
HAL Id: inria-00497952
https://hal.inria.fr/inria-00497952v2

Submitted on 8 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyzing Software Transactional Memory Applications
by Tracing Transactions

Márcio Castro, Kiril Georgiev, Vania Marangonzova-Martin, Jean-François
Méhaut, Luiz Gustavo Fernandes, Miguel Santana

To cite this version:
Márcio Castro, Kiril Georgiev, Vania Marangonzova-Martin, Jean-François Méhaut, Luiz Gustavo
Fernandes, et al.. Analyzing Software Transactional Memory Applications by Tracing Transactions.
[Research Report] RR-7334, INRIA. 2010, pp.24. <inria-00497952v2>

https://hal.inria.fr/inria-00497952v2
https://hal.archives-ouvertes.fr

apport

de recherche

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
73

34
--

FR
+E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Analyzing Software Transactional Memory
Applications by Tracing Transactions

Márcio Castro — Kiril Georgiev — Vania Marangonzova-Martin —

Jean-François Méhaut — Luiz Gustavo Fernandes — Miguel Santana

N° 7334

July 2010

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Analyzing Software Transactional Memory
Applications by Tracing Transactions

Márcio Castro∗, Kiril Georgiev†, Vania Marangonzova-Martin∗,
Jean-François Méhaut∗, Luiz Gustavo Fernandes‡, Miguel Santana†

Thème NUM — Systèmes numériques
Équipe-Projet MESCAL

Rapport de recherche n° 7334 — July 2010 — 21 pages

Abstract: Transactional Memory (TM) is a new programming paradigm that offers
an alternative to traditional lock-based concurrency mechanisms. It provides a higher-
level programming interface and promises to greatly simplify the development of cor-
rect concurrent applications on multicore architectures. However, simplicity often
comes with an important performance deterioration and, given the variety of TM im-
plementations, it is still a challenge to know what kind of applications can really take
advantage of TM. In this work, we aim at investigating these performance issues and
presenting a generic approach for tracing transactions. We show that the collected
information can be helpful in order to improve the performance of TM applications.

Key-words: Software Transactional Memory, Performance Evaluation, Tracing Mech-
anism.

∗ MESCAL (INRIA - LIG - Grenoble University), Grenoble, France, FirstName.LastName@imag.fr
† STMicroelectronics, Crolles, France, Kiril.Georgiev@st.com, Miguel.Santana@st.com
‡ GMAP - PPGCC - PUCRS, Porto Alegre, Brazil, luiz.fernandes@pucrs.br

Analyse des Applications qui Utilisent la Mémoire
Transactionnelle Logicielle par le Traçage de

Transactions
Résumé : La Mémoire Transactionnelle (MT) est un nouveau paradigme de program-
mation concurrente qui vise à être une alternative aux mécanismes traditionnels de
synchronisation basés sur des verrous. C’est une approche de plus haut niveau qui per-
met de simplifier le développement des applications concurrentes sur des architectures
multicoeurs. Toutefois, ce haut niveau d’abstraction peut avoir un impact négatif sur
la performance et les développeurs de STM font des choix d’impémentation qui ont
également un impact important sur la performance. La conséquence est qu’il est dif-
ficile de prédire les performances des applications en utilisant la MT. Dans ce travail,
nous visons à analyser ces problèmes de performance et nous proposons une approche
générique et portable de traçage des transactions. Nous montrons que les informations
collectées peuvent être très utiles pour comprendre et améliorer la performance des
applications utilisant la MT.

Mots-clés : Mémoire transactionnelle logicielle, évaluation de performance, mécanisme
de traçage.

Analyzing STM Applications by Tracing Transactions 3

1 Introduction
Multicore technology proves to be a promising solution to the problem of achiev-
ing higher performance without increasing power consumption. Because of that, it
is strongly expected that the number of processor cores will continue to increase, re-
sulting in manycore architectures with hundreds or even thousands of cores. In this
context, the development of applications with high degrees of parallelism and the cor-
rect management of complex synchronization issues become a major concern.

Traditional synchronization structures such as locks, mutexes and semaphores are
extensively used in a multicore context. They are simple to implement in hardware and
they offer a safe solution to the problem of multiple threads sharing data. However,
they have several disadvantages: (i) they are “low-level” mechanisms, since one must
explicitly control the access to shared variables; (ii) they cause blocking, so threads
always have to wait until a lock (or a set of locks) is released; (iii) they are hard to
manage effectively, especially in large systems; and (iv) they can be vulnerable to
failures and faults, such as deadlocks and livelocks.

Transactional Memory (TM) [1] has recently been proposed as an alternative syn-
chronization solution. The idea is to offer a high level synchronization interface where
developers only need to enclose concurrent accesses to shared variables in atomic sec-
tions (transactions). Problems such as correct synchronization, correct data race han-
dling and deadlocks avoidance are shifted to the TM mechanism, which handles con-
flicts in an optimistic way [2].

Although TM promises to substantially simplify the development of correct concur-
rent programs, programmers will still need to debug code and study ways to optimize
TM applications. It is clear that even with TM it is still a challenge to design and im-
plement scalable concurrent programs. In this context, the questions we are interested
in are the following. How can one know if an application will perform well with TM?
How can one get useful details about the execution of TM applications? How can we
use them to improve performance?

In this work, we show that the performances of applications using TM-based syn-
chronization solutions depend on both applications and TM solutions specifics. We
demonstrate that, depending on these specifics, the use of TM may result in worse,
equal or better performance for the application. In order to gain some insight on these
issues, helping developers to understand and improve their performance, we propose
an approach for collecting and tracing relevant information about transactions. Our so-
lution can be applied to different STM libraries and applications as it does not modify
neither the target application nor the STM library source codes.

The rest of this report is organized as follows. In Section 2, we describe the basic
idea behind TM along with some important design criteria that impact TM perfor-
mance. Sections 3 and 4 motivate the use of STM as well as the necessity of tools to
better comprehend TM applications. In Section 5, we show our approach for tracing
transactions. The collected information and results analysis are shown in Section 6.
Section 7 reviews some related works concerning STM. Finally, concluding remarks
and future works are pointed out in Section 8.

2 Transactional Memory (TM)
In 1977, Lomet has observed that an abstraction similar to a database transaction might
make a good programming language mechanism to ensure the consistency of data

RR n° 7334

4 Márcio Castro et al.

shared among several processes [3]. Sixtheen years after this publication in 1993,
Herlih and Moss proposed a hardware-supported Transactional Memory (TM) as a
mechanism for building lock-free data structures [4]. In the past few years, there has
been a huge interest of researches in implementing both hardware and software systems
for Transactional Memory.

This section aims to bring up some important information concerning the concept
of Transactional Memory. First, its general concept is presented (Section 2.1). The
benefits of using Transactional Memory are discussed in Section 2.2. Finally, the dif-
ferent ways to implement Transactional Memory are shown in Section 2.3.

2.1 What is Transactional Memory?
The basic idea behind Transactional Memory comes from transactional database man-
agement systems, in which a transaction is a sequence of actions that appears indivis-
ible and instantaneous to an outside observer. In these systems, two or more queries
conflict when different transactions perform read and write instructions over a database
in such a way that the result could not arise from a sequential execution of the queries.
In this context, transactions ensure that all queries produce the same result as if they
executed serially. A database transaction enforces some properties called ACID: atom-
icity, consistency, isolation and durability.

- Atomicity: it refers to the ability of the DBMS to guarantee that either all tasks of
a transaction are performed or none of them are performed. It is not acceptable
for a constituent action to fail and for the transaction to finish successfully nor
it is acceptable for a failed action to leave behind evidence that it executed [2].
Thus, there are two possibilities for an executing transaction: it can be either
committed (if it completes successfully) or aborted (if it fails).

- Isolation: it refers to the requirement that other operations cannot access (or see)
the data in an intermediate state during a given transaction. Because of that,
transactions must produce a correct result, regardless of which other transactions
are executing concurrently. This property makes transactions an attractive pro-
gramming model for parallel computer.

- Consistency: this property ensures that the database remains in a consistent state
before starting a transaction and after finishing it (whether successful or not). In
other words, consistency states that only valid data will be written to the database
(integrity constraints). If a transaction has committed, it is guaranteed that the
DB had its state modified and this new state is consistent. Thus, subsequent
transactions can start executing from that modified state. Otherwise, in case of
a transaction abortion, this property is also guaranteed, since the DB did not
modify the previous consistent state.

- Durability: once a transaction commits, its result must be permanent (i.e., stored
on a disk) and available to subsequent transactions. This means that it will sur-
vive even if a system failure occurs. Many databases implement durability by
writing all transactions into a transaction log that can be played back to recreate
the system state right before a system failure.

It is important to mention that implementations of Transactional Memory do not
provide consistency and durability properties [1]. The durability property does not

INRIA

Analyzing STM Applications by Tracing Transactions 5

make much sense because main memory and caches, which are responsible for storing
data during the program execution, are volatile. The consistency property is not usually
applied: Transactional Memory does not have a metadata concept so there are no inde-
pendent consistency rules that could be observed during a transaction. If, for example,
one wants to implement a transactional queue data structure defining some consistency
rules, then the source code needs to take care of enforcing it (it will not be guaranteed
by the Transactional Memory).

In the context of TM, a transaction is a portion of code that must be executed
atomically and with isolation. A transaction may commit successfully, if its accesses
to shared data did not conflict with other transactions; otherwise the transaction aborts,
and none of its actions become visible to other threads. When a transaction aborts, the
TM runtime rollbacks the conflicting transaction until it is possible to commit success-
fully.

2.2 Why are researchers interested in Transaction Memory?
One of the most serious challenges in writing correct code is to coordinate access to
shared data. Depending on the complexity of problem that must be parallelized, more
or less mechanisms must be used to guarantee mutual exclusion. As a consequence of
that, data races, deadlocks and scalability problems come to light.

Nowadays, the synchronization between threads is the responsibility of a program-
mer, who has only low-level mechanisms, such as locks, semaphores and mutexes to
prevent two concurrent threads from interfering. Some languages have a slightly higher
level construct, a monitor, to prevent concurrent accesses. However, these mechanisms
are difficult to use correctly and are not composable [2].

The TM programming model offers a new attractive way of developing parallel
applications using a higher abstraction level. It shifts the problem of correct synchroni-
sation to the TM system, which is responsible for making sure that deadlocks will not
occur, race conditions are correctly handled and locks are performed at a granularity
which allows to indeed exploit the inherent parallelism of the application [5].

Since the past few years, there is a growing interest of researchers in improving
Transactional Memory. However, researchers still do not fully understand the trade-
offs and programming pragmatics of the TM programming model. For instance, the
semantics of nested transactions is an area of active debate. Questions such as “what
happens with the outer transaction when a inner transaction aborts?” and “if the inner
transaction commits, should its results be visible only to the outer transaction or to all
transactions?” motivate interesting debates between researches.

Another issue that is being discussed nowadays is the performance of TM: it is
not yet good enough for widespread use. Software TM systems impose considerable
overhead costs, since all mechanisms are implemented in software. However, they are
hardware-independent, so the same solution can be used in different platforms. On the
other hand, hardware TM systems can lower this overhead, but they are only starting
to become available, since all mechanisms need specific hardware to implement the
concept of Transactional Memory. In this context, hybrid solutions (TM implemented
in software that uses specific hardware to reduce the software overheads) appears as a
way to balance these issues. The next section will discuss about these different design
choices for Transactional Memory.

RR n° 7334

6 Márcio Castro et al.

2.3 Design Choices
Transactional Memory can be implemented in software (Software Transactional Mem-
ory) [6, 7, 8], in hardware (Hardware Transactional Memory) [9, 10] or in both (Hybrid
Transactional Memory) [11, 12]. Software Transactional Memory (STM) has several
advantages over Hardware Transactional Memory (HTM). It offers flexibility in im-
plementing different mechanisms and conflict detection/resolution policies. It is easier
to be modified or extended and is not limited by small fixed-size hardware structures,
such as cache memories. Finally, STM does not require specific hardware, so it can be
used on current platforms.

When designing a TM solution, four important criteria must be taken into account:
transaction granularity, version management, conflict detection and conflict resolution.

- Transaction Granularity: it defines the unit of storage for conflict detection [2].
For instance, in object-based languages, it is common to use object granularity,
which detects conflicts when the states of shared objects are modified. Other
examples are the word granularity and the block granularity, which respectively
use memory words or groups of words for conflict detection. The transaction
granularity cannot only have an important impact on the number of conflicts to
be managed but also on the TM overall performance.

- Version Management: since a transaction typically modifies data in memory, it
is important to control how these modifications are managed on memory. There
are two general ways to control it: eager version management and lazy version
management. If the first one is applied, transactions will directly modify data
and the system will use some sort of concurrency control to prevent other trans-
actions from concurrently modifying objects. The system records the original
data before updating, so it can be restored in case of transaction abortion. If lazy
version management is used, transactions will deal with private copies of data.
When a transaction commits, it updates the original data using the private copy.

- Conflict Detection: there are two possible strategies to detect conflicts: eager
conflict detection and lazy conflict detection. The first strategy detects read/write
conflicts as they occur whereas the second one only detects at commit time.

- Conflict Resolution: after detecting a conflict, the TM system needs to solve
it. The usual solution is to abort one or more conflicting transactions. There
are many different algorithms that are used to select which transactions must
be aborted in order to guarantee forward progress. Usually, a TM system has
a specific module called contention manager, which implements one or more
contention resolution policies that are responsible for deciding which conflicting
transaction must be aborted. The selected resolution policy clearly affects the
performance of a TM system.

To sum up, TM solutions must take care of these issues in order to guarantee a func-
tioning solution. The variety of possible combinations of such criteria clearly affects
the behavior of TM applications as well as their performances.

3 STM versus Locks
The performance and benefits of using STM have been discussed since its first proposal
in 1993 [13, 1]. In terms of performance, the research community tends to claim that

INRIA

Analyzing STM Applications by Tracing Transactions 7

it always results in considerably higher overheads than locks. However, this statement
is not always true and it is not easy to foresee the performance of a TM application.

In this section we consider the well-known Traveling Salesman Problem (TSP)
[14] in which the goal is to find the shortest possible path visiting each node of a graph
exactly once. Here, we aim at comparing the performance of our two different solutions
for the TSP: (i) using STM and (ii) using POSIX mutex locks.

In both TSP implementations the graph exploration is done by multiple threads
which access shared variables managing the current shortest path and the pool of paths
to explore. In the lock-based version, accesses to shared variables are enclosed by
Pthread mutex lock/unlock sections. This is the case, for instance, of the accesses to
the minimum variable, which stores the current shortest path (Listing 1).

Listing 1: Lock-based Accesses.

1 void tsp(...) {
2 ...
3 pthread_mutex_lock(&mutex_minimum);
4 if (len < minimum)
5 minimum = len;
6 pthread_mutex_unlock(&mutex_minimum);
7 ...
8 }

With STM, accesses to shared variables are enclosed by transactions whose bound-
aries are indicated by two special functions, i.e., stm_start() and stm_commit().
During a transaction, shared variables are accessed through the use of two functions:
stm_load() and stm_write(). If we consider again the example of the minimum
variable, the above lock-based section is transformed in the following STM-based code.
It should be noted that locks must be explicitly named by the programmer whereas this
is not necessary when using transactions (Listing 2).

Listing 2: STM Access to Shared Data.

1 void tsp(...) {
2 ...
3 stm_start();
4 if (len < stm_load(minimum))
5 stm_store(minimum, len);
6 stm_commit();
7 ...
8 }

We have carried out several experiments on a Symmetric Multiprocessor machine
(SMP) composed of four Intel Xeon X7460 (2.66GHz) processors with six cores each.
This platform has 64GB of shared main memory and runs the x86 64 GNU/Linux
operating system (kernel 2.6.262). The results were obtained through the average of 30
executions, presenting a low standard deviation.

We have used two approaches in implementing TSP. Our first approach is based
on protecting all accesses to shared variables with the synchronization mechanisms.
Figure 1 shows the execution times we have obtained by running TSP with STM and
POSIX mutex locks.

The results show a poor performance of TSP with locks in comparison to STM. This
occurs due to the great number of accesses to the shared variable minimum, causing

RR n° 7334

8 Márcio Castro et al.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 2 4 6 8 10 12 14 16

tim
e

(m
ill

is
ec

on
ds

)

number of cores

STM
Locks

Figure 1: TSP Results: First Approach.

threads to be blocked consecutively. On the other hand, it is not a bottleneck for the
STM solution for two reasons: (i) the STM solution uses an optimistic approach to
handle multiple accesses to shared data, so it does not block all threads; and (ii) most
of the accesses to this shared variable do not conflict, which benefits such optimistic
approach.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 4 6 8 10 12 14 16

tim
e

(m
ill

is
ec

on
ds

)

number of cores

STM
Locks

Figure 2: TSP Results: Second Approach.

After a careful analysis, we noticed that the variable minimum has multiple read-
only accesses allowing the removal of some “extra synchronization” without creating
data races and then increasing even more the parallelism. This strategy is implemented
in our second approach and the execution times are shown in Figure 2.

It can be observed that the performance of the lock-based solution has drastically
increased. There are also some slight performance improvements for the STM solu-
tion. Both curves are very similar and no considerable overhead has been added by

INRIA

Analyzing STM Applications by Tracing Transactions 9

the STM (it is 5% worse on average), which shows that, depending on the applications
characteristics, STM can be as performant as locks.

4 Performance Impact of STM Solutions
In order to investigate the impact of STM solutions on the performance of TM ap-
plications, we have carried out experiments with four different non-trivial TM appli-
cations available from the Stanford Transactional Applications for Multi-Processing
(STAMP). The selected applications have been executed with three state-of-art STM
libraries, namely TinySTM [8], TL2 [6] and SwissTM [7].

Sections 4.1 and 4.2, give a brief description of each one of the selected STM
libraries and applications, respectivelly. Finally, in Section 4.3 we compare the perfor-
mance of the three STM libraries using four STAMP applications.

4.1 STM Solutions
Usually, STM systems can be either implemented in a library or directly into a com-
piler. The library-based solution requires the programmer to add explicit calls to the
STM library for every access to the memory inside a transaction. This approach is ap-
plicable in every system but requires significant changes to the application source code
when compared to the sequential code. In order to address this issue, a compiler or
preprocessor can be used to automatically convert all accesses to memory that happen
within a transaction (e.g., delimited by an atomic block) into proper function calls of a
STM library. Implementations such as Transactional Locking II (TL2), TinySTM and
SwissTM use the library approach.

On the other hand, the second approach is to use a compiler which includes all
STM functionalities. In this case, the compiler includes a specific support to STM for
a specific programming language. The scope of software support includes language
extensions to specify and define transaction regions (atomic blocks). The Intel C++
STM Compiler applies this approach.

In the following sections we give a brief description of each one of the STM li-
braries we have used in our experiments.

4.1.1 Transactional Locking II (TL2)

The TL2 algorithm is a global version-clock based variant of the original transactional
locking algorithm of Dice and Shavit (TL) [15]. Based on this global versioning ap-
proach, and in contrast with prior local versioning approaches, the authors were able to
eliminate several key safety issues afflicting other lock-based STM systems and sim-
plify the process of mechanical code transformation [6].

The basic idea of TL2 algorithm is to use a global version-clock counter in or-
der to handle conflicts between transactions. The counter is incremented using an
increment-and-fetch function implemented with a compare-and-swap (CAS) opera-
tion. This global variable will be read and incremented by each writing transaction
and will just be read by every read-only transaction.

A similar idea of the global version-clock variable is used to implement a data
structure responsible for storing a collection of special versioned write-locks used for
every transacted memory location. In this case, a single bit is used to indicate whether
the lock is taken. The rest of the lock word is used to store a version number. This

RR n° 7334

10 Márcio Castro et al.

version number is incremented by every successful release of the respective lock. It
is also possible to associate locks and shared data in different ways such as per object
(a lock is assigned per shared object) or per stripe (the shared memory is partitioned
using some hash function to map a striped location to a lock).

The sequence of operations that are performed by the TL2 when a transaction be-
gins depends on the type of the transaction. One of the goals of the TL2 algorithm
is to offer an efficient execution of read-only transactions. In this case, few steps are
executed allowing low-cost read-only transactions. On the other hand, if it is a write
transaction, that means a transaction that performs writes to the shared memory, more
steps are needed and it may have a significant cost depending on the operations that are
executed inside the transaction.

4.1.2 TinySTM

TinySTM is another well-known STM implementation that also uses a global version-
ing approach (shared counter as clock) to control the conflicts between transactions
and locks to protect shared memory locations [8]. Since the maximal value of the
clock is 231 on a 32-bit architecture and 263 on a 64-bit architecture, it may be quickly
reached in 32-bit systems with frequent commits. TinySTM avoids this problem by
implementing a mechanism to automatically reset the clock when the maximal value is
reached.

Two strategies for accesses to memory have been implemented in TinySTM: write-
through and write-back. The first strategy allows transactions to directly write to mem-
ory and revert their updates in case they need to abort whereas the second delays mem-
ory updates until commit time. It is also important to mention that each strategy has
its advantages and limitations. Write-through has lower commit-time overhead, faster
read-after-write/write-after-write handling and enables many interesting compiler opti-
mizations. On the other hand, write-back has lower abort overhead and does not require
extra techniques to guarantee consistent reads.

As TL2, TinySTM uses a shared array of locks to manage concurrent accesses to
memory. Each lock covers a portion of the address space and the addresses are mapped
to locks based on a hash function. Since write-transactions must verify that all the
addresses they have read are still valid (i.e., they are not locked by another transaction
and still have the same version number) at commit time, depending on the number
of read and write operations, this verification may be costly. In order to address this
issue, the authors propose a hierarchical locking strategy. In this strategy, leaves of the
tree (last level on the hierarchy) correspond to elements of the shared array of locks
while upper levels aggregate information about lower levels. Thus, when there is no
lock acquired for any element of a given sub-tree, there is not necessary to validate its
elements.

In [8], the authors also emphasize the importance of tuning some TinySTM pa-
rameters and show that it can really impact on the transaction throughput. The three
most important parameters are: the hash function which maps a memory location to
a lock, the number of entries in the lock array and the size of the array used for the
hierarchical locking. Because of that, the authors propose a dynamic tuning strategy
to automatically adjust these parameters according to the workload and show that it
results in important performance gains.

INRIA

Analyzing STM Applications by Tracing Transactions 11

4.1.3 SwissTM

SwissTM [7] is a very recent STM implementation which has some similar character-
istics when compared to TL2 and TinySTM. It is a lock-based STM, which means that
it uses a lock table to manage concurrent accesses to memory. As TL2 and TinySTM,
the API of SwissTM is also word-based, as it enables transactional access to arbitrary
memory words (word granularity).

However, SwissTM presents some new features when compared to other libraries
such as TL2 and TinySTM. One of its innovations is the hybrid conflict detection
scheme: it detects write/write conflicts eagerly, which prevents transactions that will
probably abort from running and wasting resources, and read/write conflicts lazily, al-
lowing more parallelism between transactions. In read/write conflicts, a time-based
scheme (similar to the TL2 global version-clock) is applied to handle conflicts.

Another distinctive feature of SwissTM is its two-phase contention manager. In
brief, short or read-only transactions use the simple but inexpensive timid contention
management scheme, aborting transactions when the first conflict is encountered. On
the other hand, more complex transactions are switched dynamically to a mechanism
that involves more overhead but favors theses transactions, preventing starvation. Specif-
ically, the mechanism that is applied for such complex transactions is called Greedy
[16].

It is also important to mention that SwissTM has the weak atomicity property. This
means that it cannot detect conflicts between accesses to memory inside and outside
transactions. In order to guarantee all properties of transactional memory, it is neces-
sary to perform all accesses to shared variables inside transactions.

4.2 Transactional Memory Applications
STAMP is a benchmark which includes 8 applications developed for TM [17]. It offers
several advantages in comparison with other benchmarks: (i) the applications use a
variety of algorithms and belong to different application domains; (ii) it is possible to
simulate different transactional behaviors varying the size of transactions (in terms of
the number of instructions), the amount of contention and their granularity; and (iii)
the applications can be easily executed with different STM libraries. In this work, we
have selected the following STAMP applications:

- genome: it takes a large number of DNA segments as its input parameter and
tries to mach them to reconstruct the original source genome. This process is
composed by two phases. The first phase of the algorithm uses a hash set to
create a set of unique segments, excluding all duplicates. After that, the second
phase is executed by many threads where each one tries to remove a segment
from a global pool of unmatched segments and add it to its partition of currently
matched segments. In order to match segments fastly, the algorithm uses Rabin-
Karp string matching. Additions to the set of unique segment and accesses to the
global pool of unmatched segments are enclosed by transactions to allow con-
current accesses. This application is characterized by medium-sized transactions
and it spends most of its execution time executing transactions.

- intruder: it emulates Design 5 of the Signature-based network intrusion detec-
tion system, which scans network packets in order to detect a known set of intru-
sion signatures. It is composed by three phases: capture, reassembly and detec-
tion. Different shared data structures are used depending on the phase: a FIFO

RR n° 7334

12 Márcio Castro et al.

queue is used in capture whereas a dictionary implemented by a self-balancing
tree is used in reassembly phase. Both capture and reassembly phases are en-
closed by transactions. This application is composed by considerably fewer (but
bigger) transactions than genome.

- labyrinth: it is a variant of Lee’s routing algorithm [18] implemented with trans-
actions. The calculation of the path is enclosed by a single transaction and a con-
flict occurs when two or more threads pick paths that overlap. Transactions are
beneficial for implementing this solution since deadlock avoidance techniques
are required when implementing it with locks. It has very different characteris-
tics: short transactions (few instructions inside transactions) but it is composed
by an extremely large number of transactions in comparison to the others.

- ssca2: it is composed by four graph kernels that operate on a large, directed,
weighted multi-graph. In this report, we have selected the Kernel 1, which is re-
sponsible of constructing an efficient graph data structure using adjacency arrays
and auxiliary arrays. In STAMP, the parallel transactional version of such kernel
is composed by threads that add nodes to the graph in parallel. In this context,
transactions are used to protect accesses to the adjacency arrays.

These applications have been selected since they present different characteristics in
terms of computation, transactions lengths (Tx Length) and time spent in transactions
(Tx Time). A summary of these characteristics is shown in Table 1.

Table 1: Applications characteristics.

Application Tx Length Tx Time Input parameters
genome Medium High genome -g256 -s16 -n16384
intruder Short Medium intruder -a10 -l4 -n2048 -s1
labyrinth Long High labyrinth -i random-x512-y512-z7-n512.txt
ssca2 Short Low ssca2 -s14 -i1.0 -u1.0 -l9 -p9

A complete description of each application as well as the possible input parameters
and their influences on the performance can be found in [17].

4.3 Performance Analysis
In this section we show the results obtained by carrying out experiments with the four
applications and three STM libraries. For this purpose, we have used the same SMP
machine described in the previous section and the results were also obtained through
the average of 30 executions (an insignificant standard deviation has also been ob-
served).

Figure 3 (a) shows the speed-ups we have obtained by executing genome with the
three STM libraries. For this particular application, TinySTM has presented the best
speed-up (9.75 with 16 cores) and better scalability than the others. We can notice that
TinySTM and SwissTM perform still better with 16 cores, while TL2, on the contrary,
presents a considerable performance degradation.

The results of the labyrinth executions are shown in Figure 3 (b). Unlike the pre-
vious results, SwissTM presents the best performance gains (7.71 with 16 cores). TL2

INRIA

Analyzing STM Applications by Tracing Transactions 13

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 8 16

sp
ee

d−
up

number of cores

TinySTM
SwissTM

TL2

(a) genome

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 4 8 16

sp
ee

d−
up

number of cores

TinySTM
SwissTM

TL2

(c) intruder (d) ssca2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 2 4 8 16

sp
ee

d−
up

number of cores

TinySTM
SwissTM

TL2

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 8 16

sp
ee

d−
up

number of cores

TinySTM
SwissTM

TL2

(b) labyrinth

Figure 3: Performance of the Selected STAMP Applications.

has shown better scalability in comparison to the genome results but it has still pre-
sented poor performance compared to the other STM libraries.

In Figure 3 (c), we present the speed-ups obtained while executing intruder. We
can observe a very different behavior: there are almost no performance gains as the
speed-ups obtained do not exceed 1.8. SwissTM has presented better performance
gains in comparison to TinySTM from 2 to 8 cores. However, TinySTM has surpassed
the performance of SwissTM when using 16 cores.

Finally, in Figure 3 (d), we present the results obtained by running ssca2. As in
intruder, SwissTM has presented better speed-ups with few processor cores. A maxi-
mum speed-up of 4.1 has been achieved with 16 cores. Like intruder, this application
also presented poor scalability which indicates that it does not take advantage of the
STM optimistic approach.

Regarding the results presented above we can conclude that it is not trivial to predict
the performance of a TM application. The characteristics and design choices of the
STM library can undoubtedly change its performance. In this context, we argue that
such characteristics must be taken into account in order to develop a performant TM
application. Thus, it emerges the necessity of having ways to better comprehend their
behavior. In order to obtain some insight on such issues, we propose an approach for
collecting and tracing relevant information about transactions.

RR n° 7334

14 Márcio Castro et al.

5 Tracing Transactions
Tracing applications basically consists in recording a chronological history of events,
representing the application behavior. An event is an action during the execution of an
application that changes its state. In this work, we are specifically interested in events
deriving from the use of STM. In the following sections, we describe how these events
can be traced. Firstly, we specify the desired characteristics of our approach. Secondly,
we explain the general functioning of STM libraries and what events we intend to trace.
Finally, we describe our tracing mechanism.

5.1 Goals
Our mechanism aims to tackle two relevant issues:

- STM Application and STM Library Independency: we want a tracing solution
which does not change neither the TM application nor the STM library source
codes. In order to do so, we have chosen to implement an interception mecha-
nism placed between the STM application and the STM library.

- Intrusiveness: our tracing solution should minimize intrusiveness meaning that it
should not imply an important execution overhead. Indeed, when that overhead
is important, the application behaves differently and the traces may not repre-
sent the real application behavior. In order to minimize intrusiveness, we have
decided trace a very reduced set of events.

5.2 Traced Events
We have selected the two most important functions to be traced, i.e., stm_start() and
stm_commit(), which respectively indicate the beginning and the end of transactions.
We believe that, by intercepting them, relevant information about TM applications can
be extracted without increasing the degree of intrusiveness. In the following paragraphs
we explain more in detail the functioning of these two functions.

The function stm_start() is responsible for initializing the transaction specific
structures, as well as for saving the calling environment for later use in case of abort.
It typically saves the stack context containing the current thread local program counter
and registers values. The role of the stm_commit() function is to verify whether the
current transaction is in conflict with any other transaction.

When a conflict occurs, a rollback mechanism calls stm_start() in order to
restart the transaction. The system rollbacks the transaction by restoring the envi-
ronment that has been saved by the first call to stm_start(). In order to do that,
stm_start() and stm_commit() use the Linux system calls sigsetjmp() and
siglongjmp() to respectively save and restore the thread environment. This strategy
is applied in the majority of STM libraries, including TinySTM, TL2 and SwissTM.
When there is no conflicts, all changes that have been done by the transaction are made
permanent (validation).

We can easily obtain the number of commits and aborts during the application
execution, since aborts can be identified by successive calls to stm_start() in the
context of a specific thread. With such information, we can deduce other metrics such
as the rate of successfully committed transactions, the time spent re-executing transac-
tions, etc.

INRIA

Analyzing STM Applications by Tracing Transactions 15

5.3 Tracing Mechanism
Our tracing solution is based on the Linux dynamic linking mechanism which provides
a simple way to intercept function calls. It provides the environment variable called
LD_PRELOAD which is used to dynamically load a library LIB when launching appli-
cations. During the execution, the system will intercept the functions having the same
signatures as the ones implemented in LIB, calling the corresponding LIB functions
(wrappers). Wrapper functions may implement their proper behavior but it is still pos-
sible to call the original ones.

In our case, a shared library called libTraceSTM.so has been implemented, con-
taining two wrappers for the stm_start() and stm_commit() functions. By exe-
cuting LD_PRELOAD=./libTraceSTM.so app (where app is the target STM appli-
cation), the original STM functions are dynamically overridden by our wrapper func-
tions. The wrappers are responsible for tracing and calling the corresponding original
functions, i.e., stm_start() and stm_commit().

Listing 3: STM Function Wrappers.

1 void stm_start() {
2 realStmStart = dlsym(handle, "stm_start");
3 ...
4 pthread_mutex_lock(&trace_lock);
5 trace("stm_start");
6 (*realStmStart)(); //calls the real function
7 pthread_mutex_unlock(&trace_lock);
8 }
9

10 void stm_commit() {
11 realStmCommit = dlsym(handle, "stm_commit");
12
13 pthread_mutex_lock(&trace_lock);
14 ...
15 (*realStmCommit)(); //calls the real function
16 ...
17 trace("stm_commit");
18 pthread_mutex_unlock(&trace_lock);
19 }

Listing 3 shows the two selected wrapper functions: stm_start() (line 1) and
stm_commit() (line 10). In stm_start(), we first obtain a handle to the original
STM function (line 2), trace the related event using the trace() function (line 5) and
call the original STM function (line 6). In stm_commit(), however, we first call the
original STM function before tracing it. As explained before, stm_commit() roll-
backs in case of conflicts and stm_start() is called again. So, tracing events after
stm_commit() ensures that transactions have already committed successfully. Suc-
cessive calls to stm_start() in the context of the same thread indicate transactions
that have been aborted.

It is important to notice that calls to trace() and the real STM functions must
be atomic. Otherwise, the order of recorded events may not correspond to the real
sequence of calls to STM functions. This is the reason why we use locks and some
additional treatments in order to avoid deadlock situations that can easily arise during
rollbacks.

Figure 4 shows our tracing mechanism. When a thread is initialized by the STM
application, our shared library adds the thread ID in an internal data structure, creates
a trace file and instantiates a circular memory buffer. When subsequent STM function

RR n° 7334

16 Márcio Castro et al.

calls are intercepted, the trace record is written into the corresponding thread’s circular
buffer. When the circular buffer is full, its contents are flushed to the corresponding
trace file.

STM Application

Th 1 Th 2

STM

TinySTM TL2 SwissTM ...

STM function call

libTraceSTM
Th 2 circular buffer

Th 1 circular buffer

Th 2

0015 stm_start
0030 stm_commit

Th 1

0001 stm_start
0009 stm_start
0023 stm_commit...

...

STM function call interception

Figure 4: Overview of the Tracing Mechanism.

Each event to be traced is represented by a timestamp and the name of the inter-
cepted function. As we target shared memory multithreaded applications, timestamps
correspond to the value of the machine’s clock. At the end of the execution, we ob-
tain a set of files, one per thread. This is illustrated in Figure 4, which shows a STM
application with 2 threads (named Th1 and Th2). The trace file of Th1, for example,
shows two successive calls to stm_start() followed by a stm_commit(), indicating
a transaction that has been aborted once. The trace file of Th2 shows a transaction that
has been started and committed successfully.

After the execution of the application, we merge the individual trace files, sorting
events by their timestamps. In the merged trace file, each event is represented by a
timestamp, a thread ID and the name of the intercepted function. Figure 5 shows the
final trace that has been derived from the merge of the individual trace files of Th1 and
Th2 .

Th 1

0001 stm_start
0009 stm_start
0023 stm_commit

Th 2

0015 stm_start
0030 stm_commit

Merge
Sort

Trace

0001 Th1 stm_start
0009 Th1 stm_start
0015 Th2 stm_start
0023 Th1 stm_commit
0030 Th2 stm_commit

Figure 5: Final Trace Generation.

We believe that our approach to intercept STM function calls is very simple and it
can be easily extended if more functions should be traced. It is also generic enough,
since it can be used with all STM libraries (e.g., TinySTM, TL2 and SwissTM) and it
does not change neither the STM application, nor the STM library source codes.

INRIA

Analyzing STM Applications by Tracing Transactions 17

6 Experimental Results
This section presents the experimental results we have obtained by using our tracing
mechanism with the STAMP applications described in Section 4. For this purpose, we
have used TinySTM, executing all applications with 16 threads.

Our tracing mechanism allows us to obtain different metrics and statistics about the
execution of STM applications. For instance, we can calculate the number of transac-
tions or the number of commits and aborts. We can also observe the wasted work, i.e.,
the percentage of the transactions execution time that has been spent executing aborted
transactions (total and per thread). Other accessible metrics concern the evolution of
the number of aborts and commits and the instantaneous commit rate (the proportion
of committed transactions at sample points) during the execution.

In this paper, we present the evolution of the number of commits and aborts during
the execution. We believe that such information can be very helpful since the number
of aborts is one of the most important metrics that influences the performance of STM
applications. In the following, we show the results corresponding to the three STAMP
applications.

(a) genome

(c) intruder (d) ssca2

(b) labyrinth

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

nu
m

be
r o

f e
ve

nt
s

time (1x104 ms)

aborts
commits

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8 9

nu
m

be
r o

f e
ve

nt
s

time (1x106 ms)

aborts
commits

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 1 2 3 4 5 6 7

nu
m

be
r o

f e
ve

nt
s

time (1x105 ms)

aborts
commits

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

nu
m

be
r o

f e
ve

nt
s

(1
x1

02)

time (1x105 ms)

aborts
commits

Figure 6: Trace Results: Aborts and Commits Evolution.

Figure 6 (a) concerns the genome application. What may be observed is that the
commit/abort behavior changes during the execution. Namely, the number of aborts
increases drastically between 3 × 104 ms and 4 × 104 ms. This suggests that, during
this period, the probability of having conflicting transactions is very high. However,
since the time period is short compared to the total execution time, it does not interfere
considerably with its overall performance (as seen in Section 4).

RR n° 7334

18 Márcio Castro et al.

The results obtained with labyrinth are shown in Figure 6 (b). As it can be seen, this
application takes advantage of the optimistic approach of TM, since the aborts curve
is always placed under the commits curve. The difference increases towards the end
of the execution (exponential growth). The few number of aborts in comparison to the
commits justifies the performance obtained in Section 4.

Traces obtained from intruder are shown in Figure 6 (c). Its poor performance
observed in Section 4 is confirmed by the presence of a very high number of aborts
in comparison to commits, which means that it does not take advantage of the TM
optimistic approach.

Finally, the ssca2 results are shown in Figure 6 (d). Considering the same intu-
ition, we would expect an important number of aborts, since the performance of such
application was not satisfactory (Section 4). However, the obtained traces show a very
low number of aborts in comparison to commits and it does not reflect its poor perfor-
mance gains. We can conclude that its poor performance has not been originated by the
STM (no overhead has been added) and similar performance gains would be obtained
if ssca2 was implemented with locks.

7 Related Work
Considering that TM is an emerging research area, in the majority of cases, works have
been based on proposals of different TM solutions and algorithms. Recently, some
works have addressed the performance analysis of different TM solutions and/or TM
applications, as in [17], [19] and [20]. However, few works have been done concerning
tools to help the development using TM. That is the case of the proposals presented in
[21] and [22].

Minh et al. [17] have described the eight non-trivial STAMP applications, showing
their performance gains with different TM systems and configurations. However, they
have used a multicore simulator for all experiments instead of a real multicore platform.

Chung et al. [19] have studied 35 benchmarks from different domains. In that work,
the authors have translated the original synchronization mechanisms applied on all
benchmarks to TM. However, they have neither studied the non-trivial TM applications
presented here nor they have analyzed aborts and commits, which are very important
metrics.

Marathe et al. [20], on the other hand, have compared the performance of their
STM solution with other STM implementations on two multicore machines. The per-
formance analysis has been based on four simple micro-benchmarks, which do not
represent the behavior of real applications though.

Our work differs from these three, since we have tackled both issues: a performance
analysis of four non-trivial TM applications by using three different state-of-art STM
libraries over a real multicore machine.

Concerning the study of the behavior of TM applications, we can highlight two
very recent papers. On both works, the authors have proposed solutions to profile the
execution of STM applications.

Ansari et al. [21] have manually instrumented the DSTM2 STM library to collect
relevant information during the execution of the applications. They have chosen three
applications from STAMP and an implementation of Lee’s routing algorithm, investi-
gating some relevant metrics to comprehend TM applications.

Lourenço et al. [22] have proposed a monitoring framework, which collects the
transactional events into a log file as well as a tool to visualize the results. Their instru-

INRIA

Analyzing STM Applications by Tracing Transactions 19

mentation mechanism is based on a API, so the user must insert the tracing function
calls within applications source codes.

Unlike these two proposals, our solution uses an interception approach based on the
Linux dynamic linking mechanism. By using such method, we can achieve the STM
application and STM library independency, since it does not change neither the TM
application nor the STM library source codes and it can be easily applied with different
STM libraries.

8 Conclusion and Perspectives
In this paper, we have shown that the performance of applications based on STM is
related to two issues: the application itself and the STM library. A TM application
that takes into account the characteristics of the underlying TM system may benefit of
its optimistic approach, reducing the probability of having conflicts and then, resulting
in better performance. On the other hand, we have seen that an application may also
behave differently depending on the STM library, which means that the developer must
be aware of how the STM library works to achieve the desirable performance.

In order to obtain a better understanding of the performance of STM applications,
we have proposed an approach for collecting relevant information about transactions.
It is based on a shared library which is dynamically linked with the STM applica-
tion. Events to be traced are implemented as wrapper functions, which can be easily
extended if other events must be traced. Moreover, our solution can be applied to differ-
ent STM libraries and applications as it does not modify neither the target application
nor the STM library source codes.

The selected events (stm_start() and stm_commit() function calls) allow the
extraction of different details and statistics about the execution of a STM application.
Specifically, in this work we were interested in analyzing the behavior of aborts and
commits during the execution, since they represent an important role on the perfor-
mance of STM applications.

The collected information representing each event allows a general comprehension
about the behavior of all transactions. However, we cannot correlate each event to
its corresponding transaction in the context of a specific thread, since transactions are
not explicitly identified. As a future work, we intend to study ways of discerning
transactions in our tracing mechanism, so finer information can be obtained. Moreover,
we aim at investigating the behavior of other non-trivial TM applications, proposing
general guidelines to reduce conflicts by analyzing TM applications. Finally, we also
plan to study what support we would need in order to use our trace mechanism with
hardware and hybrid TM solutions.

References
[1] J. Larus and C. Kozyrakis, “Transactional Memory: Is TM the Answer for Im-

proving Parallel Programming?” Communications of ACM, vol. 51, no. 7, pp.
80–88, 2008.

[2] J. Larus and R. Rajwar, Transactional Memory (Synthesis Lectures on Computer
Architecture), 1st ed. Madison, USA: Morgan & Claypool Publishers, 2007.

RR n° 7334

20 Márcio Castro et al.

[3] D. B. Lomet, “Process structuring, synchronization, and recovery using atomic
actions,” SIGPLAN Not., vol. 12, no. 3, pp. 128–137, 1977.

[4] M. Herlihy, J. E. B. Moss, J. Eliot, and B. Moss, “Transactional Memory: Ar-
chitectural Support for Lock-Free Data Structures,” in Proceedings of the 20th
Annual International Symposium on Computer Architecture, 1993, pp. 289–300.

[5] Q. Meunier and F. Pétrot, “Lightweight Transactional Memory Systems for
Large Scale Shared Memory MPSoCs,” in To appear: Proceedings of the IEEE
NEWCAS-TAISA ’09, Toulouse, France, 2009.

[6] O. S. D. Dice and N. Shavit, “Transactional Locking II,” in DISC ’06: Proc. of
the 20th International Symposium on Distributed Computing, 2006, pp. 194–208.

[7] A. Dragojević, R. Guerraoui, and M. Kapalka, “Stretching Transactional Mem-
ory,” ACM SIGPLAN Notices, vol. 44, no. 6, pp. 155–165, 2009.

[8] P. Felber, C. Fetzer, and T. Riegel, “Dynamic Performance Tuning of Word-Based
Software Transactional Memory,” in PPoPP ’08: Proc. of the 13th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, 2008,
pp. 237–246.

[9] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. D. Carlstrom, L. Ham-
mond, C. Kozyrakis, and K. Olukotun, “Characterization of TCC on Chip-
Multiprocessors,” in PACT ’05: Proc. of the 14th International Conference on
Parallel Architectures and Compilation Techniques, 2005.

[10] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood, “Logtm:
Log-based Transactional Memory,” in HPCA ’06: Proc. of the 12th International
Symposium on High-Performance Computer Architecture, 2006, pp. 254–265.

[11] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen, “Hybrid Transac-
tional Memory,” in PPoPP ’06: Proc. of Symposium on Principles and Practice
of Parallel Programming, 2006.

[12] A. Shriraman, V. J. Marathe, S. Dwarkadas, M. L. Scott, D. Eisenstat, C. Heriot,
W. N. S. III, and M. F. Spear, “Hardware Acceleration of Software Transactional
Memory,” in TRANSACT ’06: Proc. of the 1st ACM SIGPLAN Workshop on Lan-
guages, Compiler and Hardware Support for Transactional Computing, 2006.

[13] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chat-
terjee, “Software Transactional Memory: Why Is It Only a Research Toy?”
Queue, vol. 6, no. 5, pp. 46–58, 2008.

[14] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Traveling Salesman
Problem: A Computational Study (Princeton Series in Applied Mathematics).
Princeton, NJ, USA: Princeton University Press, 2007.

[15] D. Dice and N. Shavit, “What really makes transactions faster?” in Proceedings
of the 1st TRANSACT 2006 Workshop, 2006.

[16] R. Guerraoui, M. Herlihy, and B. Pochon, “Toward a theory of transactional con-
tention managers,” in PODC ’05: Proceedings of the twenty-fourth annual ACM
symposium on Principles of distributed computing. New York, NY, USA: ACM,
2005, pp. 258–264.

INRIA

Analyzing STM Applications by Tracing Transactions 21

[17] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stanford
Transactional Applications for Multi-Processing,” in IISWC ’08: Proc. of The
IEEE International Symposium on Workload Characterization, 2008.

[18] X. Ji-Guang and T. Kozawa, “An Algorithm for Searching Shortest Path by Prop-
agating Wave Fronts in Four Quadrants,” in DAC ’81: Proc. of the 18th Design
Automation Conference. Piscataway, NJ, USA: IEEE Press, 1981, pp. 29–36.

[19] J. Chung, H. Chafi, C. C. Minh, A. Mcdonald, B. D. Carlstrom, C. Kozyrakis,
and K. Olukotun, “The Common Case Transactional Behavior of Multithreaded
Programs,” in HPCA ’06: Proc. of the 12th International Conference on High-
Performance Computer Architecture. IEEE Computer Society, 2006.

[20] V. J. Marathe and M. Moir, “Toward High Performance Nonblocking Software
Transactional Memory,” in PPoPP ’08: Proc. of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming. New York, NY,
USA: ACM, 2008, pp. 227–236.

[21] M. Ansari, K. Jarvis, C. Kotselidis, M. Luján, C. Kirkham, and I. Watson, “Profil-
ing Transactional Memory Applications,” in PDP ’09: Proc. of the 17th Interna-
tional Conference on Parallel, Distributed, and Network-based Processing, 2009,
pp. 11–20.

[22] J. Lourenço, R. Dias, and J. Luı́s, “Understanding the Behavior of Transactional
Memory Applications,” in PADTAD ’09: Proc. of the 2009 ACM Workshop on
Parallel and Distributed Systems: Testing and Debugging, 2009.

RR n° 7334

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

	Introduction
	Transactional Memory (TM)
	What is Transactional Memory?
	Why are researchers interested in Transaction Memory?
	Design Choices

	STM versus Locks
	Performance Impact of STM Solutions
	STM Solutions
	Transactional Locking II (TL2)
	TinySTM
	SwissTM

	Transactional Memory Applications
	Performance Analysis

	Tracing Transactions
	Goals
	Traced Events
	Tracing Mechanism

	Experimental Results
	Related Work
	Conclusion and Perspectives

