on�rmed that on

NUMAs

with multi-
ores pro
essors, it is ne
essary to assure memory a�nity by pla
ing

optimizing laten
y and bandwidth.

Our future work in
ludes providing an me
hanism to
hose the best memory

poli
y for ea
h type of memory a

ess. Additionally, we want to extend this

study on larger

NUMA systems.

A
knowledgment

This resear
h was supported by the Fren
h ANR under grant NUMASIS ANR-

05-CIGC and CAPES (Brazil) under grant 4874-06-4.

Referen
es

[1℄ D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and

J. Hennessy, �The dash prototype: Logi
 overhead and performan
e,� IEEE

Trans. Parallel Distrib. Syst., vol. 4, no. 1, pp. 41�61, 1993.

[2℄ T. Mu, J. Tao, M. S
hulz, and S. A. M
Kee, �Intera
tive Lo
ality Opti-

mization on NUMA Ar
hite
tures,� in SoftVis '03: Pro
eedings of the 2003

ACM Symposium on Software Visualization. New York, NY, USA: ACM,

2003, pp. 133��.

[3℄ J. Marathe and F. Mueller, �Hardware Pro�le-Guided Automati
 Page

Pla
ement for

NUMA Systems,� in PPoPP '06: Pro
eedings of the

eleventh ACM SIGPLAN symposium on Prin
iples and pra
ti
e of parallel

programming. New York, NY, USA: ACM, 2006, pp. 90�99. [Online℄.

Available: http://portal.a
m.org/
itation.
fm?id=1122987

[4℄ A. Joseph, J. Pete, and R. Alistair, �Exploring Thread and Memory Pla
e-

ment on NUMA Ar
hite
tures: Solaris and Linux, UltraSPARC/FirePlane

and Opteron/HyperTransport,� 2006, pp. 338�352.

[5℄ AMD, �Advan
ed Mi
ro Devi
es - AMD Opteron,� 2009. [Online℄.

Available: http://www.amd.
om

[6℄ J. D. M

alpin, �STREAM: Sustainable memory bandwidth

in high performan
e
omputers,� 1995. [Online℄. Available:

http://www.
s.virginia.edu/stream/

[7℄ J. Y. Haoqiang Jin, Mi
hael Frumkin, �The OpenMP Im-

plementation of NAS Parallel Ben
hmarks and Its Perfor-

man
e,� NAS System Division - NASA Ames Resear
h

Center, Te
h. Rep. 99-011/1999, 1999. [Online℄. Available:

https://www.nas.nasa.gov/Resear
h/Reports/Te
hreports/1999/PDF/nas-99-011.pdf

RR n° 0123456789

http://portal.acm.org/citation.cfm?id=1122987
http://www.amd.com
http://www.cs.virginia.edu/stream/
https://www.nas.nasa.gov/Research/Reports/Techreports/1999/ PDF/nas-99-011.pdf

26 Ribeiro & et. al

[8℄ C. P. Ribeiro, M. Castro, L. G. Fernandes, A. Carissimi, and J.-F. Méhaut,

�Memory A�nity for Hierar
hi
al Shared Memory Multipro
essors,� in 21st

International Symposium on Computer Ar
hite
ture and High Performan
e

Computing - SBAC-PAD. São Paulo, Brazil: IEEE, 2009.

[9℄ Z. Smith, �Bandwidth: a memory bandwidth ben
hmark for x86 x86_64

ARM based Linux and ARM Windows MobileCE,� 2010. [Online℄.

Available: http://home.
om
ast.net/~fbui/bandwidth.html

[10℄ The Ben
hIT Proje
t, �Performan
e Measurement for S
ienti�
 Appli
a-

tions,� 2010. [Online℄. Available: http://www.ben
hit.org/

[11℄ D. Molka, D. Ha
kenberg, R. S
hone, and M. S. Muller, �Memory per-

forman
e and
a
he
oheren
y e�e
ts on an intel nehalem multipro
essor

system,� in PACT '09: Pro
eedings of the 2009 18th International Confer-

en
e on Parallel Ar
hite
tures and Compilation Te
hniques. Washington,

DC, USA: IEEE Computer So
iety, 2009, pp. 261�270.

[12℄ D. H. Bailey, E. Barz
z, L. Dagum, and H. D. Simon, �Nas parallel ben
h-

mark results,� IEEE Con
urren
y, vol. 1, no. 1, pp. 43�51, 1993.

[13℄ M. F. H. Jin and J. Yan., �The OpenMP Implemen-

tation of NAS Parallel Ben
hmarks and its Performan
e,�

Te
h. Rep. NAS-99-011, O
tober 1999. [Online℄. Available:

www.nas.nasa.gov/News/Te
hreports/1999/PDF/nas-99-011.pdf

[14℄ A. Kleen, �A NUMA API for Linux,� Te
h.

Rep. Novell-4621437, April 2005. [Online℄. Available:

http://whitepapers.zdnet.
o.uk/0,1000000651,260150330p,00.htm

[15℄ A. Kayi, E. Kornkven, T. El-Ghazawi, S. Al-Bahra, and G. B. Newby,

�Performan
e evaluation of
lusters with

numa nodes - a
ase study,� High

Performan
e Computing and Communi
ations, 10th IEEE International

Conferen
e on, vol. 0, pp. 320�327, 2008.

[16℄ S. R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth, and J. S. Vetter, �Char-

a
terization of s
ienti�
 workloads on systems with multi-
ore pro
essors,�

in IISWC, 2006, pp. 225�236.

[17℄ H. Pourreza and P. Graham, �On the programming impa
t ofmulti-

ore,multi-pro
essor nodes in mpi
lusters,� High Performan
e Computing

Systems and Appli
ations, Annual International Symposium on, vol. 0, p. 1,

2007.

[18℄ A. M. DeFlumere and S. R. Alam, �Exploring multi-
ore limitations

through
omparison of
ontemporary systems,� in TAPIA '09: The Fifth

Ri
hard Tapia Celebration of Diversity in Computing Conferen
e. New

York, NY, USA: ACM, 2009, pp. 75�80.

[19℄ Intel, �Laptop, Notebook, Desktop, Server and Embedded Pro
essor

Te
hnology - Intel,� 2009. [Online℄. Available: http://www.intel.
om

INRIA

http://home.comcast.net/~fbui/bandwidth.html
http://www.benchit.org/
www.nas.nasa.gov/News/Techreports/1999/PDF/nas-99-011.pdf
http://whitepapers.zdnet.co.uk/0,1000000651,260150330p,00. htm
http://www.intel.com

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Microbenchmarks and Benchmarks
	Stream
	Bandwidth
	BenchIT
	NAS Parallel Benchmarks

	ccNUMA Platform
	NUMA Impact

	Workload Characterization
	Memory Access Characterization
	Memory Affinity

	Related Work
	Conclusions and Future Work

